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Abstract—We tackle in this work the problem for a player
to efficiently bid in Simultaneous Ascending Auctions (SAA).
Although the success of SAA partially comes from its relative
simplicity, bidding efficiently in such an auction is complicated
as it presents a number of complex strategical problems. No
generic algorithm or analytical solution has yet been able to
compute the optimal bidding strategy in face of such complexities.
By modelling the auction as a turn-based deterministic game
with complete information, we propose the first algorithm which
tackles simultaneously two of its main issues: exposure and own
price effect. Our bidding strategy is computed by Monte Carlo
Tree Search (MCTS) which relies on a new method for the
prediction of closing prices. We show that our algorithm sig-
nificantly outperforms state-of-the-art existing bidding methods.
More precisely, our algorithm achieves a higher expected utility
by taking lower risks than existing strategies.

Index Terms—MCTS, Ascending Auctions, Exposure, Own
Price Effect, Budget Constraints

I. INTRODUCTION

In 2019, telecommunications companies began to deploy
the latest technology standard for broadband cellular networks
(5G). Most countries have decided to allocate the spectrum
to mobile companies through auctions. One of the most
widespread auction designs is the Simultaneous Ascending
Auction (SAA) [6], also known as Simultaneous Multi Round
Auction (SMRA), which has been used by many countries like
Portugal, Germany or Italy to sell the 5G spectrum licences.
This auction has the particularity of having a dynamic multi-
round format in which bids are submitted simultaneously on
all items. It ends when no new bids have been submitted
during a round. The SAA was first introduced in 1994 by
the US Federal Communications Commission (FCC) for the
allocation of wireless spectrum rights. It was developed by
Paul Milgrom and Robert Wilson who both received the 2020
Sveriges Riksbank Prize in Economic Sciences in Memory of
Alfred Nobel, mainly for their contributions to the SAA. One
of the reasons for SAA success is that bidders can freely adjust
their bids throughout the auction while taking into account the
latest information about the likelihood of acquiring different
subsets of objects. Hence, bidders can progressively adapt their
strategies during the whole course of the auction. This leaves
room for a wide range of bidding strategies.

However, auction theory or exact game resolution methods
are unable to compute the optimal bidding strategies due to the
high complexity of the game. Indeed, SAA induces a n-player

simultaneous move game with incomplete information and
large state space for the solution of which there is no known
generic algorithm [18]. In addition to the above difficulties, a
number of strategical complexities adds up due to the rules
and mechanism of the SAA. The main strategical challenges
are known as exposure problem, own price effect, budget
constraints and activity rules. In this work, we focus on the
two first ones. The exposure problem refers to the possibility
that, by bidding on a set of complementary goods, a bidder
ends up paying more than its valuation for the subset it
actually wins as the goods have become too expensive. The
own price effect corresponds to the fact that bidding on an
object systemically raises the price of this object and, thus,
diminishes the utility of all players willing to acquire it.

A. Related works

To the best of our knowledge, no work has yet been pro-
posed to bid efficiently in SAA by tackling simultaneously the
exposure problem and own price effect. Until now, these issues
have only been studied separately, generally in simplified
versions of SAA.

For instance, from the regulator’s point of view, the re-
duction of allocational efficiency and revenue caused by the
exposure problem has been studied in toy examples of SAA
with complete information by Milgrom [15] and Bykowsky
et al. [4]. From the bidder’s point of view, Goeree et al
[8] compute the bidder’s optimal drop-out level through a
Bayesian framework in homogeneous-good environments. To
do so, they consider a clock version of the SAA where
participants are either local bidders or global bidders with
super-additive value functions. They extend their work to the
case of two global bidders with regional complementarities.
Zheng [25] proposes a modified clock version of the SAA in
which a continuation equilibrium can be built to fully eliminate
the exposure problem using jump bidding in a two object
auction with one global bidder. One of the very few works
which has tried to tackle the exposure problem in the original
version of SAA [6] is from Wellman et al. [24]. They propose
an algorithm based on probabilistic predictions of final prices
to tackle this issue. Their algorithm obtained promising results
but experiments were only undertaken with players having
specific super-additive value functions. Thus, it is difficult to
conclude on the effectiveness of the algorithm in more generic
settings.



Regarding own price effect, Milgrom [15] describes a col-
lusive equilibrium in an example of a 2-object SAA with
complete information between two players having the same
value functions. Following this work, Brusco and Lopomo [3]
construct a collusive equilibrium in a 2-object SAA between
two players in the case of additive and super-additive value
functions through signalling of the most valuable item. They
show that the scope of collusion narrows when the ratio
between the number of bidders and the number of object
increases. By probabilistically predicting final prices, Wellman
et al. [24] build a simple algorithm in a homogeneous-good
environment where all players have subadditive value function
but obtained results are unsatisfactory.

B. Contributions

In this paper, we make the following contributions:
• We introduce a simplified version of SAA which is turn-

based, deterministic, with complete and perfect informa-
tion. We call it d-SAA.

• We present a bidding strategy that tackles efficiently and
simultaneously the exposure problem and own price effect
in d-SAA using Monte Carlo Tree Search (MCTS)1 [2].
To the best of our knowledge, it is the first algorithm
that tackles both of these issues in any version of SAA.
Compared to the literature, we see our MCTS for d-
SAA as a step forward for the design of efficient generic
bidding strategies for SAA.

• We propose a simple method to compute the prediction
of closing prices through the convergence of a specific
sequence. This is used to enhance our MCTS rollout
strategy.

• Extensive numerical experiments on typical examples
from the literature and a large number of random
instances show that our MCTS bidding strategy sig-
nificantly outperforms state-of-the-art algorithms and
achieves higher expected utility by taking less risks.

II. D-SAA DESCRIPTION AND STRATEGICAL
COMPLEXITIES

A. Deterministic model with complete and perfect information
of SAA

In our work, we focus on a deterministic turn-based model
with perfect information of SAA [6], [15], [24] which we
refer to as d-SAA. In this specific auction, m indivisible goods
are sold via separate and concurrent English auctions between
n players. Bidding occurs in multiple rounds. Players take
turns bidding such that, at each round, only the designated
player is allowed to bid. The bid price of item j, denoted
Pj , corresponds to the highest bid obtained so far for item j
and, thus, is its current selling price. At the beginning of each
round, the bid price and the current winner of each item is
announced to each player. Hence, players are aware of all past

1MCTS has already been used for bidding in other contexts such as Periodic
Double Auctions [5]. However, it is the first time that a bidding strategy is
computed by MCTS in any version of SAA.

actions taken by their opponents. All bid prices are initialised
to zero. For each item j, players can only submit a bid Pnew

j

equal to the current bid price Pj plus the fixed bid increment
ε: Pnew

j = Pj + ε. This simplification of the bidding space
is common in the literature on ascending auctions [8], [24].
As in the original SAA [15], the auction ends when none
of the players have submitted an admissible bid during their
last round. This is equivalent in our model to saying that the
bid price of each item has not increased during n consecutive
rounds. We make the classical assumption that a player will
not continue bidding on an item that it has temporarily won
[24]. Hence, none of the players can suffer from the winner’s
curse as the players obtain the goods at a price ε above the
highest bid of their opponents [14].

The only difference between d-SAA and SAA is that players
take turns bidding. By this change, we eliminate stochasticity
and simultaneity from our problem. Indeed, ties between play-
ers having bid the same amount on a given item can not occur
in d-SAA. Hence, the temporal winner is no longer selected
randomly amongst these players. This facilitates future studies
and the conception of a simpler tree-search algorithm with
no chance nodes [22] and with a closed-loop implementation
[17]. From the bidder’s point of view, both mechanisms are
strategically equivalent if the bid increment is small.

We assume that d-SAA game is a complete information
game [19], [20]. Therefore, the value function vi of each
player i is common knowledge. Such assumption is relevant
in spectrum auctions as generally bidders have a relatively
precise estimation of their opponents’ valuations.

B. Utility and Value functions

Each player i participating in the d-SAA game is defined
by its value function vi and its utility function σi. At the end
of the auction, if player i wins the set of goods X and the bid
price vector is P , then its utility is:

σi(X,P ) = vi(X)−
∑
j∈X

Pj (1)

We assume that value functions are normalised (vi(∅) = 0),
finite and verify the free disposal condition, i.e., for any two
subsets X and Y , X ⊂ Y implies v(X) ≤ v(Y ) [12], [15].
A set of goods X is said to exhibit complementarities with a
disjoint set of goods Y if v(X + Y ) > v(X) + v(Y ). Such
preferences induce the strategical issue of exposure.

C. Game and strategical complexities

1) Game complexities: To compute the complexity of the
d-SAA game, we consider its extensive form, i.e. a game tree
representation, defined by nodes corresponding to different
states of the game and by edges representing the different
feasible bids in this state. A state is defined by the player to
bid, the current bid price of each item and their respective
temporary winner. Two metrics are often used: state space
complexity and game tree complexity [21]. The first refers to
the number of different possible states which can be reached
legally from the initial state of the game while the second



specifies the number of possible different paths in its extensive
form. With the assumption of finite valuations, the auction
finishes after a finite number of rounds. Thus, we restrict
our analysis to a given number of rounds R. It is relatively
straightforward to prove that the state space complexity of an
instance Γ of a d-SAA game with n bidders, m distinguishable
objects and R rounds is equal to

n−1∑
i′=0

(1 +

n−1∑
i=0

(R− i− i′)+)m1{R≥i′} (2)

where 1{z≥w} is the indicator function, equal to 1 if z ≥ w
and 0 otherwise.

It can also be shown that a lower bound of the game tree
complexity of Γ is 2m(n−1)⌊R

n ⌋.
Example. The SAA, which took place in Italy in 2018, had
12 5G spectrum licences sold between 5 telecommunication
companies after 171 rounds [7]. For such values, the state
space and game tree complexities of the corresponding d-SAA
game are respectively greater than 1035 and 10491.

2) Strategical complexities: To the difficulties generated by
the high state space and game tree complexities of the d-SAA
game, a number of strategical issues adds up due to the rules
and mechanism of this specific auction.

• Exposure problem [8]: This occurs when a bidder
tries to acquire a set of complementary goods but ends
up paying too much for only a subset of these goods
as the competition was tougher than expected. Thus,
the exposed bidder incurs a loss. A famous situation
of exposition [24] is a 2-item auction sale (ε = 1)
between a player who considers both goods as perfect
complements and a player who considers both goods as
perfect substitutes. In this particular auction presented in
Table I (referred to as Example 1 hereafter), a rational
strategy for player 1 is to bid on the cheapest item if the
bid price of this item is lower than 12 − ε and player
1 is temporarily winning no items or to pass its turn
otherwise. Given the fact that player 1 plays rationally, if
player 2 bids on an item, player 2 will end up exposed
as it will not be able to acquire both items for a price
inferior to 22.

v({1}) v({2}) v({1, 2})
Player 1 12 12 12
Player 2 0 0 20

TABLE I: Example of exposition.

• Own price effect problem [24]: Each time a player
bids on a item, its bid price rises which results in the
decrease of utility of all players wishing to acquire this
item. Therefore, as players have a mutual interest of
keeping prices low, a new strategic behaviour emerges
named demand reduction [1], [23]. This strategy consists
in conceding items to your opponents so that they do
not raise the bid price of the goods you are temporar-
ily winning. The fact that players divide goods among

themselves to keep prices low is called collusion [3]. It is
important to note than there is no explicit communication
between players as it is illegal. Nevertheless, players can
still intuit how their opponents are going to bid based on
their valuation estimates and, from this prior, coordinate
themselves to form a collusion.

D. Performance indicators

The expected utility is a usual metric for evaluating the
efficiency of a bidding algorithm. However, a spectrum auction
is generally played only once by an operator and the amount
of money involved is huge. It is thus important for a bidder
to minimise the risk of exposure. We introduce two metrics
related to the exposure problem. The exposure frequency is
defined as the number of times a strategy ends up with a
negative payoff divided by the number of plays. This estimates
the probability of ending up exposed. The cumulative loss is
defined as the sum of negative payoffs obtained in all plays.
It measures the magnitude of the losses due to exposure. To
analyse the own price effect, we consider the average price
payed per item won. However, acquiring only undesired items
at a reasonably low price could potentially explain low values
of this average price. We thus complement this metric with
the average number of items won.

III. MCTS BIDDING STRATEGY

Monte Carlo Tree search (MCTS) is a breadth-first search
method which builds iteratively a search tree and runs Monte-
Carlo simulations at its leaf nodes. Each node represents a
possible future state of the game. The directed links between
nodes and their children correspond to the actions leading to
the next states. MCTS repeats a process named search iteration
generally divided into four phases until some predefined
computational budget (time, memory, iteration constraint) is
reached. The four different phases are named selection, expan-
sion, rollout and backpropagation. We implement a variant of
MCTS-maxn [16]. Each node x stores the following statistics:
the sum of rewards rx found in the corresponding subtree, the
number of visits nx, the estimated lower bound ax and the
estimated higher bound bx of the reward support. The four
different phases of the search iteration are described below.

A. Selection

The selection phase consists in selecting a path from the root
to a leaf node of the search tree. We propose a new version of
selection index UCT [10] based on Hoeffding inequality [9]
and an online estimation of the size of the reward support. It
is adapted to any scale and underlying distribution of rewards.
From a selected node y, the selection strategy chooses the
child x with the highest score qx:

qx =
rx
nx

+max(bx − ax, ε)

√
2 log(ny)

nx

−no obj(x)− risky move(x)

(3)

where rx is the sum of rewards found in the subtree with root
x, nx is the number of visits of child node x, ny is the number



of visits of parent node y, ε is the bid increment, ax is the
estimated lower bound and bx is the estimated higher bound
of the reward support found in the subtree with root x.

The two first terms come directly from Hoeffding’s Inequal-
ity and give an upper confidence bound on the average reward
rx
nx

found in the corresponding subtree using max(bx− ax, ε)
as an estimation of the size of the reward support.

The third term no obj(x) is a penalty term which has
been introduced to avoid players from passing their turn if
they have got nothing to lose by bidding on an additional
item and, thus, emulate rational behaviour. For instance, if
a player is currently winning a set of undesired goods and
can increase its utility by directly acquiring another item, it
should continue to bid even though its chances of obtaining
any other item might be slim. We define no obj(x) as the
maximum surplus a player could obtain by just acquiring
another item under the assumption that the auction ends after
its turn. More formally, let S−j be the sets of goods which do
not contain item j. A player i′ will no longer bid on item
j if ∀X ∈ S−j , Pj + ε ≥ vi′(X + {j}) − vi′(X). Thus,
Πi

j = maxi′∈{1,...,n}\{i} maxX∈S−j vi′(X+{j})−vi′(X)−ε
is the minimal bid price from which item j is considered as
undesired by all opponents of i. If P x is the price vector at
child node x, i is the player bidding at parent node y and Xi

x

the set of goods temporarily won by player i at x, the penalty
term is defined as

no obj(x) =


maxj∈{1,...,m}\Xi

x
(vi(X

i
x + {j})− vi(X

i
x)

−Pj − ε)+ if {j′ ∈ Xi
x, P

j′

x < Πi
j′} = ∅

0 otherwise
(4)

The fourth term risky move(x) is a penalty term which
has been introduced to deter players from bidding on sets
of goods which might lead to exposure. These are sets that
contain a subset of goods which, if acquired by the player i
bidding at parent node y, will result in a negative utility. The
actions leading to such sets are penalised by λivi({1, ...,m})
with λi ∈ [0, 1] a risk-aversion hyperparameter. Depending on
whether i is the root player r or not, λi either takes the value
λr or λo. The term vi({1, ...,m}) acts as a scaling factor.
More formally, if P x is the price vector at child node x, r is
the root player, i is the player bidding at parent node y and Xi

x

the set of goods temporarily won by player i at node x, then
Xi

x is said to lead to exposure if ∃Y ⊆ Xi
x, σi(Y, P

x) < 0
and the penalty term is defined as

risky move(x) =



λrvi({1, ...,m}) if Xi
x can lead to

exposure for i = r at price P x

λovi({1, ...,m}) if Xi
x can lead to

exposure for i ̸= r at price P x

0 otherwise
(5)

B. Expansion
The expansion phase consists in choosing which children of

the leaf node obtained in the selection phase are expanded to

the search tree. In our MCTS, a node x is chosen randomly
amongst the non-expanded children of the selected leaf node
and added to the search tree. The statistics of node x are set
the following way: rx = 0, nx = 0, ax = +∞ and bx = −∞.

C. Rollout phase

In the rollout phase, moves are played starting from the
newly added node using a rollout strategy until the game ends
in order to simulate the outcome of the game from this par-
ticular node. As the game considered is a n-player game, the
outcome is a vector of size n where each index corresponds to
the utility obtained by each player at the end of the simulation.
To simulate a game, the default rollout strategy used in MCTS
is usually to play randomly. However, in the considered game,
this leads, in expectation, to absurd outcomes with extremely
high prices as the probability that everybody passes their turn
consecutively is inferior to 1

2(n−1)m . Therefore, to guarantee
good sampling, we propose a new rollout strategy which we
describe in Section IV.

D. Backpropagation

The backpropagation phase consists in propagating back-
wards the outcome of the game obtained in the rollout phase
from the newly added node to the root node to update the
statistics stored in each selected node. Let V be the vector of
utility obtained in the rollout phase. Let x be a selected node
which has y as parent node. Let i be the player playing at node
y. The statistics at node x are updated as follows: rx ← rx+Vi,
nx ← nx + 1, ax ← min(ax, Vi) and bx ← max(bx, Vi).

E. Final move selection

The four above steps run until a computational criteria
(time, memory, iteration constraint) is reached. A final move
selection is then performed to choose which action to play. We
decide to select the move leading to the child with the highest
penalised average. More formally, our final move selection
chooses to play the action which leads to child x with the
highest quantity qx defined as

qx =
rx
nx
− no obj(x)− risky move(x) (6)

IV. ROLLOUT STRATEGY WITH DOMAIN KNOWLEDGE

In this section, we present our MCTS rollout strategy which
relies on a new method of prediction of closing prices.

A. Point-price prediction bidding

Definition 4.1. [24] A point-price prediction bidder computes
the subset of goods

X∗ = argmax
X

σ(X, ρ(B)) (7)

breaking ties in favour of smaller subsets and lower-numbered
goods. Every subset of goods X contains all the items the
bidder is temporarily winning. The bidder then bids Pj +ε on
all items j that it is not currently winning in X∗. The function
ρ : B → R+

m maps the bidder’s information state B to an
estimation of the final prices of all objects ρ(B) using only



the initial estimation of the final prices of the items ρ(B0) and
follows the below update rule:

ρj(B) =
{

max(ρj(B0), Pj) if winning good j
max(ρj(B0), Pj + ε) otherwise

(8)
where B0 is the null information state of the game. We refer
to this bidding strategy as PP.

In d-SAA, B can be described by the current winner and
bid price of each item. If so, B0 is defined by the fact that
each item is allocated to the auctioneer at bid price 0.

If a player knows the final price of all items and these
prices are independent of its bidding strategy, then playing
according to PP with ρ(B0) equal to the actual final prices
is optimal [24]. However, such conditions rarely happen in
practice. An extreme case is the well-studied straightforward
bidding strategy (SB) [15] which corresponds to a PP with null
initial estimation of final prices (ρ(B0) = 0). The quality of PP
fully depends on the initial prediction of final prices. Indeed,
if the initial prediction considerably underestimates the final
price of each item, then when the bid prices exceed the initial
prediction the bidder plays exactly SB. Conversely, if one’s
initial prediction overestimates too much the final prices of an
auction, the player might stop bidding prematurely.

B. Initial estimation of final prices

There exist many different ways in literature to compute an
initial prediction of final prices ρ(B0). However, all existing
methods seem to present some deficiencies in d-SAA. For
instance, concepts such as Walrasian price equilibrium or self-
confirming price prediction [24] do not always exist when
preferences exhibit complementarities as in Example 1 [24].
Tâtonnement processes such as the one presented by Wellman
et al. to compute the expected price equilibrium [24] do not
take into account the auction’s mechanism and, thus, return
the same price vector regardless of the auction’s specificities
such as the bid increment. Predictions based on the closing
price of a specific strategy profile seem relevant only if each
bidder eventually decides to play the corresponding strategy
of this particular strategy profile. Thus, we propose below a
new method of prediction of final prices fixing these flaws.

Definition 4.2. For any instance Γ of d-SAA, let fΓ : Rm
+ 7→

εNm be the function mapping any vector prices p ∈ Rm
+ to

the final prices fΓ(p) obtained in Γ when all players play PP
with initial prediction p.

Theoretically, a closed-form expression of fΓ can be com-
puted for any instance Γ of d-SAA. However, in practice,
this can only be done for small instances. Thus, fΓ(p) is
usually computed numerically by simulating a d-SAA where
all players play PP with initial prediction p. In Example 1, for
p = (11, 11), fΓ(p) = (1, 0) as player 1 bids on the item of
lowest index and player 2 does not bid as it predicts that the
price for both items is 22.

Conjecture 4.1. Let Γ be an instance of d-SAA. The sequence
Pt+1 = 1

t+1fΓ(Pt) + (1 − 1
t+1 )Pt with P0 the null vector of

prices converges to an element P ∗.

It can be shown that the above conjectured limit P ∗ corre-
sponds either to a fixed point of fΓ known as self-confirming
price prediction [24] or to a jump discontinuity of fΓ reflecting
a change in strategies by one or more players. In the latter
case, an initial prediction greater than P ∗ will generally deter
point-price prediction bidders from bidding, notably to avoid
exposure, while a smaller initial prediction will lead to high
final prices. The proof of the conjecture is left for future work.

Computing our initial prediction as above fixes the flaws
of existing methods. Indeed, (i) we observe that our sequence
converges in all undertaken numerical instances, (ii) our ap-
proach takes into account the auction’s specificities through
fΓ and (iii) it does not rely on the results of a single specific
strategy profile by construction.

C. Rollout strategy

Before running our MCTS, we compute the conjectured
limit P ∗ as above. Then, at the beginning of each rollout phase,
we set ρ(B0) = P ∗ + η where η is a random variable which
follows a bounded uniform distribution U([−ε, ε]m). During
the simulation, each bidder plays PP with initial prediction
ρ(B0). Ties are still broken in favour of smaller subsets but
no longer by selecting the goods with the lowest indices.
Instead, they are chosen randomly. By applying noise to
the initial prediction and by breaking ties randomly, players
bidding behaviours are diversified at each new simulation
which improves the quality of sampling of our MCTS.

V. MAIN RESULTS

We now analyse the performance of our MCTS bidding
strategy in a variety of d-SAA games by comparing it to five
other strategies: an MCTS which is similar to ours but without
the penalties (MCTSnp), a UCB algorithm [11] using the same
simulations and selection index as our MCTS but without the
penalties, a PP using the expected price equilibrium (EPE)
as initial price prediction [24], a distribution-price bidding
strategy using self-confirming price distribution (SCPD) as
initial price prediction [24] and SB [15]. It is important to
note that bidders are unaware of their opponents’ strategy.

The hyperparameters used for our MCTS bidding strategy
are λr = 0.07 and λo = 0.07. They are obtained by grid-
search. The experiments were run on a server consisting of
Intel®Xeon®E5-2699 v4 2.2GHz processors. All algorithms
were given a maximum of 30 seconds CPU thinking time.

A. Test cases

One of the biggest advantages of our MCTS compared to
other existing methods is that it is able to judge pertinently
whether it is more beneficial to adopt a demand reduction
strategy to keep prices low or to bid straightforwardly on a
set of goods. To highlight this capacity, we use an experiment
from [3] in which two players participate in a 2-item auction
with additive value functions. The first player values each
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Fig. 1: Evolution of player 1’s utility σ1 depending on strategy
versus player 2’s valuation ℓ in Test experiment [3] (h = 10,
ε = 0.1) given that player 2 plays optimally

object as h and the second values each one as 0 < ℓ ≤ h. For
an infinitesimal bid increment ε, it is more worthwhile for the
first player to bid competitively on both goods if h < 2(h−ℓ).
However, if h > 2(h−ℓ), then the first player will be better off
by forming a collusion and conceding an item to its opponent.
The four algorithms UCB, EPE, SCPD and SB always suggest
to bid straightforwardly even if h > 2(h− ℓ) and, thus, never
propose demand reduction even in situations where it is highly
beneficial. However, our MCTS always adopts the appropriate
strategy. We plot in Figure 1 the payoff σ1 obtained by player
1 for each strategy given that player 2 plays optimally, i.e.,
continues to bid on the cheapest item while its bid price is
inferior to ℓ and player 1 has not conceded an item to player
2. This example shows that our algorithm chooses the most
beneficial strategy, at least in simple environments.

Moreover, our MCTS is capable of avoiding obvious ex-
posure. For instance, in Example 1, our MCTS suggests to
player 2 not to bid. EPE and UCB also prevent player 2 from
bidding. However, this is not the case for SCPD and SB which
expose player 2 by inciting player 2 to bid aggressively.

B. Extensive experiments
We study the performance of each algorithm mainly through

our performance indicators. Each experimental result has been
run on 1000 different d-SAA instances. We will focus on d-
SAA with n = 2, m = 7 and ε = 1. Value functions are
chosen according to the following setting with V = 5.

Setting. Let Γ be an instance of d-SAA with n ≥ 2 players,
m ≥ 1 goods, bid increment ε and maximum stand-alone value
V > 0. Each player i has a general value function vi such
that vi(∅) = 0 and, for any set of goods X , we have

vi(X) ∼ U([max
j∈X

vi(X\{j}), V +max
j∈X

vi(X\{j})+vi({j})])
(9)

where U is the uniform distribution. The lower-bound
ensures that the free disposal [15] condition is respected while
the upper-bound caps the maximum surplus of complementar-
ity possibly gained by adding an item j to the set of goods
X\{j} by V.

As value functions are generated randomly and are asso-
ciated to a bidder’s position, it might be advantageous to
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Fig. 2: Normal-form payoffs for a d-SAA game with six
strategies

play first on average for the 1000 different d-SAA instances.
Indeed, as players do not have the opportunity to play at the
same bid price, the order in which players submit their bids
may have an impact on the auction’s outcome. To eliminate
such variance and guarantee a fair comparison between two
strategies A and B, for each d-SAA instance, a game will be
run with the first bidder playing A and the second playing B
and another with the first bidder playing B and the second
playing A.

1) Expected utility: We first analyse our MCTS perfor-
mance through the same empirical game analysis approach as
Wellman et al. [24] which maps strategy profiles to the average
payoff obtained in the 1000 different d-SAA instances for
each player. More precisely, we study the symmetric normal
form game in expected payoff where each player has the
choice between playing our MCTS bidding strategy or another
specified strategy A. The resulting empirical games for each
possible strategy A are given in Figure 2.

It is clear that, in each empirical game, the deviation from
UCB, EPE, SCPD, SB or MCTSnp to our MCTS bidding
strategy is always profitable. Thus, the strategy profile (MCTS,
MCTS) is the only Nash equilibrium of the normal-form d-
SAA game in expected payoffs with strategy set {MCTS,
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Fig. 3: Own price effect analysis of d-SAA with six strategies

UCB, EPE, SCPD, SB, MCTSnp}. It is also important to note
the significant increase in average payoffs between the strategy
profile (MCTS,MCTS) and the other strategy profiles where
all bidders play the same strategy. For instance, in Figure 2, the
profile (MCTS,MCTS) has an increase of 108%, 247%, 108%
and 175% compared respectively to (MCTSnp,MCTSnp),
(UCB,UCB), (EPE,EPE) and (SCPD,SCPD) in average pay-
offs. Complete information of d-SAA enables EPE bidders
to share the same expected competitive equilibrium if their
tâtonnement process uses the same initial price vector and
adjustment parameter. This explains that (EPE,EPE) obtains
an expected utility nearly as high as (MCTSnp,MCTSnp).
Due to exposure, the profile (SB,SB) obtains a negative
expected utility. Hence, both players would have preferred not
to participate in the d-SAA initially.

The relative high performance of our MCTS bidding strat-
egy can be explained by three factors: (i) its ability to judge
in which situations it is more beneficial to perform demand
reduction or to bid competitively as seen in Section V-A; (ii)
its ability to perform demand reduction to keep prices low and
(iii) its ability to stop bidding on specific sets of goods early
on to avoid exposure.

2) Demand reduction: Our algorithm has the capacity of
conceding items to its opponents in order to keep prices low.
We highlight this feature in Figure 3(a) where we plot the
average price payed per item won by each strategy against
every strategy displayed on the x-axis. Our MCTS bidding
strategy obtains the lowest average price payed per item won
against every strategy except against EPE. Indeed, each item
won is bought at ε when both bidders play EPE as they share
the same expected competitive equilibrium. This explains the
slight underperformance of our algorithm. Nevertheless, our
MCTS bidding strategy spends 43.2%, 50%, 55.9%, 24.5%
and 12.1% less per item won than EPE against MCTS,
MCTSnp, UCB, SCPD and SB respectively. Moreover, our
MCTS strategy is competitive and does not just purchase
undesired items at relatively low prices. This is highlighted in
Figure 3(b) where we plot the average number of items won
by each strategy against every strategy displayed on the x-axis.
Our MCTS strategy wins at least 3 items out of 7 against every

strategy except SB. In comparison, EPE never wins more than
2.5 items on average against any strategy. Regarding strategy
profiles where all bidders play the same strategy, 98.3% of all
items are allocated for MCTS whereas only 71.4% and 70.3%
respectively for EPE and SCPD which partially explains their
underperformance. The fact that nearly all goods are allocated
and are acquired at a small price explains the high performance
of the strategy profile (MCTS,MCTS) compared to the other
strategy profiles. Through smart usage of demand reduction,
our MCTS bidding strategy tackles the own price effect and
still remains fairly competitive.

3) Reduction of exposure: As already explained in Section
II-D, minimising exposure is extremely important in d-SAA.
In Figure 4(a), we have plotted the exposure frequency of
each strategy against every strategy displayed on the x-axis.
Our MCTS bidding strategy has at most 1.2% of chance of
getting exposed against every strategy except SB against which
it obtains a similar exposure frequency to SCPD. Moreover, the
strategy profile (MCTS,MCTS) has the remarkable property
of never suffering from exposure. It is important to highlight
the significant enhancement due to our selection penalties as
it is exposed 95.6%, 62.7% and 39.8% less than MCTSnp

against respectively EPE, SCPD and SB. In Figure 4(b), we
have plotted the cumulative loss of each strategy against every
strategy displayed on the x-axis. MCTS cumulative loss is at
least one order of magnitude below the corresponding SCPD
one against MCTS, MCTSnp, UCB and EPE. They are about
the same order against SCPD and SB. Moreover, our MCTS
bidding strategy generates 78.6%, 66.7%, 61.2% and 37.3%
less losses than MCTSnp against respectively UCB, EPE,
SCPD and SB. Thus, in addition to being profitable against all
strategies, our MCTS bidding strategy considerably minimises
exposure notably through its selection penalties.

VI. DISCUSSIONS

This paper introduces the first algorithm that efficiently
tackles the exposure problem and own price effect in a sim-
plified version of SAA (d-SAA). Our MCTS bidding strategy
relies on a new method for the prediction of closing prices.
It is based on a specific sequence that converges in practice
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Fig. 4: Exposure analysis of d-SAA with six strategies

in all d-SAA instances. This method has the advantage of
taking into account the auctions’ particularities and computing
a prediction of final prices which is independent of a single
specific strategy profile. Experimental results support the fact
that our MCTS bidding strategy largely outperforms state-of-
the-art algorithms in d-SAA by obtaining greater expected
utility and taking less risks against all other strategies.

We believe that the biggest field of improvement for our
MCTS is related to its selection penalties. Indeed, although
they have greatly contributed to our reduction of exposure,
the introduction of more formal statistics may be beneficial.
However, using quantities such as mean-variance [13] did not
enhance our algorithm’s performance.

Our algorithm is easily extended to environments with bud-
get constraints and complementary experiments (not included
in this article due to a lack of space) show that our MCTS
bidding strategy remains efficient and robust to significant
errors in the valuation estimates. Hence, a possibility for
relaxing the complete information hypothesis and dealing with
valuation distributions is to take their expectation and then
apply our MCTS. Future work should be guided towards
an increase in the number of players as well as introducing
simultaneity and incomplete information in our SAA model.
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