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ABSTRACT

In this paper, we propose a new paradigm to learn au-
dio features for Music Structure Analysis (MSA). We
train a deep encoder to learn features such that the Self-
Similarity-Matrix (SSM) resulting from those approxi-
mates a ground-truth SSM. This is done by minimizing
a loss between both SSMs. Since this loss is differen-
tiable w.r.t. its input features we can train the encoder in a
straightforward way. We successfully demonstrate the use
of this training paradigm using the Area Under the Curve
ROC (AUC) on the RWC-Pop dataset.

1. INTRODUCTION

Music Structure Analysis (MSA) is the task aiming at
identifying musical segments that compose a music track
(ak.a. segment boundary estimation) and possibly label
them based on their similarity (a.k.a. segment labeling).
Over the years, systems for MSA have switched from

e hand-crafted detection system (checker-board-kernel [1]
or DTW [2]) applied to hand-crafted audio features
(MFCC or Chroma)

e to deep learning detection system (boundary detection
using ConvNet [3-5]) applied to hand-crafted audio
features, and recently

o to hand-crafted detection system (checker-board-kernel)
applied to deep learned features [6,7].

Among the paradigms used to learn these features, met-
ric learning using the triplet loss [8] has been the most
popular, either using unsupervised learning [6] or using
supervised learning [7]. In this paper, we propose a new
paradigm to learn these features, which is more straightfor-
ward and less-computationally expensive (on a GPU Tesla
P100-PCIE, training in about 1 hour for our approach and
24 hours for [6]).

2. PROPOSAL: SSM-NET

Our SSM-net system is illustrated in Figure 1. The inputs
and architecture (but not the loss) of our system are in-
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spired by McCallum’s work [6] (but largely simplified ! ).

Input data {X;}. Each audio track is represented as a
temporal sequence of 1" audio features X; which we de-
note as {X;};cq1...my or {X;} for short. {X;} are beat-
synchronized patches of Constant-Q-Transform (CQT),
each centered on a beat position b; 2. Each patch repre-
sents 4 successive beats > . Each beat is further sub-divided
into 16 sub-beats. For this, the content of the CQTSs be-
tween two successive beats b;_; and b; is analyzed and
clustered* into 16. The inputs to our network are there-
fore patches X,; of CQT, each of size (72 frequencies, 4*16
sub-beats) and centered on a beat b;.

Network architecture e/ = fY(X;). The architecture
of our encoder f? is illustrated in Figure 1. It comprises
3 consecutive blocks (L1, L2, L3) of a 2D convolution
followed by a SELU [12] activation, a 2D group normal-
ization [13] with 32 channels and a 2D max-pooling, The
convolutional layers use a kernel size of (f=6, t=4)°> and
the max-pooling layers use respectively kernel sizes of (2,
4), (3, 4) and (3, 2). The output is then passed to a single
Fully-Connected (FC) layer of 128 units with a SELU ac-
tivation. The output is then L2-normalized and constitutes
the embedding e/ = f?(X;). 6 denotes the set of param-
eters to be trained (348.400 parameters). For comparison
the original McCallum [6] network has 1.280.768.

SSM-Net Loss. We apply the same encoder f? to each
input X;. We then obtain the corresponding sequence of
embeddings {e?}ie{l...T} = fe({Xi}iE{l...T})' We can
then easily construct an estimated SSM, Sfj, using a dis-
tance/similarity g function between all pairs of projections:

8 =gle! = /'(Xi),ef = [/(X;), Vij (D)

g is here a simple cosine-similarity which we scale to [0, 1]:
&6 L o 912

S;;=1- 1”91' - ej||2 € [0,1] ()

It is then possible to compare Sfj to a ground-truth bi-
nary SSM, S;;. We formulate this as a multi-class problem

! ' We reduced the sampling rate of the features by a factor 8: McCallum
divides each beat into 128 sub-beats while we only use 16 sub-beats. We
divided by a factor 2 the number of convolutional filters of each layer and
we removed the last two fully connected layers.

2The CQTs are computed using librosa [9]. We used 72 log-
frequencies ranging from C1 (31.70 Hz) to C7 (2093 Hz).

3 The beat positions {b;} are computed using madmom [10] [11].

4 using constrained agglomerative clustering and median aggregation
as implemented in 1ibrosa.segment . subsegment.

3 f and t denotes the frequency and time dimensions
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Figure 1. SSM—net architecture. From left to right: input sequence {X;} of beat-synchronous CQT-patches, encoder f?
applied to each X, estimated SSM Sfj computed with embeddings {e?} = f?({X;}), Loss £? computation.
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Figure 2. [Left] SSMs Sfj computed using embeddings e’ obtained using (from left to right): cqt, necal lum-biased,
ssmnet and ground-truth SSM S;;, on track 2 from RWC-Pop dataset. Loss £ and AUC are indicated on top of each.
[Right] Box-plots of Loss £ and AUC obtained for all tracks of RWC-Pop dataset.

(a set of T2 binary classifications) and minimize the sum of
Binary-Cross-Entropy (BCE) losses. We compensate the
class unbalancing by using a weighting factor \ computed
as the percentage of 1 values in S;;.

ro— ZT: (1—X) {Sijlog(gfj)} +A [(1 —8Sij)log(l —g?j)}

i,j=1
) 3)
Since the computation of the SSM ng is differentiable

. 6
w.r.t. to the embeddings {ef}, we can compute %

- 0 (0S¢ 9e?  9SY. del
% = Z % v aﬁ + w3 (4)
00 = 8o\ el 06 el 00
3,j=1 (¥ 1 J
Training. We minimize the loss using MAD-

GRAD [14] with a learning rate of 5x10~%, a weight decay
of 1072 and early-stopping. The mini-batch-size m (here
defined as the number of full-tracks) is set to 6.
Generating a ground-truth SSM S ;. To generate S;;,
we rely on the homogeneity assumption, i.e. we suppose
that all ¢; that fall within an annotated segment are identical
since they share the same label. If we denote by seg(t;) the
segment ¢; belongs to and by label(seg(t;)) its label, we
assign the value S;; = 1iflabel(seg(t;)) = label(seg(t;)).

3. EVALUATION

To evaluate the quality of the features independently of the
choice of a specific detection algorithm for MSA, we di-
rectly compare the ground-truth S;; and the S?j obtained
using various choices for e’. For each choice, we measure

the obtained Loss £ (lower is better) and AUC (higher is
better) . We conside the following features e’

e cqt: the flattened CQT patches {X;}

e convnet: the output of the un-trained (random
weight) encoder f? applied to {X;}

e ssmnet: the output of f? trained with SSM-Net

e mccallum—normal/biased: the output of the
same encoder f? but trained using the two unsuper-
vised metric learning approaches described in [6]

e ssmnet-mccallum-normal/biased: same
as for ssmnet but f? is pre-trained using
mccallum-normal/biased

To train our SSM-Net, , we used a sub-set of 695 tracks
from the labeled dataset Harmonix [15]. To train the un-
supervised metric learning approach described in [6], we
used a large unlabeled dataset from YouTube of 26.000
tracks from various genres.The evaluation is performed on
RWC-Pop [16] labeled with AIST annotations [17]).

In Figure 2 [Left], we give an example of the SSM Sfj
obtained using the embeddings e’ learned by the most rep-
resentative approaches. On this example, ssmnet gives
the S?j with the highest contrast and the closest to the
ground-truth. It gets a small £=0.15 and a high AUC=0.81.

In Figure 2 [Right], we represent the box-plots of £ and
AUC considering all tracks of RWC-Pop. As one can see,
the SSM-net approach leads to the lowest £. However Mc-
Callum leads to a higher AUC than SSM-Net. We there-
fore combine the SSM-Net training with a McCallum pre-
training. This then leads to both a low £ and a high AUC .
This is the approach we will develop in the future.
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