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Abstract. Multiplication is an expensive arithmetic operation, therefore there has been extensive
research to find Karatsuba-like formulae reducing the number of multiplications involved when
computing a bilinear map. The minimal number of multiplications in such formulae is called the
bilinear complexity, and it is also of theoretical interest to asymptotically understand it. Moreover,
when the bilinear maps admit some kind of invariance, it is also desirable to find formulae keeping
the same invariance. In this work, we study trisymmetric, hypersymmetric, and Galois invariant
multiplication formulae over finite fields, and we give an algorithm to find such formulae. We also
generalize the result that the bilinear complexity and symmetric bilinear complexity of the two-
variable multiplication in an extension field are linear in the degree of the extension, to trisymmetric
bilinear complexity, and to the complexity of t-variable multiplication for any t ≥ 3.

1 Introduction

Given an algorithm that computes a polynomial map over a field k (or a family of such polynomial
maps, with entries of length going to infinity), one is usually interested in the (asymptotic) cost
of the algorithm. In order to understand this cost, one studies the complexity of the algorithm,
i.e. the number of operations needed by the algorithm. We can for example count the number
of bit operations, or the number of algebraic operations (+,×) in k. The latter is called the
algebraic complexity and in this model it is supposed that all algebraic operations have the same
cost. Nevertheless, multiplication of two variable quantities in k is arguably more expensive
than addition, or than multiplication of a variable by a fixed constant. In the context of the
computation of bilinear maps, extensive work has been done to reduce the number of two-
variable multiplications involved. Notable examples are Karatsuba’s algorithm [11] and Strassen’s
algorithm [19]. Karatsuba’s algorithm is based on the fact that the bilinear map associated to
the product of two polynomials of degree 1

A = a1X + a0 and B = b1X + b0

can be computed with three products a0b0, (a0 +a1)(b0 + b1), a1b1 instead of the four classic ones
a0b0, a0b1, a1b0, a1b1. Strassen’s algorithm exploits a similar idea in the case of 2×2 matrices: only
7 products are used instead of 8 in order to compute a matrix product. Both these algorithms have
very practical consequences. The bilinear complexity µ(Φ) of a bilinear map Φ over k represents
the minimum number of two-variable multiplications in a formula that computes Φ, discarding
the cost of other operations such as addition or multiplication by a constant. In particular when A
is a finite dimensional algebra over k, we define the bilinear complexity of A as µ(A/k) = µ(mA)
where mA : A×A → A is the multiplication map in A seen as a k-bilinear map.

Let k2×2 be the algebra of 2 × 2 matrices over k. We know thanks to Strassen’s algorithm
that

µ(k2×2/k) ≤ 7.



In fact, this is optimal, so we have exactly µ(k2×2/k) = 7 [20, Thm. 3.1]. In general, it seems to
be hard to find the bilinear complexity of a given algebra, for example the bilinear complexity of
k3×3 is not known. In the litterature, work has been done both to algorithmically find the bilinear
complexity of small algebras [5,10] and to understand how the bilinear complexity asymptotically
grows [9,2]. Chudnovsky and Chudnovsky proved in 1988 that the bilinear complexity of an
extension field Fqk/Fq is linear in the degree k of the extension, using an evaluation-interpolation
method on curves. As the main contribution of this article, we investigate both questions for
trisymmetric bilinear complexity, and solve a certain number of the open problems stated in [2,
§5.2].

When a bilinear map admits certain invariance properties, it can be interesting, both for
theoretical and for practical reasons, to find formulae for it that exhibit these same properties.
For symmetric bilinear maps, and in particular for commutative algebras, this leads to the notion
of symmetric bilinear complexity. A further refinement, the trisymmetric bilinear complexity of
Fqk over Fq, was first introduced in [16], and rediscovered independently in [14, App. A].

In Section 2 we recall the definition of symmetric and trisymmetric formulae, and discuss
further generalizations such as hypersymmetric formulae for higher multilinear maps, and Galois-
invariant formulae. In Section 3 we describe algorithms to compute trisymmetric decompositions
in small dimension. In all examples we were able to compute, the trisymmetric bilinear complexity
is equal to the symmetric bilinear complexity. However we found an example where the Galois-
invariant trisymmetric bilinear complexity is strictly larger. Finally, in Section 4, we prove that
for all q ≥ 3, the trisymmetric bilinear complexity of an extension of Fq is again linear in the
degree, as well as similar results for higher multiplication maps.

2 Multiplication formulae with symmetries

Although we are mainly interested in bilinear multiplication formulae, the notions we will consider
naturally involve higher multilinear maps.

Multilinear complexity. Let Φ : V1 × · · · × Vt → W be a t-multilinear map between finite
dimensional vector spaces over k. A multilinear algorithm, or multilinear decomposition, or mul-
tilinear formula of length n for Φ is a collection of linear forms (ϕ

(j)
i )1≤i≤n

1≤j≤t
, where ϕ(j)

i is in V ∨j ,

the dual vector space of Vj , and elements (wi)1≤i≤n in W , such that for all v1, . . . , vt we have

Φ(v1, . . . , vt) =

n∑
i=1

ϕ
(1)
i (v1) · · ·ϕ(t)

i (vt)wi.

The multilinear complexity µ(Φ) is then defined as the smallest length n of such a decomposition.
Equivalently, it is the rank of the tensor in V ∨1 ⊗ · · · ⊗ V ∨t ⊗W corresponding to Φ.

Symmetric multilinear complexity. When V1 = · · · = Vt = V and Φ is a symmetric multi-
linear map, it is natural to search for symmetric multilinear decompositions, i.e. formulae of the
form

Φ(v1, . . . , vt) =

n∑
i=1

ϕi(v1) · · ·ϕi(vt)wi

with ϕ(1)
i = · · · = ϕ

(t)
i = ϕi ∈ V ∨ for all i. It is more space-efficient, since symmetric formulae

admit a shorter description. From an algorithmic point of view, it should also be simpler to
find symmetric formulae, because the search space is smaller. We define µsym(Φ), the symmetric



multilinear complexity of Φ, as the minimal length n of such a symmetric decomposition, if it
exists (otherwise we set µsym(Φ) =∞).

In the case t = 2, a symmetric bilinear map always admits a symmetric decomposition.
However, when t ≥ 3 and k = Fq is a finite field, this can fail. When t = 3 and q > 2, it is
shown in [16, Lemma 7] that a symmetric trilinear map Φ over Fq always admits a symmetric
algorithm, while in the remaining case t = 3 and q = 2, as observed by Cascudo, a necessary
condition is that Φ should satisfy Φ(x, x, y) = Φ(x, y, y) for all entries x, y. These results were
then combined and generalized into the following necessary and sufficient criterion:

Theorem 1 ([14, Thm. A.7]). Let Φ : V t → W be a t-multilinear map between finite di-
mensional vector spaces over Fq. Then Φ admits a symmetric decomposition if and only if Φ is
Frobenius-symmetric, i.e. if and only if it is symmetric and one of the following two conditions
holds:

– t ≤ q
– t ≥ q + 1 and for all u, v, z1, . . . , zt−q−1 in V ,

Φ(u, . . . , u︸ ︷︷ ︸
q times

, v, z1, . . . , zt−q−1) = Φ(u, v, . . . , v︸ ︷︷ ︸
q times

, z1, . . . , zt−q−1).

Observe that this criterion involves the cardinality of the field, not its characteristic.

Trisymmetric and hypersymmetric complexity. Now suppose furthermore that V = W ,
and that this space is equipped with a non-degenerate symmetric bilinear form, written as a
scalar product

V × V → k
(v, w) 7→ 〈v, w〉 .

This allows to identify V and V ∨, i.e. any linear form ϕ ∈ V ∨ is of the form ϕ(x) = 〈a, x〉 for a
uniquely determined a ∈ V . As a consequence, a symmetric decomposition for Φ : V t → V can
also be described as the data of elements (ai)1≤i≤n and (bi)1≤i≤n in V such that for all v1, . . . , vt
in V , we have Φ(v1, . . . , vt) =

∑n
i=1 〈ai, v1〉 · · · 〈ai, vt〉 bi. In order to have an even more compact

description, one could ask for bi to be proportional to ai, leading to the following:

Definition 1. Let V be a finite dimensional k-vector space equipped with a scalar product, and
Φ : V t → V a symmetric t-multilinear map. Then a hypersymmetric formula for Φ is the data
of elements (ai)1≤i≤n in V and scalars (λi)1≤i≤n in k such that, for all v1, . . . , vt ∈ V ,

Φ(v1, . . . , vt) =
n∑
i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 ai.

The hypersymmetric complexity µhyp(Φ) is then the minimal length n of such a hypersymmetric
decomposition, if it exists. Obviously we always have µsym(Φ) ≤ µhyp(Φ).

When t = 2, we will say trisymmetric for hypersymmetric, and write µtri(Φ) for µhyp(Φ).

As a further motivation, observe that to any t-multilinear map Φ : V t → V one can associate a
(t+ 1)-multilinear form Φ̃ : V t+1 → k, defined by

Φ̃(v1, . . . , vt, vt+1) = 〈Φ(v1, . . . , vt), vt+1〉 .

We then say that Φ is hypersymmetric (as a t-multilinear map) if Φ̃ is symmetric (as a (t+ 1)-
multilinear form). It is easily seen that Φ hypersymmetric is a necessary condition for it to admit
a hypersymmetric decomposition, and more precisely:



Lemma 1. Elements (ai)1≤i≤n in V and scalars (λi)1≤i≤n in k define a hypersymmetric formula
for the t-multilinear map Φ,

Φ(v1, . . . , vt) =
n∑
i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 ai,

if and only if they define a symmetric formula for the (t+ 1)-multilinear form Φ̃,

Φ̃(v1, . . . , vs, vt+1) =
n∑
i=1

λi 〈ai, v1〉 · · · 〈ai, vt〉 〈ai, vt+1〉 .

Thus, Φ admits a hypersymmetric formula if and only if Φ̃ is Frobenius-symmetric (in the
sense of Theorem 1), and we have

µhyp(Φ) = µsym
(
Φ̃
)
.

In particular, if q ≥ t + 1, then any hypersymmetric t-multilinear map over Fq admits a
hypersymmetric formula.

Proof. For the only if part in the first assertion, take scalar product with vt+1. For the if part,
use the fact that the scalar product is non-degenerate. The other assertions follow. ut

Galois invariance. Last we consider another type of symmetry. Let σ : v 7→ vσ be a k-linear
automorphism of V that respects the scalar product: 〈vσ, wσ〉 = 〈v, w〉 for all v, w in V .

Lemma 2. Let Φ : V t → V be a symmetric t-multilinear map that is compatible with σ, i.e.

Φ(vσ1 , . . . , v
σ
t ) = Φ(v1, . . . , vt)

σ

for all v1, . . . , vt in V , and let (ai)1≤i≤n and (bi)1≤i≤n in V define a symmetric formula for Φ,

Φ(v1, . . . , vt) =

n∑
i=1

〈ai, v1〉 · · · 〈ai, vt〉 bi.

Then (aσi )1≤i≤n and (bσi )1≤i≤n also define a symmetric formula for Φ,

Φ(v1, . . . , vt) =

n∑
i=1

〈aσi , v1〉 · · · 〈aσi , vt〉 bσi .

Proof. Write Φ(v1, . . . , vt) = Φ(vσ
−1

1 , . . . , vσ
−1

t )σ and apply the formula. ut

We then say that the symmetric formula given by (ai)1≤i≤n and (bi)1≤i≤n is σ-invariant if it
is the same as the formula given by (aσi )1≤i≤n and (bσi )1≤i≤n, i.e. if there is a permutation π
of {1, . . . , n} such that (aσi , b

σ
i ) = (aπ(i), bπ(i)) for all i. This applies also to hypersymmetric

formulae, setting bi = λiai.
If G is a group of k-linear automorphisms of V that respect the scalar product, and if

Φ : V t → V is a symmetric t-multilinear map that is compatible with all elements in G, we then
define µsym,G(Φ) (resp. µhyp,G(Φ)), the G-invariant symmetric (resp. hypersymmetric) multilin-
ear complexity of Φ, as the minimal length n of a symmetric (resp. hypersymmetric) multilinear
formula for Φ that is G-invariant, i.e. σ-invariant for all σ in G.



Multiplication formulae in algebras. Let A be a finite dimensional commutative algebra
over k. We say a linear form τ : A → k is trace-like if the symmetric bilinear form A×A → k,
(x, y) 7→ τ(xy) is non-degenerate. If so, we set 〈x, y〉 = τ(xy), which defines a scalar product on
A. In this work we will take k = Fq, and either:

– A = Fqk a finite field extension, and τ = TrF
qk
/Fq the usual trace map; indeed it is well

known that the trace bilinear form 〈x, y〉 = TrF
qk
/Fq(xy) is non-degenerate

– A = Fq[T ]/(T k) an algebra of truncated polynomials, and τ defined by τ(x) = xk−1 for
x = x0 +x1T + · · ·+xk−1T

k−1 in A; indeed, observe that for x = x0 +x1T + · · ·+xk−1T
k−1,

y = y0 +y1T + · · ·+yk−1T
k−1, we then have 〈x, y〉 = τ(xy) = x0yk−1 +x1yk−2 + · · ·+xk−1y0,

which is non-degenerate.

Let Φ : A × A → A be the multiplication map, Φ(x, y) = xy. It is easily seen that Φ is
trisymmetric. Indeed Φ̃ is the trilinear form x, y, z 7→ τ(xyz), which is symmetric. A symmetric
bilinear multiplication formula for A is thus the data of (ai)1≤i≤n in A and (ϕi)1≤i≤n in A∨ such
that

∀x, y ∈ A, xy =

n∑
i=1

ϕi(x)ϕi(y)ai, (1)

and a trisymmetric formula is the data of (ai)1≤i≤n in A and (λi)1≤i≤n in Fq such that

∀x, y ∈ A, xy =
n∑
i=1

λi 〈ai, x〉 〈ai, y〉 ai. (2)

We will write µq(k) (resp. µ̂q(k)) for the bilinear complexity of multiplication in Fqk (resp. in
Fq[T ]/(T k)) over Fq, and we will write likewise µsym

q (k), µ̂sym
q (k), µtri

q (k), µ̂tri
q (k), µsym,G

q (k),
µ̂sym,G
q (k), µtri,G

q (k), µ̂tri,G
q (k), etc. for the similar quantities with the corresponding symmetry

conditions.
For q ≥ 3 we have µtri

q (k) < ∞ and µ̂tri
q (k) < ∞ for all k, while for q = 2 we have µtri

2 (1) =
µ̂tri
2 (1) = 1 and µtri

2 (2) = 3, but µtri
2 (k) = ∞ for k ≥ 3 and µ̂tri

2 (k) = ∞ for k ≥ 2. This follows
essentially from Theorem 1 and Lemma 1 (see also [14, Prop. A.14]).

Obviously we have µq(k) ≤ µsym
q (k) ≤ µtri

q (k) and µ̂q(k) ≤ µ̂sym
q (k) ≤ µ̂tri

q (k) for all q and
k. But when all these quantities are finite, e.g. when q ≥ 3, no example of strict inequality is
known.

In the other direction, when q ≥ 4 is not divisible by 3, [16, Thm. 2] gives µtri
q (k) ≤ 4µsym

q (k)
and µ̂tri

q (k) ≤ 4µ̂sym
q (k). This allows to translate the many known upper bounds on symmet-

ric complexity [2] into upper bounds on trisymmetric complexity. However the resulting upper
bounds do not seem to be tight, so it would be desirable to have better estimates, and especially
upper bounds that work also for q divisible by 3.

3 Finding trisymmetric decompositions

Algorithmic search. Barbulescu et al. [5] and later Covanov [10] found clever ways of exhaus-
tively searching for formulae for (symmetric) bilinear maps. Their method eliminates redundancy
in the search but strongly relies on the fact that the vectors ai ∈ A in the symmetric formu-
lae (1) can be chosen independently of the linear forms ϕi ∈ A∨, which is no longer the case
when searching for trisymmetric decompositions. For this reason, we use another method that



is once again a variant of an exhaustive search and thus still leads to an exponential complexity
algorithm. Let Φ be the two-variable product in A. Recall that we are looking for a trisymmetric
decomposition:

∀x, y ∈ A, Φ(x, y) = xy =
n∑
i=1

λi 〈x, ai〉 〈y, ai〉 ai,

with ai ∈ A and λi ∈ k for all 1 ≤ i ≤ n. Because we are allowed to use scalars λi ∈ k, we can
limit our search to “normalized” elements in A, as follows. Choose a basis of A, which gives an
identification A ' kk as vector spaces. Then for all 1 ≤ i ≤ k, let

Ei =
{
x = (x1, . . . , xk) ∈ A ' kk | ∀j ≤ i− 1, xj = 0 and xi = 1

}
and

E =
k⋃
i=1

Ei.

We search for elements ai in E instead of A. We further use the vector space structure of A by
searching for solutions on each coordinate. Let

xy = (π1(x, y), . . . , πk(x, y)) ∈ A ' kk,

where, for all 1 ≤ i ≤ k, πi is the bilinear form corresponding to the i-th coordinate of the
product in Fpk . In other words,

Φ = (π1, . . . , πk).

We let B be the space of bilinear forms on A and we let f be the application mapping an element
in A to its associated bilinear symmetric form:

f : A→ B
a 7→ (x, y) 7→ 〈x, a〉 〈y, a〉 .

We then search for elements a1, . . . , an1 in E1 and λ1, . . . , λn1 in k such that

π1 =

n1∑
j=1

λjf(aj), (3)

and we obtain

Φ−
n1∑
j=1

λjf(aj)aj = (0, π′2, . . . , π
′
k),

where for 2 ≤ i ≤ k, π′i is some other bilinear form. We then continue the operation with π′2 and
elements an1+1, . . . , an2 in E2, then with π′′3 and elements in E3, and so on. In the end, we have
n elements a1, . . . , an ∈ E and λ1, . . . , λn ∈ k such that

Φ =

n∑
j=1

λjf(aj)aj .

Now, there is left to see how we compute the elements a1, . . . , an1 ∈ E1 and λ1, . . . , λn1 ∈ k in
order to obtain (3). Let r1 be the rank of π1. We know that the number n1 of elements in E1 such
that we have (3) is at least r1, but there also exist some trisymmetric decompositions where we



need more than r1 elements. To find these elements, we search through elements a1 ∈ E1 such
that there exists λ1 ∈ k with

rank(π1 − λ1f(a1)) < rank(π1),

then, for each such a1 ∈ E1, we search through elements a2 ∈ E1 such that there exists λ2 with

rank(π1 − λ1f(a1)− λ2f(a2)) < rank(π1 − λ1f(a1)),

and so on, eliminating a lot of unsuitable elements along the way. This method allows us to
find decompositions of π1 into a sum of exactly r1 bilinear forms of rank 1. In order to find
decompositions containing r1 + m1 bilinear forms, we repeat the same process, except that we
allow the rank not to decrease m1 times. Let mj be the number of times we allow the rank not to
decrease when dealing with the j-th coordinate in the algorithm. We letM = (m1, . . . ,mk) and
we callmargin this k-tuple. This strategy was implemented in the Julia programming language [1]
and a package searching for trisymmetric decompositions is available online4, along with the
source code.

This allowed us to compute µtri
3 (3) = 6, µtri

p (3) = 5 for all primes 5 ≤ p ≤ 257, µtri
3 (4) = 9,

µtri
5 (4) = 8, and µtri

p (4) = 7 for all primes 7 ≤ p ≤ 23. Details about the computation can be
found in Table 1, while examples of formulae obtained via our algorithm are given in Table 2
(actually the formulae in this table are normalized in the sense of [14, Def. A.16], i.e. they satisfy
all λi = 1).

Field Margin Solutions Length Time (s) Field Margin Solutions Length Time (s)
F32 (0, 0) 1 3 1.8 · 10−4 F73 (0, 0, 0) 8 5 7.0 · 10−3

F33 (0, 0, 0) 1 6 4.4 · 10−4 F133 (0, 0, 0) 100 5 2.9 · 10−1

F34 (0, 0, 0, 0) 2 9 5.3 · 10−3 F193 (0, 0, 0) 415 5 1.8

F34 (2, 1, 0, 0) 18 9 3.8 · 10−1 F313 (0, 0, 0) 2031 5 29

F34 (3, 2, 1, 1) 25 9 1.1 F473 (0, 0, 0) 7590 5 360
Table 1. Algorithmic results with various degrees, base fields and margins.

Galois invariant formulae. Let A = Fqk and G be the cyclic group generated by σ, the
Frobenius automorphism over Fq. In order to find G-invariant decompositions, we exhaustively
search through orbits in Fqk , which is fast because the search space is smaller. This allows us to
find Galois invariant trisymmetric formulae of length 11 for F35 , and of length 10 for F55 and F75 .
Joint with the obvious inequalities µq(k) ≤ µsym

q (k) ≤ µtri
q (k) ≤ µtri,G

q (k) and with known lower
bounds from [2, Thm. 2.2] and [5], this gives 10 ≤ µ3(5) ≤ µsym

3 (5) = µtri
3 (5) = µtri,G

3 (5) = 11,
µ5(5) = µsym

5 (5) = µtri
5 (5) = µtri,G

5 (5) = 10, and µ7(5) = µsym
7 (5) = µtri

7 (5) = µtri,G
7 (5) = 10.

Some examples of Galois invariant formulae can be found in Table 2.
For q ≥ 3 we know no example where one of the inequalities in µq(k) ≤ µsym

q (k) ≤ µtri
q (k)

is strict. However, it turns out that the inequality with µtri,G
q (k) can be strict. Indeed, let q = 3

and k = 7. In this setting our exhaustive search found no G-invariant decomposition of length
up to 15. Since all orbits are of length 7, except the trivial orbit of length 1, the minimal length
for a G-invariant decomposition is congruent to 0 or 1 modulo 7, so we deduce that it is at least
21. Furthermore, we know [2, table 2] that µsym

3 (7) ≤ 19, so we have

µ3(7) ≤ µsym
3 (7) ≤ 19 < 21 ≤ µtri,G

3 (7).



Field n Field elements a1, . . . , an such that xy =
∑n
i=1 〈ai, x〉 〈ai, y〉 ai

F33 = F3[α]/(α
3−α+1) 6 a1 = α, a2 = aσ1 , a3 = aσ2 , a4 = 1−α2, a5 = aσ4 , a6 = aσ5

F34 = F3[α]/(α
4−α3−1) 9

a1 = −1, a2 = −α, a3 = aσ2 , a4 = aσ3 , a5 = aσ4 ,
a6 = α2+α+1, a7 = aσ6 , a8 = aσ7 , a9 = aσ8

F35 = F3[α]/(α
5−α+1) 11

a1 = 1, a2 = α−1, a3 = aσ2 , a4 = aσ3 , a5 = aσ4 , a6 = aσ5 ,
a7 = 1−α−α2, a8 = aσ7 , a9 = aσ8 , a10 = aσ9 , a11 = aσ10

F53 = F5[α]/(α
3+3α+3) 5 a1=3α+2, a2=−α2−α−1, a3=3α2+2α+2, a4=−α, a5=3α2+2α

F54 =
8

a1 = −1, a2 = 3α2+3α+3, a3 = 3α3−α2+2α−1, a4 = 2α3−α2−α+1,
F5[α]/(α

4−α2−α+2) a5 = α, a6 = −α2+α, a7 = α3+α2+α, a8 = α3+α2

Table 2. Examples of trisymmetric multiplication formulae (the first three are Galois invariant).

Universal formulae. As mentioned in Section 2, for q ≥ 3, we do not know any example of
algebra A = Fqk or A = Fq[T ]/(T k) where the bilinear complexity and the trisymmetric bilinear
complexity are different. We can even prove that these quantities are the same in small dimension,
by exhibiting trisymmetric universal formulae, i.e. trisymmetric decompositions that are true for
(almost) any choice of q ≥ 3. In order to obtain such formulae, it is useful to change our point of
view on the problem. Assume we want to compute a trisymmetric decomposition of the product
Φ in A, a commutative algebra of degree k. After the choice of a basis of A and a basis of the
space B of the bilinear forms on A, we can represent

Φ = (π1, . . . , πk)

as a column vector B of length k3. The first k2 coordinates corresponding to π1, the next k2

coordinates corresponding to π2 and so on up to πk. Now, for each a ∈ E , we note

f(a) = a⊗ f(a),

where a is the column vector of length k corresponding to a in the basis of A, f(a) is the
column vector of length k2 corresponding to f(a) ∈ B, and ⊗ is the Kronecker product. With
these notations, finding a trisymmetric decomposition of the product in A is the same as finding
elements a1 . . . , an ∈ E and λ1, . . . , λn ∈ k with

B =

n∑
j=1

λjf(a).

Let A be the matrix which columns are the f(a) for all a ∈ E , then the problem is to find a
solution X of

AX = B

with the smallest possible number of nonzero entries in X.
We first consider the case A = Fq2 over k = Fq, where the characteristic of k is not 2.

Proposition 1. For any odd q we have

µq(2) = µtri
q (2) = 3.

Proof. That µq(2) = 3 follows e.g. from [2, Thm. 2.2]. In order to prove that µtri
q (2) = 3, we find

an universal trisymmetric formula of length 3. We know that we can find a non-square element
ζ in Fq, we can then define

Fq2 ∼= Fq[T ]/(T 2 − ζ) = Fq(α),

4 https://github.com/erou/TriSym.jl

https://github.com/erou/TriSym.jl


where α = T̄ is the canonical generator of Fq2 . Let x = x0 + x1α and y = y0 + y1α be two
elements of Fq2 , we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + ζx1y1 + (x0y1 + x1y0)α.

We can lift the matrix B coming from the multiplication formula, that has coefficients in Fq, to
a matrix with coefficients in Q(ζ), where ζ is an indeterminate. We can also lift the matrix A,
because the map f (and therefore f) has the same expression for all q not divisible by 2. Indeed,
one can check that the map f is given by

f(x0 + x1α) =

(
S

[
x0
x1

])(
S

[
x0
x1

])ᵀ

= 4

[
x20 ζx0x1

ζx0x1 ζ2x21

]
.

where

S =
[〈
αi, αj

〉]
0≤i,j≤1 =

[
Tr(αi+j)

]
0≤i,j≤1 =

[
2 0
0 2ζ

]
.

We can then solve AX = B over Q(ζ) and finally check that

B = (1− ζ−1)4−1f(1) + (8ζ)−1f(1 + α) + (8ζ)−1f(1− α),

so that the trisymmetric bilinear complexity of Fq2/Fq is 3. ut

Using the same strategy, we can also find universal formulae for another type of algebra A =
Fq[T ]/(T k), namely the truncated polynomials. In that context, we first observe that we have

µ̂tri
q (k) ≥ µ̂q(k) ≥ 2k − 1

for all q and k. Indeed this is a special case of [21, Thm. 4], which holds for any polynomial that
is a power of an irreducible polynomial. Conversely we are able to find formulae for 2 ≤ k ≤ 4
that match this lower bound.

Proposition 2. For any odd q we have

µ̂tri
q (2) = 3.

Proof. Let A = Fq[T ]/(T 2) = Fq[α] with α = T̄ , so α2 = 0. If x = x0 + x1α and y = y0 + y1α
are two elements of A, we have

xy = (x0 + x1α)(y0 + y1α) = x0y0 + (x0y1 + x1y0)α.

We can again construct the matrix B and A, and solve AX = B, this time simply over Q. We
obtain

B = −f(1) + 2−1f(1 + α) + 2−1f(1− α)

so that the trisymmetric bilinear complexity of A = Fq[T ]/(T 2) is at least 3, which concludes. ut

Proposition 3. For any q not divisible by 2 nor 3 we have

µ̂tri
q (3) = 5 and µ̂tri

q (4) = 7.

Proof. We use the same notations as before. For A = Fq[T ]/(T 3), we obtain

B = −f(1− α− α2) + 3−1f(α+ 2α2) + 2−1f(1− α− 2α2)− 3−1f(α− α2) + 2−1f(1− α).

Therefore the trisymmetric bilinear complexity of A = Fq[T ]/(T 3) is 5.
Finally, for A = Fq[T ]/(T 4), we obtain

B = 2−1f(1− α2 + α3)− f(1− α2) + 12−1f(α+ 2α2 + 2α3)− 12−1f(α− 2α2 + 2α3)

− 6−1f(α+ α2 − α3) + 6−1f(α− α2 − α3) + 2−1f(1− α2 − α3) · (1− α2 − α3).

The trisymmetric bilinear complexity of A = Fq[T ]/(T 4) is then 7. ut



4 Asymptotic bounds

In this section, we work with A = Fqk or Fq[T ]/(T k), seen as an algebra over k = Fq, and
equipped with the trace-like linear form τ introduced at the end of Section 2. Our aim is to show
that the trisymmetric bilinear complexities µtri

q (k) and µ̂tri
q (k) grow linearly as k →∞. Our proof

will involve higher multilinear maps, and in turn, give results for them as well.
For any t we define the t-multilinear multiplication map in A over k

mt : At → A
(x1, . . . , xt) 7→ x1 · · ·xt

and the t-multilinear trace form

τt = τ ◦mt : At → A
(x1, . . . , xt) 7→ τ(x1 · · ·xt).

If needed, we will write mt
A/k or τtA/k to keep A and k explicit.

The (symmetric) multilinear complexity of mt has been considered in [7] in relation with the
theory of testers.

Lemma 3. The map mt is hypersymmetric, and we have

µhyp(mt) = µsym(τt+1) ≤ µsym(mt+1).

Proof. Indeed we have m̃t = τt+1, and the equality on the left is a special case of Lemma 1. For
the inequality on the right, take a symmetric formula for mt+1 and apply τ . ut

When studying the variation with the degree of the extension field Fqk over Fq, we will

write µsym
q (k,mt) for µsym

(
mt

F
qk
/Fq
)
, and we will also use the similar notations µhyp

q (k,mt),
µsym
q (k, τt), etc. In particular for t = 2 we have

µtri
q (k) = µtri

q (k,m2) = µsym
q (k, τ3).

When working in Fq[T ]/(T k) over Fq, we will write likewise µ̂sym
q (k,mt), µ̂

hyp
q (k,mt), etc.

Our aim is, for fixed q and t with q ≥ t + 1, to show that µhyp
q (k,mt) and µ̂hyp

q (k,mt)
grow linearly with k → ∞. Thanks to Lemma 3, it suffices to show that µsym

q (k,mt+1) and
µ̂sym
q (k,mt+1) grow linearly with k →∞. To ease notations we will set

M sym
q,t = lim sup

k→∞

1

k
µsym
q (k,mt), Mhyp

q,t = lim sup
k→∞

1

k
µhyp
q (k,mt),

M tri
q = lim sup

k→∞

1

k
µtri
q (k) = Mhyp

q,2 ,

and likewise for M̂ sym
q,t , M̂hyp

q,t , M̂ tri
q , etc.

Evaluation-interpolation method. We use the function field terminology and notations pre-
sented in [18]. Let F/Fq be an algebraic function field of one variable over Fq and let PF be the
set of places of F . Let DF the set of divisors on F , and if D ∈ DF is a divisor on F , we denote
by L(D) its Riemann-Roch space and `(D) = dimL(D).

Proposition 4. Assume there exist a place Q ∈ PF of F of degree k, P1, . . . , Pn ∈ PF places of
F of degree 1, and a divisor D ∈ DF of F such that the places Q and P1, . . . , Pn are not in the
support of D and such that the following conditions hold.



(i) The evaluation map
evQ,D : L(D)→ Fqk

f 7→ f(Q)

is surjective.
(ii) The evaluation map

evP,tD : L(tD)→ (Fq)n
h 7→ (h(P1), . . . , h(Pn))

is injective.

Then mt
F
qk
/Fq admits a symmetric formula of length n, i.e. we have µsym

q (k,mt) ≤ n.

Proof. Since the map evQ,D is surjective, it admits a right inverse, i.e. a linear map s : Fqk →
L(D) such that evQ,D ◦s = IdF

qk
. For all x ∈ Fqk , we denote s(x) ∈ L(D) by fx, so the map

x 7→ fx is linear, and fx(Q) = x. We also let

a : Fqk → (Fq)n
x 7→ (fx(P1), . . . , fx(Pn))

be the composite map a = evP,D ◦s. The situation is sumed up in the following drawing.

L(D)

Fqk (Fq)n

s

evQ,D

evP,D

a

Observe that a is linear, so we can write

a(x) = (ϕ1(x), . . . , ϕn(x))

where ϕi : Fqk → Fq is a linear form, namely ϕi(x) = fx(Pi).
Similarly, since the map evP,tD is injective, it admits a left inverse, i.e. a linear map r :

(Fq)n → L(tD) such that r ◦ evP,tD = IdL(tD). We also let b : (Fq)n → Fqk be the composite map
b = evQ,tD ◦r. The situation is sumed up in the following drawing.

L(tD)

Fqk (Fq)n
evP,tD

r

evQ,tD

b

The map b is linear, so there are b1, . . . , bn in Fqk such that, for all y = (y1, . . . , yn) ∈ (Fq)n,

b(y) =

n∑
i=1

yibi.



Now for x, . . . , xt ∈ Fqk , let

p = (p1, . . . , pn) = ((
t∏

j=1

fxj )(P1), . . . , (
t∏

j=1

fxj )(Pn))

in (Fq)n be the coordinatewise product of the vectors a(x1), ..., a(xt). Then

h = r(p)

is an element of L(tD) such that h(Pi) = pi = (
∏t
j=1 fxj )(Pi) for all i. Since the map evP,tD is

injective, this forces

h =
t∏

j=1

fxj .

Then, we have

b(p) = evQ,tD(r(p)) = evQ,tD(h) = h(Q) =

t∏
j=1

fxj (Q) =

t∏
j=1

xj .

But we also have

b(p) =
n∑
i=1

pibi =
n∑
i=1

(
t∏

j=1

fxj (Pi))bi =
n∑
i=1

(
t∏

j=1

ϕi(xj))bi

and finally we get a symmetric formula for mt:

t∏
j=1

xj =
n∑
i=1

(
t∏

j=1

ϕi(xj))bi.

ut

Proposition 5. Let F/Fq be an algebraic function field of genus g. Assume that F admits a
place Q of degree k, and a set S of places of degree 1 of cardinality

|S| ≥ (k + g − 1)t+ 1.

Then we have
µsym
q (k,mt) ≤ kt+ (g − 1)(t− 1).

Proof. Set n = kt + (g − 1)(t − 1). We will show that there are places P1, . . . , Pn in S, and a
divisor D on F , such that Proposition 4 applies, which gives µsym

q (k,mt) ≤ n as desired.
Using e.g. [3, Lemma 2.1] we know F admits a non-special divisor R of degree g − 1. By the

strong approximation theorem [18, Thm. 1.6.5] we can then find a divisor D linearly equivalent
to R+Q and of support disjoint from Q and S.

Then D −Q and D are non-special, with `(D −Q) = 0 and `(D) = k. We thus find

Ker(evQ,D : L(D)→ Fqk) = L(D −Q) = 0,

so evQ,D is injective, hence also surjective by equality of dimensions, i.e. the surjectivity condi-
tion (i) in Proposition 4 is satisfied.



Likewise, tD is non-special, with deg(tD) = (k + g − 1)t and `(tD) = kt + (g − 1)(t − 1).
Then the evaluation map

evS,tD : L(tD)→ (Fq)|S|
h 7→ (h(P ))P∈S

has kernel L(tD−
∑

P∈S P ) = 0, because deg(tD−
∑

P∈S P ) = (k+ g− 1)t− |S| < 0. So evS,tD
is injective, with image of dimension dim Im(evS,tD) = `(tD) = n. Then we can find a subset
P = {P1, . . . , Pn} ⊂ S of cardinality n, such that evP,tD : L(tD) → (Fq)n is an isomorphism,
and the injectivity condition (ii) in Proposition 4 is also satisfied. ut

Choice of the curves for q a large enough square.

Proposition 6. Let t be given, and assume q is a square, q ≥ (t+ 2)2. Then we have

M sym
q,t ≤ (1 + εt(q))t

with εt(q) = t−1√
q−t−1 .

Proof. We know [17] that there exists a family of function fields Fi/Fq of genus gi → ∞ such
that

(i) gi+1

gi
→ 1

(ii) Ni ∼ (
√
q − 1)gi

where Ni = Card {P ∈ PFi | degP = 1} is the number of places of degree 1 of Fi. We can also
assume that the sequence gi is increasing.

For any k let i(k) be the smallest index such that

Ni(k) ≥ (k + gi(k) − 1)t+ 1.

Such an i(k) always exists since by (ii) we have Ni ∼ (
√
q − 1)gi, with

√
q − 1 > t.

By definition we thus have

Ni(k) ≥ (k + gi(k) − 1)t+ 1 > (k + gi(k)−1 − 1)t+ 1 > Ni(k)−1.

As k → ∞ we have i(k) → ∞, and by (i) we get gi(k) ∼ gi(k)−1, so by (ii) we also get Ni(k) ∼
Ni(k)−1. This then gives

Ni(k) ∼ (k + gi(k) − 1)t+ 1

∼ (k + gi(k))t

while by (ii),
Ni(k) ∼ (

√
q − 1)gi(k).

From these two relations we deduce

gi(k) ∼
t

√
q − 1− t

k.

For k large enough this implies in particular 2gi(k) +1 ≤ q(k−1)/2(√q−1), so Fi(k) admits a place
of degree k by [18, Cor. 5.2.10].

From this we are allowed to apply Proposition 5 to Fi(k), which gives

µsym
q (k,mt) ≤ kt+ (gi(k) − 1)(t− 1) ∼ kt+ gi(k)(t− 1) ∼ kt(1 + εt(q))

as desired. ut



Corollary 1. For q a square, q ≥ (t+ 3)2 we have

Mhyp
q,t ≤ (1 + εt+1(q))(t+ 1),

and in particular we have

M tri
q ≤ 3

(
1 +

2
√
q − 4

)
for q a square, q ≥ 25.

Conclusion for arbitrary q.

Lemma 4. Let q be a prime power. Then for any integers t, d, k we have

µsym
q (k,mt) ≤ µsym

q (dk,mt) ≤ µsym
q (d,mt)µ

sym
qd

(k,mt).

Proof. For the inequality on the left, there is nothing to prove if µsym
q (dk,mt) = ∞. So let us

assume m
F
qdk

/Fq
t admits a symmetric multiplication formula of length n = µsym

q (dk,mt), i.e.

∀x1, . . . , xt ∈ Fqdk , x1 · · ·xt =
n∑
i=1

ϕi(x1) · · ·ϕi(xt)ai

for linear forms ϕi : Fqdk → Fq and elements ai ∈ Fqdk . Choose a linear projection

p : Fqdk → Fqk

left inverse for the inclusion Fqk ⊆ Fqdk . Then we get

∀x1, . . . , xt ∈ Fqk , x1 · · ·xt = p(x1, . . . , xt) =
n∑
i=1

ϕi(x1) · · ·ϕi(xt)p(ai)

which is a symmetric multiplication formula of length n for m
F
qk
/Fq

t .
Likewise, for the inequality on the right, there is nothing to prove if µsym

q (d,mt) = ∞ or

µsym
qd

(k,mt) = ∞. So let us assume m
F
qd
/Fq

t and m
F
qdk

/F
qd

t admit symmetric multiplication for-
mulae of length r = µsym

q (d,mt) and s = µsym
qd

(k,mt) respectively, so

∀y1, . . . , yt ∈ Fqd , y1 · · · yt =

r∑
u=1

ψu(y1) · · ·ψu(yt)bu

∀z1, . . . , zt ∈ Fqdk , z1 · · · zt =

s∑
v=1

χv(z1) · · ·χv(zt)cv

for linear forms ψu : Fqd → Fq, χv : Fqdk → Fqd and elements bu ∈ Fqd , cv ∈ Fqdk . Then setting
y1 = χv(z1), ..., yt = χv(zt) we find

∀z1, . . . , zt ∈ Fqdk , z1 · · · zt =
s∑

v=1

r∑
u=1

(ψu ◦ χv)(z1) · · · (ψu ◦ χv)(zt) · (bucv)

which is a symmetric multiplication formula of length rs for m
F
qdk

/Fq
t . ut



Theorem 2. Let t ≥ 2 be an integer and q a prime power. If q < t, then µsym
q (k,mt) = ∞ for

all k ≥ 2.
On the other hand, if q ≥ t, then µsym

q (k,mt) grows at most linearly with k, i.e. we have

M sym
q,t ≤ Ct(q)

for some real constant Ct(q) <∞.

Proof. If q < t and k ≥ 2, then µsym
q (k,mt) =∞ follows from Theorem 1.

On the other hand, for q ≥ t, we have µsym
q (d,mt) <∞ for any integer d. Choose d such that

qd is a square, qd ≥ (t + 2)2. Then Proposition 6 shows µsym
qd

(k,mt) grows linearly with k. The
Theorem then follows thanks to Lemma 4, with Ct(q) = µsym

q (d,mt)(1 + εt(q
d))t. ut

Corollary 2. For q ≥ t+ 1 we have

Mhyp
q,t ≤ Ct+1(q)

and in particular for q ≥ 3 we have
M tri
q ≤ C3(q).

Further remarks and possible improvements.

1. When q ≥ 4 is not divisible by 3, [16, Thm. 2] gives µtri
q (k) ≤ 4µsym

q (k). On the other hand,
[9] shows that µsym

q (k) grows linearly with k (the result is stated for µq(k), but it is easily
seen that the proof works for µsym

q (k)). Taken together, these results show that µtri
q (k) grows

linearly with k when q ≥ 4 is not divisible by 3. One advantage of our method is that it
works for all q ≥ 3. Moreover it gives sharper bounds. For instance, when q is a square and
large enough, joining [16, Thm. 2] with the best asymptotic upper bound known on µsym

q (k)

[12, Thm. 6.4] gives M tri
q ≤ 8

(
1 + 1√

q−2

)
, which is not as good as M tri

q ≤ 3
(

1 + 2√
q−4

)
from

Corollary 1.
2. Open question: Lemma 3 reduces (upper) bounds on µhyp(mt) to bounds on µsym(mt+1), and

in particular it reduces bounds on M tri
q to bounds on Mhyp

q,3 , which does not seem optimal.
Indeed we know no example where the inequality µsym

q (k) ≤ µtri
q (k) is strict. So, for instance

for q square, q → ∞, our method gives M tri
q ≤ 3(1 + o(1)), but one could ask whether it is

possible to get a bound of the form M tri
q ≤ 2(1 + o(1)), as given by [12, Thm. 6.4] for M sym

q .
3. Open question: The condition |S| ≥ (k + g − 1)t+ 1 in Proposition 5 does not seem optimal

since in the end we do evaluation-interpolation at only kt + (g − 1)(t − 1) places. If one
could relax this condition to |S| ≥ kt + (g − 1)(t − 1), this would improve Proposition 6 to
M sym
q,t ≤ (1 + ε′t(q))t for q square, q ≥ (t + 1)2, with ε′t(q) = t−1√

q−t . For t = 2 this is done in
[12,15] using techniques from [13]. However, as observed at the end of [13], a generalization
to t ≥ 3 would require new arguments.

4. Lemma 4, which generalizes [17, Lemma 1.2], is clearly not optimal. When deriving upper
bounds on µsym

q (k,mt) for non-square q, it might be better to use evaluation-interpolation
at places of higher degree, as first introduced in [4], and further developped e.g. in [8,12]. To
do this in an optimal way one needs function fields Fi defined over Fq, of genus gi → ∞,
with gi+1

gi
→ 1 and N

(d)
i ∼ qd/2−1

d gi where N
(d)
i is the number of places of degree d in Fi,

for a convenient d. This improves the bound on M sym
q,t by a factor 1

d . The existence of these
function fields was first claimed in [8], but unfortunately with an incorrect proof. A corrected
construction, based on Drinfeld modular curves, will be found in [6].



5. All our bounds for multiplication in extension fields also hold for truncated polynomials. For
instance we have M̂ sym

q,t ≤ (1 + εt(q))t for q square, q ≥ (t + 2)2, and M̂ sym
q,t ≤ Ct(q) for

all q ≥ t. This requires only minor changes in our constructions. In Proposition 4, instead
of evaluation at a place Q of degree k, one uses evaluation at order k at an extra place P0

of degree 1. Likewise in Proposition 5, one needs one more place of degree 1, but one does
not need Q (then the proof of Proposition 6 is slightly simplified since one does not need to
invoke [18, Cor. 5.2.10] anymore).
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