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Optimal Trajectories of a UAV Base Station
Using Hamilton-Jacobi Equations

Marceau Coupechoux, Jérôme Darbon, Jean-Marc Kélif, and Marc Sigelle

Abstract—We consider the problem of optimizing the trajectory of an Unmanned Aerial Vehicle (UAV). Assuming a traffic intensity map
of users to be served, the UAV must travel from a given initial location to a final position within a given duration and serves the traffic on
its way. The problem consists in finding the optimal trajectory that minimizes a certain cost depending on the velocity and on the
amount of served traffic. We formulate the problem using the framework of Lagrangian mechanics. We derive closed-form formulas for
the optimal trajectory when the traffic intensity is quadratic (single-phase) using Hamilton-Jacobi equations. When the traffic intensity is
bi-phase, i.e. made of two quadratics, we provide necessary conditions of optimality that allow us to propose a gradient-based
algorithm and a new algorithm based on the linear control properties of the quadratic model. These two solutions are of very low
complexity because they rely on fast convergence numerical schemes and closed form formulas. These two approaches return a
trajectory satisfying the necessary conditions of optimality. At last, we propose a data processing procedure based on a modified
K-means algorithm to derive a bi-phase model and an optimal trajectory simulation from real traffic data.

Index Terms—Cellular networks, UAV, Base station, trajectory optimization, optimal control.

F

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) are expected to play an
increasing role in future wireless networks1 [1], [2], [3], [4],
[5]. UAVs may be seen as a new type of User Equipment
for the cellular network, but they may also act as flying
Base Stations (BS). A UAV BS can indeed complement the
traditional cellular networks by providing enhanced cover-
age and capacity. Thanks to favorable channel conditions, it
can provide a high data rate wireless service or serve as a
relay to reach distant users outside the coverage of cellular
networks. In disaster or emergency situations, a UAV pro-
vides a temporary infrastructure, which is fast, flexible and
low cost, to retrieve and store vital information (survivors
locations, emergency calls, disaster pictures, etc) and carry
this information to a management center. It may also help
rescue teams to communicate if the terrestrial infrastructure
is damaged. In Internet of Things (IoT), Device-to-Device
(D2D) or vehicular networks, UAVs can easily retrieve (or
disseminate) information from (to) the devices. When there
are temporary special events, like a football match or a live
concert, terrestrial networks face a demand increase that
may reduce the quality of service of the communications.
Using on-demand UAVs is a flexible way of tackling this
challenge.
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In many of these applications, a path planning prob-
lem arises. On the one hand, a UAV shall serve as much
traffic as possible (data traffic in a crowded area, number
of IoT devices, number of emergency calls, etc.). On the
other hand, its energy consumption, which depends on
its velocity, has to be minimized. The problem we tackle
in this paper is thus to find an optimal trajectory for a
UAV BS that minimizes a certain cost depending on the
velocity and on the amount of served traffic. We particu-
larly focus on the scenario where the UAV is supposed to
offload data traffic from the terrestrial cellular network in
a region characterized by hot spots, i.e., locations of very
high traffic demand. In the literature, several approaches
to this problem rely on space or time discretization, on
the formulation of mixed-integer non-convex problems and
on complex approximation algorithms. On the contrary, we
propose here a solution based on the Lagrangian mechanics
framework and the use of Hamilton-Jacobi (HJ) equations.
This approach leads to very low complexity algorithms. We
show how from real measured data, we can apply our model
and obtain optimal trajectories at a click speed.

1.1 Related Work

UAV trajectory optimization for networks has been tackled
maybe for the first time in [6]. The model consists in a UAV
flying over a sensor network from which it has to collect
some data. The UAV can learn from previous experience,
which is not assumed in our study.

The problem of optimally deploying UAV BSs to serve
traffic demand has been addressed in the literature by con-
sidering static UAVs BSs or relays, see e.g. [7], [8]. The goal
is to optimally position the UAV so as to maximize the data
rate with ground stations or the number of served users.
In these works, the notion of trajectory is either ignored or
restricted to be circular or linear.
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In robotics and autonomous systems, trajectory opti-
mization is known as path planning. In this field, there are
classical methods like Cell Decomposition, Potential Field
Method, Probabilistic Road Map, or heuristic approaches,
e.g. bio-inspired algorithms [9]. Authors of [10] have cap-
italized on this literature and proposed a path planning
algorithm for drone BSs based on A* algorithm. The main
goal of these papers is to reach a destination while avoiding
obstacles. In [9], authors show that the main goal is decom-
posed into perception of the obstacles, localization of the
robot, cognition and motion control. There is thus no notion
of cost optimization along the trajectory. In [10], a UAV
controlled by a cellular network selects a trajectory so as to
avoid regions not covered by the terrestrial antennas. Again,
there is no notion of cost optimization along the trajectory.
On the contrary, in our work, we intend to minimize a
certain cost function along the trajectory by controlling the
velocity of the UAV.

This goal is studied in optimal control theory [11] and is
applied for example in aircraft trajectory planning [12]. Most
numerical methods in control theory can be classified in
direct and indirect methods. In direct methods, the problem
is transformed in a non linear programming problem using
discretized time, locations and controls. Direct methods are
heavily applied in a series of recent publications in the
field of UAV-aided communications, see e.g. [13], [14], [15],
[16], [17]. Formulated problems are usually non-convex. The
standard approach is hence to rely on Successive Convex
Approximation (SCA), which iteratively minimizes a se-
quence of approximate convex functions. SCA is known
to converge to a Karush-Kuhn-Tucker solution under mild
conditions [18] but the quality of the solution may heavily
depend on the initial guess. Here, simple heuristics or
solutions to the Travelling Salesman Problem (TSP) or the
Pickup-and-Deliver Problem (PDP) can be used for finding
an initial trajectory [19]. With direct methods, because of the
discretization, the differential equations and the constraints
of the systems are satisfied only at discrete points. This
can lead to less accurate solutions than indirect methods
and the quality of the solution depends on the quantization
step [20]. Although every iteration of SCA has a polynomial
time complexity, practical resolution time may dramatically
increase with the quantization grid and the dimension of the
problem.

On the other hand, indirect approaches relies on consid-
ering the Hamilton-Jacobi Partial Differential Equation asso-
ciated to the optimal control problem (see e.g., [21], [22][chp.
10]). Several recent methods have been proposed to solve
HJ Partial Differential Equations (PDE) in high dimensions.
These include max-plus algebra methods [23], [24], dynamic
programming and reinforcement learning [25], tensor de-
composition techniques [26], sparse grids [27], model order
reduction [28], polynomial approximation [29], optimization
methods [30], [31], [32], [33] and neural networks [34], [35],
[36], [37]. However, to our knowledge, these approaches
above do not apply for the models considered in this paper.

In this paper, we consider certain indirect methods
that provide analytical solutions for certain classes of op-
timal control problem as we have shown in a preliminary
study [38]. Compared to this study, we have improved the
gradient algorithm for bi-phase traffic, we have proposed

a new low complexity algorithm for the bi-phase problem
(the B-algorithm) and a data processing procedure to adapt
real data to our quadratic model.

1.2 Contributions
Our contributions are the following:

• Problem Formulation: To the best of our knowledge, this
is the first time, after our preliminary study [38], that
the UAV BS trajectory problem is formulated using
the formalism of Lagrangian mechanics and solved us-
ing Hamilton-Jacobi equations. This approach provides
closed-form equations when the potential is quadratic
and thus very low complexity solutions compared to
existing solutions in the literature, see e.g. [13], [14],
[15], [16].

• Closed-form expression of the optimal trajectory with single
phase traffic intensity: When the traffic intensity map is
made of a single hot spot or traffic hole, has a quadratic
form (single phase), and is time-independent, closed
form expressions for the optimal trajectory are derived.
For a traffic hole, the trajectory is on an ellipse and
corresponds to the case of an attractor in mechanics.
It follows a hyperbola for a hot spot and corresponds
to a repulsor in mechanics. Our contribution is here a
reinterpretation of the data traffic as a positive potential
field. Resulting trajectories have not been derived so far
in the literature on Lagrangian mechanics [39].

• Characterization of the optimal solution in bi-phase traffic
intensity: When the traffic map has two hot spots or
traffic holes (bi-phase) whose regions are separated by
interfaces and is time-independent, we derive necessary
conditions to be fulfilled by the position and the instant
at which the optimal trajectory crosses an interface (see
Theorem 2.

• A gradient algorithm for bi-phase traffic: An in-depth
analysis of convexity vs. non-convexity issues allows
us to derive a gradient algorithm to solve the bi-phase
problem (Algorithm 1). This algorithm finds a station-
ary point for the cost function. This algorithm has a
complexity O(1) at every iteration, whereas iterations
of the sequential convex optimization technique have
polynomial time complexity.

• A new algorithm for the bi-phase optimization problem: A
new algorithm, called the B-algorithm (Algorithm 2), is
proposed based on the linear control properties of the
quadratic model. This algorithm relies on a bisection
scheme the complexity of which is proportional to the
logarithm of the desired precision and closed form
formulas.

• A data processing procedure: We propose a method to pre-
process real measured traffic data in order to derive a
bi-phase quadratic model. This procedure is based on
smoothing steps followed by a modified K-means algo-
rithm adapted to our quadratic model (Algorithm 3).
The optimal trajectory is computed in a region where
real traffic data is available [40].

The paper is structured as follows. Section 2 gives the
system model, its interpretation in terms of Lagrange me-
chanics, the problem formulation and preliminary results.
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Section 3 characterizes the optimal trajectories for single-
and bi-phase cases. Section 4 presents algorithms, Section 5
our data processing procedure and numerical experiments.
Section 6 concludes the paper.
Notations: The usual Euclidean scalar product between
x ∈ Rn and y ∈ R is denoted by x · y. The Euclidean norm
‖x‖ in Rn of x ∈ Rn is defined by ‖x‖ :=

√
x · x.

The set of matrices with m rows, n columns and real
entries is denoted by Mm,n(R). The transpose of the
A ∈Mm,n(R) is denoted by A† ∈Mn,m(R). We classically
identify Mm,1(R) and M1,n(R) as column vectors of Rm
and row vectors of Rn, respectively.

Let f : Rn × Rm → R defined by f(x, y) where x =
(x1, . . . , xn) ∈ Rn and y = (y1, . . . , ym) ∈ Rm. Let a ∈ Rn
and b ∈ Rm. We denote by ∂f

∂xi
(a, b) the partial derivative

of f with respect to the variable xi at (a, b) ∈ Rn × Rm. We
also introduce the notations

∇xf(a, b) = (
∂f

∂x1
(a, b), . . . ,

∂f

∂xn
(a, b)) ∈ Rn

and

∇yf(a, b) = (
∂f

∂y1
(a, b), . . . ,

∂f

∂ym
(a, b)) ∈ Rm

We also consider the following notation for partial Hessian
matrices

Mm+n,m+n(R) 3 ∇2f(a, b) =

(
∇2
x,xf(a, b) ∇2

x,yf(a, b)
∇2
y,xf(a, b) ∇2

y,yf(a, b)

)
where

∇2
x,xf(a, b) ∈Mn,n(R) =


∂2f
∂x2

1
(a, b) . . . ∂2f

∂x1∂xn
(a, b)

... . . .
...

∂2f
∂xnx1

(a, b) . . . ∂2f
∂x2

n
(a, b)


and Idn denotes the identity matrix ofMn,n(R).

We shall see that the value function S : R × R2 × R ×
R2 → R will play a fundamental role in this paper. We use
the notations (T1, X1, T2, X2) for S and therefore the partial
derivatives of S at (t1, x1, t2, x2) ∈ R × R2 × R × R2 are
denoted as follows:

∂S

∂T1
(t1, x1, t2, x2)

∇X1S(t1, x1, t2, x2)

∂S

∂T2
(t1, x1, t2, x2)

∇X2
S(t1, x1, t2, x2)

2 SYSTEM MODEL AND LAGRANGIAN MECHANICS
INTERPRETATION

2.1 System Model
We consider a network area characterized by a traffic den-
sity at position z and time t. We intend to control the trajec-
tory and the velocity of a UAV base station, which is located
in z0 , z(t0) at t0 and shall reach a destination zT , z(T )
at T with the aim of minimizing a cost determined by the
velocity and the traffic, defined hereafter by (1). The UAV is

Fig. 1: A UAV Base Station travels from z0 at t0 to zT at T
and serves a user traffic characterized by its intensity.

supposed to fly at a fixed altitude. We denote a(t) = dz
dt (t)

the velocity vector of the UAV BS along its trajectory. At
(t, z), we assume that the UAV BS is able to cover an area,
from which it can serve users (see Figure 1). The velocity
of the UAV BS induces an energy cost. In this model, we
control the velocity vector a of the UAV BS. The general
form of the cost function is as follows

L(t, z, a) =
K

2
||a||2 − u(t, z) (1)

where the first term is a cost related to the velocity of the
vehicle (K is a positive constant), and ‖ ·‖ denotes the usual
Euclidean norm. The higher is the speed, the higher is the
energy cost2. The second term is a user traffic intensity, i.e.,
the amount of traffic to be served by the UAV BS at (t, z).
The traffic intensity is related to the amount of data users
want to transmit. If all users have all the same requirement,
traffic intensity is directly related to the number of users
in an area. The goal of the UAV is to serve as much traffic
as possible during the time duration T , while taking into
account the energy cost. Note that a non-zero energy at
null speed can be incorporated in the model by adding a
constant. Without loss of generality, we assume that this
constant is null.

Let S(t0, z0, T, zT ) be the minimal total cost along any
trajectory between z0 at t0 and zT at T (also called the action
in mechanics or value function in control theory). Let us de-
fine Ω(t0, T ) as the space of absolutely continuous functions
from [t0;T ] to R2. Our problem can now be formulated as
follows

S(t0, z0, T, zT ) = min
a∈Ω(t0,T )

∫ T

t0

L(s, z(s), a(s))ds+J(z(T )) (2)

where dz
dt (t) = a(t), z(t0) = z0, and J is the terminal

cost defined by J(z) = 0 if z = zT and J(z) = +∞
otherwise. Note that knowing z0 and the velocity a(t)
at any time instant t uniquely defines the trajectory. For
simplicity reasons, we assume the existence and uniqueness
of the optimal control a∗(t) in (2) and denote the associated

2. The quadratic model represents the kinetic energy of a UAV of
mass K. It is a good approximation of more realistic energy consump-
tion models [14], [41], [42] provided that the UAV speed is not too low
(typically not less than 10 m/s and 40 m/s for rotary-wing and fixed-
wing UAVs, respectively). The parameter K can be chosen accordingly.
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optimal trajectory z∗(t). In a traffic map symmetric wrt. z0

and zT , the reader can convince himself that the uniqueness
is not guaranteed.

2.2 Preliminary Results From Lagrangian Mechanics
We provide in this section important results from the La-
grangian mechanics for the convenience of the reader.

Definition 1 (Impulsion). The impulsion function is defined
as p(t, z, a) := ∇aL(t, z, a).

In the Newtonian classical framework that is used here
(see (1)), the impulsion is the product of the particle mass
by its velocity (hence the standard term “impulsion”).

Definition 2. The Hamiltonian function is defined as
H(t, z, p) := maxa∈R2 p · a− L(t, z, a).

Lemma 1 (Euler-Lagrange Equations). Along the optimal
trajectory z∗(t) that starts from z0 at t0 and ends at zT at T ,
we have

d

dt
∇aL(t, z∗(t), a∗(t)) = ∇zL(t, z∗(t), a∗(t)) (3)

or equivalently

dp

dt
(t, z∗(t), a∗(t)) = ∇zL(t, z∗(t), a∗(t)). (4)

Proof. See Appendix A.

The Euler-Lagrange equation is the first-order necessary
condition for optimality and holds for every point on the
optimal trajectory.

Definition 3. A function f : RN 7→ R is said to be α-
homogeneous if f(λ x) = |λ|αf(x) ∀λ ∈ R.

Lemma 2. If the Lagrangian L(t, z, a) is time-independent and
α-homogeneous in z and a for α > 0, i.e., L(λz, λa) =
|λ|αL(z, a) for all λ ∈ R, S given by (2) reads

S(t0, z0, T, zT ) =
1

α
[z · p]Tt0 + J(zT ). (5)

Proof. See Appendix B.

Lemma 3 (Hamilton-Jacobi). Along the optimal trajectory, we
have for t ∈ (t0;T )

∂S

∂T1
(t, z∗(t), T, zT ) = H(t, z∗(t),−p∗(t)),

∂S

∂T2
(t0, z0, t, z

∗(t)) = −H(t, z∗(t), p∗(t)), (6)

where

p∗(t) = ∇aL(t, z∗(t), a∗(t)) = ∇X1S(t,z
∗(t), T, zT ). (7)

Proof. See Appendix C.

From now, we assume that the Lagrangian is time-
independent, i.e., L(t, z, a) = L(z, a), and is an even func-
tion in a, i.e., L(z,−a) = L(z, a). As a consequence H
is time-independent and is an even function in p, i.e., we
write H(t, z, p) = H(z, p) and H(z,−p) = H(z, p). This
assumption is valid provided that the traffic intensity is
approximately constant during the UAV flight duration.

3 OPTIMAL TRAJECTORY

In this section, we characterize the optimal trajectory when
the traffic intensity is a quadratic form and also when it
is made of two regions of quadratic form separated by an
interface. We call these two cases single-phase and bi-phase
intensities respectively. Both cases satisfy our assumptions
on the Lagrangian with α = 2. In practice, the single-phase
case may correspond for example to a city quarter with a
location of high traffic, e.g. a mall, a railway station, etc.
The bi-phase case may correspond to two such locations of
high traffic. More generally, the bi-phase is a more accurate
model for approximating real measured data compared to
the single-phase, as we will see in Section 5.

3.1 Single-Phase Optimal Trajectory
Assume that the traffic intensity is of the form u(z) =
1
2u0||z||2. When u0 < 0, the traffic intensity reaches a
maximum at a geographical location that we designate as
a traffic hot spot [43]. By analogy, when u0 > 0, the traffic
intensity reaches a minimum at a geographical location that
we designate as a traffic hole. We disregard the case u0 = 0
because it corresponds to a constant traffic intensity that is
not of interest in this paper. Thus the cost function has the
following form

L(z, a) =
1

2
K||a||2 − 1

2
u0||z||2. (8)

Note that
p(z, a) = ∇aL(z, a) = Ka. (9)

3.1.1 Trajectory Equation
In this case, a closed form of the trajectory is obtained.

Theorem 1. If u0 < 0, the cost function is given by (10), and
the optimal trajectory is

z∗(t) =
zT sinh(ω(t− t0)) + z0 sinh(ω(T − t))

sinh(ω(T − t0))
(11)

while the control is given by

a∗(t) = ω
zT cosh(ω(t− t0))− z0 cosh(ω(T − t))

sinh(ω(T − t0))
(12)

where ω2 = −u0

K .
If u0 > 0, the cost function is given by (13), the optimal trajectory
is

z∗(t) =
zT sin(ω(t− t0)) + z0 sin(ω(T − t))

sin(ω(T − t0))
(14)

and the control is given by

a∗(t) = ω
zT cos(ω(t− t0))− z0 cos(ω(T − t))

sin(ω(T − t0))
(15)

where ω2 = u0

K .

Proof. See Appendix D.

Corollary 1. If the user traffic intensity is of the form u(t, z) =
1
2u0||z||2 + u0z · e + u1 with u1 ∈ R and e ∈ R2, then
define z̃ = z + e, z̃0 = z0 + e, z̃T = zT + e and trajectories
given in Theorem 1 are valid by replacing z, z0, zT by z̃, z̃0,
z̃T , respectively. The cost function becomes: S(t0, z0, T, zT ) =
1
α [z · p]Tt0 + J(zT )− u1(T − t0).
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S(t0, z0, T, zT ) =
Kω

2 sinhω(T − t0)

(
(|z0|2 + |zT |2) coshω(T − t0)− 2z0 · zT

)
+ J(zT ) (10)

S(t0, z0, T, zT ) =
Kω

2 sinω(T − t0)

(
(|z0|2 + |zT |2) cosω(T − t0)− 2z0 · zT

)
+ J(zT ) (13)

Corollary 2. If the user traffic intensity is of the form u(t, z) =∑
i ui||z − zi||2 with

∑
i ui 6= 0, then u(t, z) = (

∑
i ui)||z −

zb||2 +
∑
i ui||zi − zb||2 with zb =

∑
i uizi∑
i ui

. Define z̃ = z + zb,
z̃0 = z0 + zb, z̃T = zT + zb, ũ0 =

∑
i ui and trajectories given

in Theorem 1 are valid by replacing z, z0, zT , u0 by z̃, z̃0, z̃T , ũ0

respectively.

The system is thus equivalent to the one assumed in
Theorem 1 by changing the origin of the locations to the
barycentre zb of the zi.

From (10), we can easily show that the cost function S is
a decreasing function of u0.

3.1.2 Traffic Hot Spot, Traffic Hole
We assume that there is a hot spot or a traffic hole located
in zh and that the traffic intensity is of the form u(t, z) =
1
2u0||z − zh||2 + u1 = 1

2u0||z||2 − u0z · zh + 1
2u0||zh||2 + u1.

We can apply Corollary 1 with e = −zh.
Figure 2a shows optimal trajectories when zh is a hot

spot, i.e., for u0 < 0, and different values of K . The starting
point is z0 and the destination is zT . Dots are shown at
regular time intervals: close-by dots indicate a low speed,
while distant dots are due to a higher speed. When K
increases, the velocity cost increases and the trajectories tend
to the straight line between z0 and zT , which minimizes the
speed. As the energy cost is high, the UAV almost ignores
the traffic intensity to minimize the total cost. When K
is small, the UAV can go fast to zh, reduces its speed in
the vicinity of the hot spot to serve more traffic and then
goes fast to the destination (in order to decrease the cost
function (1) by increasing its traffic contribution). In several
scenarios, the UAV shall reach a target and hover above it
for some time: this is captured in our model by giving the
UAV a sufficient time budget T . We then obtain a trajectory
similar to the one of Figure 2a when K is small. If the UAV
is constrained to come back to its initial position, setting
z0 = zT makes the UAV going towards zh and coming back
using a straight line.

Figures 2b and c show optimal trajectories when zh is a
traffic hole, i.e., for u0 > 0. In Figure 2b, T is smaller than
the period of the ellipse, i.e., 2π

ω > T . When K decreases,
the UAV can spend more time in the areas of higher traffic
intensity. In Figure 2c, T is larger than the period. In this
case, the trajectory follows one period of the ellipse whose
equation is given by (14) plus a part of the same ellipse from
z0 to zT .

3.2 Bi-Phase Trajectory Characterization
We now consider a traffic intensity (or potential) consisting
in two quadratic functions separated by an interface I
of equal potentials delimiting two regions 1 and 2. The

interface is defined by an equation f(z) = C , where C is
a constant and f is a differentiable function. We assume
that the optimal trajectory crosses the interface only once, at
position ξ and time τ 3.

The impulsion p∗ is defined everywhere on the opti-
mal trajectory between (t0, z0) and (T, zT ). The following
notations will be used in the sequel: p− = p∗(τ−) =

lim
s→τs<τ

p∗(s), p+ = p∗(τ+) = lim
s→τs>τ

p∗(s), H− =

H1(ξ, p∗(τ−)), H+ = H2(ξ, p∗(τ+)).

Theorem 2. The position and time (ξ, τ) at interface crossing
are such that

p− − p+ − µ ∇zf(ξ) = 0 (16)
H+ −H− = 0 (17)

f(ξ) = C (18)

for some Lagrange multiplier µ ∈ R

Proof. See Appendix E.

Equation (17) expresses the fact the energy is conserved
when crossing the interface. One can show that actually the
energy is conserved along the whole trajectory. Equation
(16) is related to the conservation of the tangential com-
ponent of the impulsion at the interface. Equation (18) is
the interface equation at ξ. One can show that under the
assumption of equal potential on the interface, the kinetic
energy, the impulsion, and the velocity vector are conserved
across the interface.

3.3 Bi-phase optimal trajectory uniqueness and value
function convexity issues

Looking for uniqueness/non-uniqueness of optimal bi-
phase trajectories leads naturally to study the convexity of
the bi-phase total cost. As stated in Appendix E this cost is
additive and satisfies the dynamic programming principle
which reads

S̄(Θ = τ, Ξ = ξ | t0, z0, T, zT ) = S1(t0, z0, τ, ξ)+S2(τ, ξ, T, zT )
(19)

where S1 and S2 are themselves minimal.
Hamilton-Jacobi equations applied to each cost compo-

nent allows to study their first- an second- order differential
properties such as convexity. For instance in the chosen
quadratic model, each single-phase (minimal) total cost
S1(t0, z0, τ, ξ), S2(τ, ξ, T, zT ) given by Corollary 1 and (10)
is convex (since it is a positive quadratic form with respect to

3. The possibility of crossing several times the interface or having
more than two phases leads to combinatorial complications that are left
for further work. This assumption prevents the UAV to come back to
its initial position.
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Fig. 2: (a) Traffic hot spot (u0 < 0) and (b)(c) Traffic hole (u0 > 0). Circles are iso-traffic levels.

the spatial coordinates) with respect to the spatial position ξ,
but not necessarily so with respect to the interface crossing
time τ . We consider in what follows a general form of the
single-phase value function between (t1, x1) and (t2, x2)
that is denoted by S(t1, x1, t2, x2). We also note by ω the
pulsation, φ = ω (t2−t1) is the temporal phase and p1, p2 are
the the initial and final impulsions as derived from formula
(12).

Theorem 3. i) The Hessian of the single-phase cost wrt. joint
variables ψi = (Ti, Xi)i=1,2 is

H(ψi) = ∇2
Ti,Xi

S(t1, x1, t2, x2) =

(
α Πi

†

Πi Kg Id2

)
(20)

with 

α =
∂2S

∂T 2
i

=
ω p1 · p2

K sinhφ

g = ω cothφ > 0

Πi = −ω p3−i

sinhφ
∈ R2

where pi is the impulsion at time Ti, i.e., at extremity Xi (i =
1, 2 and j = 3− i).
ii) At most one eigenvalue of H(ψi) can be negative and α < 0
is a sufficient condition for this to hold, namely implying local
non-convexity of the (single-phase) value function.
iii) The two-phase Hessian has a similar structure as (20) and
writes wrt. variable Ψ = (Θ,Ξ)

H̄(Θ = τ,Ξ = ξ) = H1(χ2) +H2(χ1) =

(
α Π†

Π Kh Id2

)
(21)

with 

α =
∂2S1

∂T2
2 (t0, z0, τ, ξ) +

∂2S2

∂T1
2 (τ, ξ, T, zT )

h = ω1 cothφ1 + ω2 cothφ2

Π = −
[
ω1 p(t0)

sinhφ1
+
ω2 p(T )

sinhφ2

]
where φ1 = ω1 (τ − t0, φ2 = ω2 (T − τ). It may thus be
non-convex as well.

Proof. See Appendix F subsections F.1 and F.2.

In the single-phase case, the sufficient condition ii)
i.e., α < 0, supports first a physical interpretation (see Fig.
3b) and also a geometrical one (see next Theorem 4 and Fig.
3c).

Theorem 4. Let u = x1+x2

2 and v = x2−x1

2 (‖u‖ is the distance
from the hotspot to the center of x1 and x2, and ‖v‖ is the half-
length of [x1x2].) The next condition is sufficient for ii) to hold:

‖ v ‖
‖ u ‖

<
coshφ− 1

1 + coshφ
= tanh2 φ

2
⇒ α =

∂2S

∂ti
2 < 0.

Proof. We combine the formulas (40) and (41) in (42) to
obtain

α =
w

K

p1 · p2

sinhφ

=
K ω3

sinh3 φ
[(‖ x1 ‖2 + ‖ x2 ‖2) coshφ

−x1 . x2 (1 + cosh2 φ)] (22)

which can be rewritten as

α =
K ω3

sinh3 φ
[− ‖ u ‖2 (1− coshφ)2 +

‖ v ‖2 (1 + coshφ)2)].

This non-convexity condition for the single-phase value
function interprets as: long phase (tanh φ

2 > 1
2 ) and long

distances between the hotspot zh to both initial and final
positions x1, x2, relatively to their mutual distance (‖u‖‖v‖ ≫
1). First simulations show that when this case happens for
both phases, the total cost is indeed non-convex and several
local optimal solutions may exist.

4 ALGORITHMS

Previous propositions allow us to propose several numerical
algorithms seeking optimal trajectories. In this section, we
present two algorithms aiming this goal: a gradient descent
algorithm and a bisection search method based on the linear
control property (12).
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2

Fig. 3: Non-convexity vs. convexity of the single-phase cost at (ti, xi), i = 1, 2: (a) possibly convex. (b) the initial and final
impulsions (p1, p2) form an obtuse angle⇒ the total cost is non-convex. (c) same property if long time and long distance of
both x1, x2 to the hotspot zh.

4.1 A Gradient Descent Algorithm GRAD-ALGO

In this section, we propose GRAD-ALGO (Algorithm 1)
which is an alternated optimization-based algorithm relying
on the procedures described in this section. The algorithm
proceeds by iterations using two nested loops (the repeat-
until-loop in steps 9-16 and the for-loop in steps 11-14).
The inner loop assumes a fixed ξ and optimizes τ using
a Newton descent (step 12). The descent is based on the
calculation of the Hessian and the Hamiltonians (step 13
and procedure in steps 4-7). Moreover, a certain point B is
computed (step 13 and procedure in steps 4-7). The outer
loop assumes a fixed τ and optimizes ξ by projecting the
point B on the interface (step 10). It stops when certain
stopping criteria are met (step 16). We now detail the two
optimization procedures and the stopping criteria.

4.1.1 Procedure for seeking an optimal ξ given a fixed τ
From Hamilton-Jacobi equations (Lemma 3 and Appendix
C) the gradient of the total cost function with respect to ξ is
p∗(τ−) − p∗(τ+). Equation (9) says that in the Newtonian
framework the impulsion is proportional to the control
variable a. Equation (12) says that in the quadratic model
the velocity vector is, at any time a linear combination
of centered initial and final positions. Then the searched
gradient appears to be an affine function of ξ which reads

p∗(τ−)− p∗(τ+) = ∇X2
S1(t0, z0, τ, ξ) +∇X1

S2(τ, ξ, T, zT )

= Kh (ξ −B) (23)

Scalar h and point B (where the spatial gradient cancels at
fixed τ i.e., p∗(τ−) = p∗(τ+)) verify

h = ω1 coth(ω1(τ − t0)) + ω2 coth(ω2(T − τ)) (24)

B =
1

h

[
ω1zh1 coth(ω1(τ − t0)) + ω2zh2 coth(ω2(T − τ))

+
ω1(z0 − zh1)

sinh(ω1(τ − t0))
+

ω2(zT − zh2)

sinh(ω2(T − τ))

]
(25)

The equation involving the Lagrange multiplier (16) now
reads

Kh (ξ −B)− µ ∇ξf(ξ) = 0 (26)

and shows that the optimal location ξ∗ is the orthogonal
projection of B on the interface I (step 10 of Algorithm 1).

4.1.2 Procedure for seeking an optimal τ given a fixed ξ
We use the result of Theorem 2. As also shown by Hamilton-
Jacobi equations (Lemma 3 and Appendix C), the gradi-

ent of S with respect to τ is given by H2(ξ, p∗(τ+)) −
H1(ξ, p∗(τ−)). The Hamiltonians are easily computed in
each phase by applying the classical Newton formula at

given location (z, t) and read H(p, z, t) =
‖ p ‖2

2 K
+ V (z)

(procedure in steps 4-7 of Algorithm 1). We then update τ
by using a simple gradient descent scheme (see step 12 of
Algorithm 1).

4.1.3 Stopping criteria
The search procedure is performed until the impulsion and
the Hamiltonian have converged with a given accuracy
(step 16 of Algorithm 1). For this purpose, we consider the
function g:

(Rn \ {0})2 → R defined as g(x, y) =
‖ x− y ‖

inf(‖ x ‖, ‖ y ‖)
which measures a relative “discrepancy” between x and y.
Now let us give εp and εH and define the stop criteria as
follows

STOP = g(p+, p−) / εp < 1 & g(H+, H−) / εH < 1. (27)

Complexity: Algorithm 1: if α∗ =
∂2S̄

∂Θ2
(τ∗, ξ∗) 6= 0

then the convergence of Newton descent on τ is quadratic
(see [44] for instance). If α∗ = 0 say, H2(ξ, p∗(τ+)) −
H1(ξ, p∗(τ−)) ∼ (τ − τ∗)ν with ν ≥ 2, the convergence
is linear (see [44] for instance). We take Mτ = 10 (in
accordance with εp = εH = 2.10−4) i.e., ν ≈ 2. The global
complexity is O(Nstep Mτ ) and usually Nstep = 2.

4.2 The B-curve algorithm B-ALGO

The B-curve algorithm aims to overcome the non-convexity
issues developed previously. It proceeds as follows. Con-
sider the B point defined in formula (25). We notice that
for each τ ∈ [t0, T ] this point is defined univocally know-
ing all parameters (t0, T, z0, zT , zh) and all (quadratic)
traffic profiles, so that we can see B in (25) as a function
of τ , denoted B(τ). It can be shown that this function
τ 7→ B(τ) is continuous in the interval [t0, T ] and that
limτ→t+0

B(τ) = z0, limτ→T− B(τ) = zT .
Assume now that the two optimal sub-trajectories are

such that crossing time τ ∈ [t0, T ] and interface position ξ
verify ξ = B(τ). Then by formula (23) the spatial gradient
of S at point ξ is p∗(τ−)− p∗(τ+) = 0. This implies that the
kinetic components of both Hamiltonians are equal at the
interface.
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Algorithm 1 GRAD-ALGO An uncoupled projected gradient
descent algorithm

1: Input: precisions εp, εH Mτ = number of gradient
descent iterations on τ

2: Init: starting position ξ ← ξ0 e.g., = z0+z
2 , τ ← τ0 e.g.,

= t0+T
2 , Nstep = 0

3: Output: (τ, ξ)
4: procedure TWO_PHASE(τ, ξ)
5: computes: the current bi-phase trajectory given by

(t0, z0)→ (τ, ξ)→ (T, zT )
6: return (B,H+, H−, H̄) = (the B-point (25), the two

phase Hamiltonians and the total Hessian at current
location (τ, ξ) (19, 21)

7: end procedure
8: (B,H+, H−, H̄) = TWO_PHASE(τ, ξ)
9: repeat

10: ξ ← ProjI(B) (26)
11: for m = 1, . . . ,Mτ do

12: τ ← τ− (H+ −H−)

α
with α = H̄11 =

∂2S̄

∂Θ2
(τ, ξ)

(Newton descent wrt. τ )
13: (B,H+, H−, H̄) = TWO_PHASE(τ, ξ)
14: end for
15: Nstep = Nstep + 1
16: until STOP (27)

Now since ξ belongs to the interface, both phase po-
tentials (traffics) are equal by definition, so that the total
Hamiltonian is also conserved at the interface: This is the
optimality condition required with respect to time τ .

To summarize, in these conditions, both the Hamiltonian
and the total impulsion are conserved at interface I , i.e.,
local optimality conditions hold for the total value function.
It is also worth noticing that the related Lagrange multiplier
appearing in (26) now simply vanishes: µ = 0. The proposed
B-algorithm consists then in seeking the intersection of the
B-curve B = {B(τ), τ ∈ [t0, T ]} with the interface I
(Algorithm 2). For this, we first select precision εB , then
proceed by bisection and check the stopping criterion

STOP B =
|t2 − t1|
|b− a|

1

εB
< 1. (28)

To go in more details, the algorithm starts by initializing
two time instants t1 and t2 such that B(t1) and B(t2) are
on either side of the interface (step 3). Then it proceeds by
iterations to perform the bisection procedure (steps 8-15).
In step 9, we set the new time instant τ to the middle of
the interval [t1; t2] in order to perform one iteration of the
binary search. The corresponding location ξ on the B-curve
is also found. If ξ is on the same side of the interface as
B(t2) (step 10), then t2 is moved to τ (step 11), otherwise t1
is moved to τ (step 12). A loop invariant is that B(t1) and
B(t2) are always on either side of the interface. Because of
the binary search, the length of the interval [t1; t2] is divided
by 2 at every iteration. The loop is stopped when the length
of the interval is sufficiently small (step 15).

Complexity: Algorithm 2: if εB =
1

2m
then the bisection

algorithm converges in m iterations. Its complexity is thus

Algorithm 2 the B-curve bisection algorithm

1: Input: initial/final time search interval [a, b] ∈ [t0, T ],
precision εB fixed by the user

2: Output: (ξ, τ)
3: Init: t1 ← a , t2 ← b, the algorithm only starts if
IN_ZONE2(B(a)) 6= IN_ZONE2(B(b))

4: procedure IN_ZONE2(z)
5: ui(z) = (time-stationary) traffic u(z) from hotspot zhi

at point z (i = 1, 2)
6: return (u2(z) > u1(z))
7: end procedure
8: repeat

9: x1 ← B(t1) , x2 ← B(t2) , τ ← t1 + t2
2

, ξ ← B(τ)

10: if (IN_ZONE2(ξ) == IN_ZONE2(x2)) then
11: t2 ← τ
12: else t1 ← τ
13: end if
14: compute stop criterion STOP B (28)
15: until STOP B

16: ξ ← B(τ)

Algorithm 3 Data preprocessing

1: First smoothing: data aggregation
2: Second smoothing: LOWESS
3: Normalization
4: K-means with quadratic models

O(log
1

εB
). We chose εB = 2.10−4 ≈ 1

212
and 12 iterations

are indeed sufficient to provide a trajectory with optimality
conditions holding at this (relative) precision.

5 NUMERICAL EXPERIMENTS

5.1 From Measurements to Quadratic Profile

In this section, we explain how from measured or estimated
traffic load, we can derive a quadratic model that will allow
us to apply our framework.

To illustrate the procedure, we extract data from the
open data set presented in [40]. Traffic data (in number
of bytes) has been collected from an operational cellular
network in a medium-size city in China and is recorded for
every base station and every hour. For our experiment, we
extract a rectangle region [Xmin, Xmax]×[Ymin, Ymax], where
Xmin = 111, Xmax = 111.12, Ymin = 13.12, Ymax = 13.22
are the minimum and maximum longitude and latitude
respectively (real figures have been anonymized). This cor-
responds approximately to a rectangle of 11 km×13 km
with 400 base stations having an average cell range of
337 m. The traffic of the 22th August 2012 between 5 and
6pm is illustrated in Figure 4a. We assume that this traffic
is representative of the traffic intensity when the drone is
launched.

In order to fit this raw data to our model, we follow
the pre-processing steps shown in Algorithm 3. The first
smoothing consists in aggregating the traffic data on a
grid of 50 steps in both longitude and latitude directions.
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The resulting elementary regions should correspond ap-
proximately to the drone coverage. The result is shown in
Figure 4b. The data exhibits a very high variability with very
high peaks around few locations.

The second smoothing is a Locally Weighted Scatterplot
Smoothing (LOWESS) [45]. We use here the Matlab function
fit with the option ”Lowess”. The choice of the smoothing
parameter α, i.e., the proportion of data points used for
every local regression, has a decisive impact on the result.
Increasing α has the effect of averaging out the different
peaks. In our specific scenario, α = 0.25 yields Figure 5a
with two local maxima. With α = 0.5, we obtain a single
maximum. In step 3 of the pre-processing, the traffic is
normalized between 0 and 1 with no influence on the
optimal trajectory.

The final pre-processing step is an adaptation of the
classical K-means algorithm (see Algorithm 4) to fit to
quadratic models. Inputs are the data points obtained after
the normalization, Kc, the number of clusters (or hot spots),
Kn the number of nearest neighbors and M the number
of iterations. Every cluster is associated to a quadratic
function (in our case, we have Kc = 2). Every data point
j is associated to a cluster and has a related label Lj in
{1, ...,K}. For every data point, a list of nearest neighbors
is built (step 4). An arbitrary initial labelization is chosen
(step 6). The algorithm then proceeds by iterations (steps 7-
16). At every iteration, if a point j has some neighbor with a
different label (step 9), a best new label is found for j (step
10-13) in terms of quadratic error ek. The error ek measures
the difference between the data points and the Kc-quadratic
model, which fits a quadratic function to every cluster
assuming that j has label k (steps 18-31). In Algorithm 4,
KNN(Kn, X, Y ) is a procedure that finds the Kn nearest
neighbors of (X,Y ) with respect to the Euclidian distance.
We use the Matlab implementation knnsearch. NLLS(L) is
a non-linear least square method that fits data points in L
to a quadratic function of the form 1

2u0|z − zh|2 + u1. The
Matlab implementation is based on a trust-region approach
of the Levenberg-Marquardt Algorithm.

Complexity: Algorithm 4: Searching the Kn-nearest
neighbors of a data point using k-d trees takes O(Kn log J)
in average and O(KnJ) in the worst case. Steps 3-5 has thus
a complexity of O(KnJ log J) in average and O(KnJ

2) in
the worst case. Initial labelization is a simple linear parti-
tioning of the 2D space in Kc zones and is thus performed
in O(J). In the main loop, there are at most O(MJKc) calls
to the function FIT. The Levenberg-Marquardt Algorithm
requires O(ε−2) iterations to reach an ε-approximation of a
stationary point of the objective function [44], [46]. The over-
all complexity of Algorithm 4 is thus O(KnJ

2 +MJKε−2).
The K-means partition obtained after M = 12 iterations

is shown in Figure 5b. The final fits are shown in Figures 7a
and 7b for (Kc, α) = (2, 0.25) and (Kc, α) = (1, 0.5),
respectively. Figure 6 shows the quadratic error as a function
of the number of iterations of the K-means algorithm for
Kc = 1 and Kc = 2. The error is constant for Kc = 1
as there is only one iteration, which performs the non-
linear least square fitting for the single cluster. For Kc = 2,
we distinguish two cases: Kn = 5 and Kn = ∞. In the
former case, only the 5 nearest neighbors of a data point are
inspected to decide if a relabelization should be performed.

Algorithm 4 K-means with quadratic models

1: Input: Kc (number of clusters), J (number of measure-
ment points) (Xj , Yj , Zj), j = 1, . . . , J (coordinates and
estimated traffic load Zj in (Xj , Yj)), Kn (number of
nearest neighbors), M (number of iterations)

2: Output: zhk, u0k, u1k k = 1, . . . ,Kc (hot spot character-
istics), e (quadratic error)

3: for j = 1, . . . , J do
4: Kj ← KNN(Kn, Xj , Yj)
5: end for
6: L← Initial labelization
7: for m = 1, . . . ,M do
8: for j = 1, . . . , J do
9: if ∃j′ ∈ Kj s.t. Lj′ 6= Lj then

10: for k = 1...Kc do
11: ek, zhl, u0l, u1l, l = 1, . . . ,Kc

← FIT((X,Y, Z), j, L, k,Kc)
12: end for
13: Lj ← arg mink ek
14: end if
15: end for
16: end for
17: return zhk, u0k, u1k k = 1, . . . ,Kc, global quadratic

error
18: procedure FIT((X,Y, Z), j,L,k,Kc)
19: Lj ← k
20: for l = 1,...,Kc do
21: Ll ← {(Xi, Yi, Zi)|Li = l}
22: zhl, u0l, u1l ← NLLS(Ll)
23: end for
24: ek ← 0
25: for j = 1,...,J do
26: Z̃j ← maxl=1,...,Kc

1
2u0l|z − zhl|2 + u1l

27: ek ← ek + |Z̃j − Zj |2
28: end for
29: ek ← ek/J
30: return ek, zhl, u0l, u1l, l = 1, . . . ,Kc

31: end procedure

In the later case, relabelization is systematically considered.
Increasing Kn increases the complexity of every iteration
but provides a faster convergence. Choosing a single-phase
model provides a simpler model though less accurate.

In our model, traffic intensity is supposed to be known
a priori. If traffic intensity parameters, u0, u1, zh for every
phase are known to belong to some uncertainty intervals,
a robust optimization can be performed by sampling the
cartesian product of uncertainty sets and computing the
maximum cost using our low complexity algorithms.

5.2 Trajectory optimization results
5.2.1 Estimation procedure of parameters K and T
As in most similar algorithms, a ’prior’ estimation of pa-
rameters is necessary since the optimal results strongly
depend on them. Traffic parameters have been estimated
just above, so the required parameters are first the mass
K representing trade-off between the kinetic term and the
traffic term in Lagrangian (1) and then the total dura-
tion time T which has also a significant influence on the
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(a) Raw traffic data on the 22th Aug. 2012 6pm [40].
.

(b) First smoothing: data aggregation at drone coverage level.

Fig. 4: Data preprocessing: raw data and first smoothing.

(a) Second smoothing: LOWESS with α = 0.25. (b) K-means partition.

Fig. 5: Data preprocessing: second smoothing and partitions in 2 phases.
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Fig. 6: Quadratic error between normalized smoothed data and quadratic models.
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Fig. 7: Influence of T on the optimal trajectory.
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Fig. 8: Influence of K on the optimal trajectory.

optimal trajectory (by convention t0 = 0). This proce-
dure is developed in Appendix G and yields in our case:
T ≈ 850,K = 50× r2 with r = 40×106

360×100 and we select: T =
1200, 1800s and K = 30, 60× r2.

5.2.2 Results
Optimal trajectories are shown in Figs. 7 and 8 and related
numerical results in Table 1. Length of various trajectories
and related average velocities are given in Table 2. The
following main comments can be made on these results:

• First the obtained trajectories for GRAD-ALGO and
B-ALGO satisfy the optimal conditions, as “relative”
discrepancies between impulsions and between
Hamiltonians at the interface are indeed below selected
precision of 2.10−4, yielding a ”convenient” full
trajectory.

• Then GRAD-ALGO is stable due to our choice of initial
and terminal drone positions (not too close to the
interface and not too far from their related hotspots)
and of time intervals (not too large temporal phases).
Thus, we are far from the non-convexity conditions
expressed in Theorems 3 and 4. The total hessian is
checked to be positive at each iteration. Hence, a large
(spatio-temporal) convergence basin resulting into
exact convergence of the GRAD-ALGO (as well as the
B-ALGO ) towards the unique optimal solution.

• As already noted for the single-phase case (paragraph
3.1.2), decreasing mass K enables the drone to collect
more traffic. In fact, during the allowed time interval,
the drone will get closer to the hotspot with maximal
traffic (zone 1) in order to decrease the total cost.
Increasing time interval (T ↗) will produce the same
tendancy, allowing the drone to spend more time near
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ξ S H− φ− φ+ τ

a) K = 60× r2 , T = 1200 → S1ph = −221.4103

B-ALGO (Niter = 12)
(111.048, 13.170) −168.5713 0.8131 1.9803 0.9236 538.69

GRAD-ALGO (Niter = 5)
(111.048, 13.170) −168.5713 0.8131 1.9802 0.9237 538.68

b) K = 60× r2 , T = 1800 → S1ph = −637.9077

B-ALGO (Niter = 12)
(111.0511, 13.1734) −641.6388 0.8332 4.1764 0.9273 1136.09

GRAD-ALGO (Niter = 2)
(111.0511, 13.1734) −641.6388 0.8332 4.1763 0.9273 1136.08

c) K = 30× r2 , T = 1200 → S1ph = −399.1474

B-ALGO (Niter = 12)
(111.051, 13.173) −393.1217 0.8313 3.7936 0.9289 729.71

GRAD-ALGO (Niter = 2)
(11.051, 13.173) −393.1217 0.8313 3.7933 0.9290 729.65

TABLE 1: Table of results with B-ALGO and GRAD-ALGO for K = 30, 60× r2 ,
T = 1200, 1800s and r = 40×106

360×100 ≈ 1111.1111 (corresponding to scaled spatial unity of 100m).
Also, S1ph denotes the total single-phase cost (i.e., assuming only one, effective hotspot).

case bi-phase single-phase
L (km) V̄ (m/s) L (km) V̄ (m/s)

a) 12.41 10.34 11.71 9.76

b) 13.80 7.66 12.53 6.96

c) 13.64 11.37 12.37 10.30

TABLE 2: Table of trajectory lengths and related average speeds.

the hotspot with higher traffic zh1, see Figs. 7a and 8a.

• Since the drone has enough time to pick up traffic
located close to hotspots, this is reflected in an average
drone velocity about half its nominal value (see Table 2).

• Although sometimes a bit low in this particular sce-
nario, observed average speeds (see Table 2) are com-
patible with the quadratic approximation of the energy
consumption for rotary-wing UAVs (typically more
than 10 m/s [14], [41]). The quadratic model is less
accurate when the UAV comes close to the hotspot (at
low speed), while it is a good approximation when it
leaves the hotspot to reach the destination (at higher
speed). Improving the model to take into account the
portion of the trajectory with lower speed is left for
future work.

On a Mac Book Pro 2.7 GHz Dual-Core Intel Core i5 using
Scilab 6.02 (and Java 8), the CPU time with GRAD-ALGO is
0.24 s (5 iterations) and with B-ALGO is 0.023 s (12 itera-
tions)4.

4. A direct comparison with SCA-based algorithms proposed in the
literature [13], [14], [15], [16], [17] would require a significant modifica-
tion of these algorithms, which is beyond the scope of this paper. These
studies indeed consider UAVs serving a finite set of ground stations,
while our model assumes a continuous traffic map.

6 CONCLUSION

In this paper, we propose a Lagrangian approach to solve
the UAV base station optimal trajectory problem. When
the traffic intensity exhibits a single phase, closed-form
expressions for the trajectory and speed are derived from
Hamilton-Jacobi equations. When the traffic intensity ex-
hibits multiple phases, we characterize the crossing time and
location at the interface. We propose two low-complexity
algorithms for the bi-phase time-stationary traffic case that
provide optimal crossing time and location on the interface
and fulfill the necessary conditions of optimality. At last, we
present a data processing procedure based on a modified
K-means algorithm that derives a single-phase or bi-phase
quadratic model from real traffic data. Further extensions of
this work are envisioned to generalize the approach to three
or more hot-spots and to consider multi-drone coordinated
trajectories.
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APPENDIX A
PROOF OF LEMMA 1

In a neighborhood of the optimal trajectory, the first order
variation of S is null

δS =

∫ T

t0

δL(t, z, a) dt (29)

=

∫ T

t0

[∇zL(t, z, a) · δz(t) +∇aL(t, z, a) · δa(t)] dt

Noting that δa = δ dzdt = d(δz)
dt and integrating by part the

second term in the integral of δS yields∫ T

t0

∇aL(t, z, a) · d(δz)

dt
dt = [δz(t) · ∇aL(t, z, a)]Tt0

−
∫ T

t0

δz(t) · d
dt
∇aL(t, z, a) dt (30)

Note that [δz ∂L∂a ]Tt0 = 0 because z0 and zT are fixed. Equat-
ing δS to zero gives

0 =

∫ T

t0

[
∇zL(t, z, a)− d

dt
∇aL(t, z, a)

]
· δz(t) dt (31)

As this should be true for every δz, L, z0 and zT , we obtain
the first result. Now assume that we have the optimal a(t),
the condition for variable z(T ) to be optimal is

δS = [δz(t) · ∇aL(t, z, a)]Tt0 +∇J(z(T )) · δz(T )

= ∇aL(z(T ), T, a(T )) · δz(T ) +∇J(z(T )) · δz(T )

= 0 (32)

Note that z0 is fixed and so δz in z0 is null. We thus obtain
the second result of the lemma.

APPENDIX B
PROOF OF LEMMA 2

As L(z, a) is an homogeneous function of z and a, we have:
L(λz, λa) = |λ|αL(z, a) for all λ (in our case with α = 2).
Deriving this expression with respect to λ, setting λ = 1,
and noting that a = ż we obtain

z · ∂L(z, ż)

∂z
+ ż · ∂L(z, ż)

∂z
= αL(z, ż). (33)

Using (4) and (33), we have: z · dpdt +ż ·p = αL or equivalently
d(p·z)
dt = αL. We can now integrate the cost function (2)

along the optimal trajectory as follows

S(t0, z0, T, zT ) =
1

α

∫ T

t0

d(p · z)
dt

(t) dt+ J(zT )

=
1

α
(p(T ) · zT − p(t0) · z0) + J(zT )

APPENDIX C
PROOF OF LEMMA 3

We assume that an optimal trajectory exists and we apply
the principle of optimality on the optimal trajectory between

(t, z∗(t)) and (t+ h, z∗(t) + ah), where h > 0, to obtain

S(t, z∗(t), T, zT ) = min
a

[hL(t, z∗(t), a)

+S(t+ h, z∗(t) + ah, T, zT )]

= min
a

[hL(t, z∗(t), a) + S(t, z∗(t), T, zT )

+ha · ∇X1
S(t, z∗(t), T, zT )

+h
∂S

∂T1
(t, z∗(t), T, zT )]. (34)

∂S

∂T1
(t, z∗(t), T, zT ) = −min

a
[a · ∇X1

S(t, z∗(t), T, zT )

+L(t, z∗(t), a)]

= max
a

[−a · ∇X1
S(t, z∗(t), T, zT )

−L(t, z∗(t), a)]

= H(t, z∗(t),−∇X1
S(t, z∗(t), T, zT )).

By using the same approach between t−h and t, we deduce
in the same way equation (6) when the final time T is
varying.

APPENDIX D
PROOF OF THEOREM 1
From (3) and (8), we obtain the following ordinary differ-
ential equation of second degree: z̈ = −u0

K z. If u0

K > 0, we
define ω2 = u0

K and we look for an optimal trajectory of
the form: z(t) = A cos(ωt) + B sin(ωt). If u0

K < 0, we look
for an optimal trajectory of the form: z(t) = A cosh(ωt) +
B sinh(ωt) with ω2 = −u0

K . Let us denote z0 = z(t0) and
a0 = a(t0) the initial conditions for z and ż. Take the case
u0

K < 0. Using the derivative of z(t) and identifying terms,
we obtain: z(t) = z0 coshω(t−t0)+ a0

ω sinhω(t−t0). At t =
T , we have also: zT = z0 coshω(T − t0) + a0

ω sinhω(T − t0),
from which we deduce

a(t0) =
ω(zT − z0 coshω(T − t0))

sinhω(T − t0))
, (35)

a(T ) =
ω(−z0 + zT coshω(T − t0))

sinhω(T − t0))
. (36)

when u0 < 0. In a similar way, we have

a(t0) =
ω(zT − z0 cosω(T − t0))

sinω(T − t0)
, (37)

a(T ) =
ω(−z0 + zT cosω(T − t0))

sinω(T − t0)
, (38)

when u0 > 0. Injecting a(t0) = a0 in the equation of the
trajectory provides the result. For the computation of S,
we now use the result of Lemma 2 as our cost function
is 2-homogeneous. From equation (5), we see that only
initial and final conditions are required to compute the cost
function. Recall now that p = Ka. Injecting the equations
of a(t0) and a(T ) in (5), we obtain the result for the cost
function.

APPENDIX E
PROOF OF THEOREM 2
The optimal trajectory between (z0, t0) and (zT , T ) can
be decomposed in two sub-trajectories that are themselves
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optimal between (z0, t0) and (ξ, τ) on the one hand and be-
tween (ξ, τ) and (zT , T ) on the other hand, by the principle
of optimality.

In region 1, the optimal cost up to τ is S1(t0, z0, τ, ξ) =∫ τ
t0
L(z∗(s), a∗(s))ds. Using Hamilton-Jacobi, we obtain

∂S1

∂T2
(t0, z0, τ, ξ) = −H1(ξ, p∗(τ−)).
Similarly, the optimal cost in region 2 is S2(τ, ξ, T, zT ) =∫ T

τ L(z∗(s), a∗(s))ds and ∂S2

∂T1
(τ, ξ, T, zT ) = H2(ξ, p∗(τ+)).

A necessary condition for the optimality of τ is
thus ∂S1

∂T2
(t0, z0, τ, ξ) + ∂S2

∂T1
(τ, ξ, T, zT ) = 0, that is

H1(ξ, p∗(τ−)) = H2(ξ, p∗(τ+)).
A necessary condition for the optimality of ξ in the total

cost under the constraint f(ξ) = C is also µ ∇zf(ξ) =
∇X2S1(t0, z0, τ, ξ) +∇X1S2(τ, ξ, T, zT ) = p∗(τ−)− p∗(τ+)
where µ is a Lagrange multiplier associated to the constraint
and where the second equality comes from equation (7) of
Hamilton-Jacobi. Thus we obtain precisely equation (16).

APPENDIX F
STRUCTURE OF THE HESSIAN

F.1 Proof of Theorem 3
Recall that we study the second-order differentiability prop-
erties of single-phase value function S(t1, x1, t2, x2). From
Eq. (1) we study Hessians of the form M1+2,1+2(R) 3

∇2σ =


∂2

∂Ti
2 σ

∂

∂Ti
∇Xi σ

∇Xi
∂

∂Ti
σ ∇2

Xi,Xi
σ

, where σ stands for

S(t1, x1, t2, x2), and i = 1, 2. It is clear by inspecting the
symmetries of (10) with respect to the spatial coordinates
that ∇2

X1,X1
S(t1, x1, t2, x2) = ∇2

X2,X2
S(t1, x1, t2, x2) =

Kg Id2, where g = ω cothφ and φ = ω (t2 − t1) is the
temporal phase. Concerning the symmetry with respect to
the time variables, one also finds easily that

∂2S

∂T1
2 (t1, x1, t2, x2) =

∂2S

∂T2
2 (t1, x1, t2, x2).

The Hessian structure with respect to the variable χi =
(Ti, Xi)i=1,2 ∈ R× R2 is thus

H(χi) =

(
α Πi

†

Πi Kg Id2

)
with


α =

∂2S

∂T1
2 =

∂2S

∂T2
2

g = ω cothφ

Πi =
∂

∂Ti
∇Xi

S

(39)

where the vector Πi and real scalar α remain to be deter-
mined. Now recall that initial and final impulsions p1 and
p2 as given by (35) are

p1 = K ω
−x1 coshφ+ x2

sinhφ
, (40)

p2 = K ω
−x1 + x2 coshφ

sinhφ
. (41)

In fact the expressions of Πi and α appearing in Hessian

(39) result both from the computation of
∂pi
∂Ti

for i = 1, 2.

Using the expression of the temporal phase, the dif-
ferentiation of (40) and (41) with respect to T1 and T2

leads to Π1 =
∂

∂T1
∇X1S =

∂p1

∂T1
= − ω

p2

sinhφ
and

Π2 =
∂

∂T2
∇X2

S =
∂p2

∂T2
= − ω p1

sinhφ
.

Now, the second partial derivative of value function S

with respect to time α reads α =
∂2S

∂T1
2 = − ∂H

∂T1
, where the

last equality follows for the Hamilton-Jacobi PDE.
Recall that the Hamiltonian has the form H(z, p, t) =

‖ p ‖2

2 K
+ V (z).

Then differentiating it with respect to the temporal phase

φ for fixed extremities x1, x2 leads to δ H =
p1 · δ p1

K
=

p2 · δ p2

K
= − p1 · p2

K sinhφ
δ φ that is

α =
∂2S

∂T1
2 =

∂2S

∂T2
2 = − ω ∂H

∂φ
=

ω

K

p1 · p2

sinhφ
. (42)

Now from (19) the two-phase Hessian is simply the sum of
the two single-phase Hessians.

F.2 Diagonalizing the Hessian

Since the Hessians of single- and two-phase total cost have
the same structure, we consider a general Hessian of the
form (39). Its characteristic polynom is easily developed as
det (H− ν Id3) = (Kg − ν)2 (α− ν)− (Kg − ν) ‖ Π ‖2.

Since from (39) one has ∀(θ, x) ∈ R × R2,
H(θ, x) = (α θ + Π · x, Π θ +Kg x), the three real eigen-
values (νi)i=0:2 and related eigenvectors Yi = (θi, xi) sat-
isfy:

i) For ν0 = Kg > 0, then Y0 = (θ = 0, x0) with x0 ⊥ Π,
i.e., we have a ”space” eigenvector Y0 ∈ {0} × R2.

ii) For (νi)i=1,2 such that (Kg − νi) (α− νi) − ||Π||2 = 0,
then Yi = (θi, xi = Π)i=1,2. We have two (mutually
orthogonal) eigenvectors orthogonal to Y0 (since Π ⊥
x0) with

ν1 ν2 = α Kg − ||Π||2

and
ν1 + ν2 = α+Kg

Thus ν1 and ν2 cannot be simultaneously negative since
this would imply both that α < −Kg < 0⇒ det(H) <
0 and det(H) = ν0 ν1 ν2 > 0 ! However, the condition
α Kg < ‖ Π ‖ 2 (e.g. induced by the sufficient condition
α < 0) implies that one of the eigenvalues ν1 or ν2 is
strictly negative, thus there is a local non-convexity of
the Hessian matrix H. This property holds for a single-
phase total cost as well as for the two-phase case.

APPENDIX G
ESTIMATION OF PARAMETERS

The estimation of the simulation parameters is based on
a typical drone cell speed V̄ = 20 m/s and autonomy
of about 28 min [47]. We test our procedure for spatially-
scaled data, where the convenient spatial unity is 100 m
so that the scaling ratio is r = 40.106

360 × 100 ≈ 1111.1111.
For estimating T in seconds, we approximate the trajectory
length by L ≈ 1.5× ‖ z0 − zT ‖, which provides T = V̄

L .
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For estimating K , we impose that the phase in each sub-
trajectory should satisfy φi = ωiTi < 10, i = 1, 2. Since in

a spatial scaling by factor r: ui0 ←
ui0
r2

, K ← K

r2
(Kω2

i = ui0
at any scale), going back into the original frame therefore
implies that K ← Kr2.
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