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Trisymmetric Multiplication Formulae in Finite Fields

Multiplication is an expensive arithmetic operation, therefore there has been extensive research to find Karatsuba-like formulae reducing the number of multiplications involved when computing a bilinear map. The minimal number of multiplications in such formulae is called the bilinear complexity, and it is also of theoretical interest to asymptotically understand it. Moreover, when the bilinear maps admit some kind of invariance, it is also desirable to find formulae keeping the same invariance. In this work, we study trisymmetric, hypersymmetric, and Galois invariant multiplication formulae over finite fields, and we give an algorithm to find such formulae. We also generalize the result that the bilinear complexity and symmetric bilinear complexity of the twovariable multiplication in an extension field are linear in the degree of the extension, to trisymmetric bilinear complexity, and to the complexity of t-variable multiplication for any t ≥ 3.

Introduction

Given an algorithm that computes a polynomial map over a field k (or a family of such polynomial maps, with entries of length going to infinity), one is usually interested in the (asymptotic) cost of the algorithm. In order to understand this cost, one studies the complexity of the algorithm, i.e. the number of operations needed by the algorithm. We can for example count the number of bit operations, or the number of algebraic operations (+, ×) in k. The latter is called the algebraic complexity and in this model it is supposed that all algebraic operations have the same cost. Nevertheless, multiplication of two variable quantities in k is arguably more expensive than addition, or than multiplication of a variable by a fixed constant. In the context of the computation of bilinear maps, extensive work has been done to reduce the number of twovariable multiplications involved. Notable examples are Karatsuba's algorithm [START_REF] Karatsuba | Multiplication of multidigit numbers on automata[END_REF] and Strassen's algorithm [START_REF] Volker Strassen | Gaussian elimination is not optimal[END_REF]. Karatsuba's algorithm is based on the fact that the bilinear map associated to the product of two polynomials of degree 1 A = a 1 X + a 0 and B = b 1 X + b 0 can be computed with three products a 0 b 0 , (a 0 + a 1 )(b 0 + b 1 ), a 1 b 1 instead of the four classic ones a 0 b 0 , a 0 b 1 , a 1 b 0 , a 1 b 1 . Strassen's algorithm exploits a similar idea in the case of 2×2 matrices: only 7 products are used instead of 8 in order to compute a matrix product. Both these algorithms have very practical consequences. The bilinear complexity µ(Φ) of a bilinear map Φ over k represents the minimum number of two-variable multiplications in a formula that computes Φ, discarding the cost of other operations such as addition or multiplication by a constant. In particular when A is a finite dimensional algebra over k, we define the bilinear complexity of A as µ(A/k) = µ(m A ) where m A : A × A → A is the multiplication map in A seen as a k-bilinear map.

Let k 2×2 be the algebra of 2 × 2 matrices over k. We know thanks to Strassen's algorithm that µ(k 2×2 /k) ≤ 7.

In fact, this is optimal, so we have exactly µ(k 2×2 /k) = 7 [START_REF] Winograd | On multiplication of 2 × 2 matrices[END_REF]Thm. 3.1]. In general, it seems to be hard to find the bilinear complexity of a given algebra, for example the bilinear complexity of k 3×3 is not known. In the litterature, work has been done both to algorithmically find the bilinear complexity of small algebras [START_REF] Barbulescu | Finding optimal formulae for bilinear maps[END_REF][START_REF] Covanov | Improved method for finding optimal formulas for bilinear maps in a finite field[END_REF] and to understand how the bilinear complexity asymptotically grows [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF][START_REF] Ballet | On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry[END_REF]. Chudnovsky and Chudnovsky proved in 1988 that the bilinear complexity of an extension field F q k /F q is linear in the degree k of the extension, using an evaluation-interpolation method on curves. As the main contribution of this article, we investigate both questions for trisymmetric bilinear complexity, and solve a certain number of the open problems stated in [2, §5.2]. When a bilinear map admits certain invariance properties, it can be interesting, both for theoretical and for practical reasons, to find formulae for it that exhibit these same properties. For symmetric bilinear maps, and in particular for commutative algebras, this leads to the notion of symmetric bilinear complexity. A further refinement, the trisymmetric bilinear complexity of F q k over F q , was first introduced in [START_REF] Seroussi | On symmetric algorithms for bilinear forms over finite fields[END_REF], and rediscovered independently in [14, App. A].

In Section 2 we recall the definition of symmetric and trisymmetric formulae, and discuss further generalizations such as hypersymmetric formulae for higher multilinear maps, and Galoisinvariant formulae. In Section 3 we describe algorithms to compute trisymmetric decompositions in small dimension. In all examples we were able to compute, the trisymmetric bilinear complexity is equal to the symmetric bilinear complexity. However we found an example where the Galoisinvariant trisymmetric bilinear complexity is strictly larger. Finally, in Section 4, we prove that for all q ≥ 3, the trisymmetric bilinear complexity of an extension of F q is again linear in the degree, as well as similar results for higher multiplication maps.

Multiplication formulae with symmetries

Although we are mainly interested in bilinear multiplication formulae, the notions we will consider naturally involve higher multilinear maps.

Multilinear complexity. Let

Φ : V 1 × • • • × V t →
W be a t-multilinear map between finite dimensional vector spaces over k. A multilinear algorithm, or multilinear decomposition, or multilinear formula of length n for Φ is a collection of linear forms (ϕ

(j) i ) 1≤i≤n 1≤j≤t
, where ϕ (j) i is in V ∨ j , the dual vector space of V j , and elements (w i ) 1≤i≤n in W , such that for all v 1 , . . . , v t we have

Φ(v 1 , . . . , v t ) = n i=1 ϕ (1) i (v 1 ) • • • ϕ (t) i (v t )w i .
The multilinear complexity µ(Φ) is then defined as the smallest length n of such a decomposition. Equivalently, it is the rank of the tensor in

V ∨ 1 ⊗ • • • ⊗ V ∨ t ⊗ W corresponding to Φ. Symmetric multilinear complexity. When V 1 = • • • = V t = V
and Φ is a symmetric multilinear map, it is natural to search for symmetric multilinear decompositions, i.e. formulae of the form

Φ(v 1 , . . . , v t ) = n i=1 ϕ i (v 1 ) • • • ϕ i (v t )w i with ϕ (1) i = • • • = ϕ (t) i = ϕ i ∈ V ∨ for all i.
It is more space-efficient, since symmetric formulae admit a shorter description. From an algorithmic point of view, it should also be simpler to find symmetric formulae, because the search space is smaller. We define µ sym (Φ), the symmetric multilinear complexity of Φ, as the minimal length n of such a symmetric decomposition, if it exists (otherwise we set µ sym (Φ) = ∞).

In the case t = 2, a symmetric bilinear map always admits a symmetric decomposition. However, when t ≥ 3 and k = F q is a finite field, this can fail. When t = 3 and q > 2, it is shown in [START_REF] Seroussi | On symmetric algorithms for bilinear forms over finite fields[END_REF]Lemma 7] that a symmetric trilinear map Φ over F q always admits a symmetric algorithm, while in the remaining case t = 3 and q = 2, as observed by Cascudo, a necessary condition is that Φ should satisfy Φ(x, x, y) = Φ(x, y, y) for all entries x, y. These results were then combined and generalized into the following necessary and sufficient criterion:

Theorem 1 ([14, Thm. A.7]). Let Φ : V t → W be a t-multilinear map between finite dimensional vector spaces over F q . Then Φ admits a symmetric decomposition if and only if Φ is Frobenius-symmetric, i.e. if and only if it is symmetric and one of the following two conditions holds:

t ≤ q t ≥ q + 1 and for all u, v, z 1 , . . . , z t-q-1 in V , Φ(u, . . . , u q times , v, z 1 , . . . , z t-q-1 ) = Φ(u, v, . . . , v q times , z 1 , . . . , z t-q-1 ).

Observe that this criterion involves the cardinality of the field, not its characteristic.

Trisymmetric and hypersymmetric complexity. Now suppose furthermore that V = W , and that this space is equipped with a non-degenerate symmetric bilinear form, written as a scalar product

V × V → k (v, w) → v, w .
This allows to identify V and V ∨ , i.e. any linear form ϕ ∈ V ∨ is of the form ϕ(x) = a, x for a uniquely determined a ∈ V . As a consequence, a symmetric decomposition for Φ : V t → V can also be described as the data of elements (a i ) 1≤i≤n and (b i ) 1≤i≤n in V such that for all v 1 , . . . , v t in V , we have

Φ(v 1 , . . . , v t ) = n i=1 a i , v 1 • • • a i , v t b i .
In order to have an even more compact description, one could ask for b i to be proportional to a i , leading to the following: Definition 1. Let V be a finite dimensional k-vector space equipped with a scalar product, and Φ : V t → V a symmetric t-multilinear map. Then a hypersymmetric formula for Φ is the data of elements (a i ) 1≤i≤n in V and scalars

(λ i ) 1≤i≤n in k such that, for all v 1 , . . . , v t ∈ V , Φ(v 1 , . . . , v t ) = n i=1 λ i a i , v 1 • • • a i , v t a i .
The hypersymmetric complexity µ hyp (Φ) is then the minimal length n of such a hypersymmetric decomposition, if it exists. Obviously we always have µ sym (Φ) ≤ µ hyp (Φ).

When t = 2, we will say trisymmetric for hypersymmetric, and write µ tri (Φ) for µ hyp (Φ).

As a further motivation, observe that to any t-multilinear map Φ : V t → V one can associate a (t + 1)-multilinear form Φ : V t+1 → k, defined by

Φ(v 1 , . . . , v t , v t+1 ) = Φ(v 1 , . . . , v t ), v t+1 .
We then say that Φ is hypersymmetric (as a t-multilinear map) if Φ is symmetric (as a (t + 1)multilinear form). It is easily seen that Φ hypersymmetric is a necessary condition for it to admit a hypersymmetric decomposition, and more precisely:

Lemma 1. Elements (a i ) 1≤i≤n in V and scalars (λ i ) 1≤i≤n in k define a hypersymmetric formula for the t-multilinear map Φ,

Φ(v 1 , . . . , v t ) = n i=1 λ i a i , v 1 • • • a i , v t a i ,
if and only if they define a symmetric formula for the (t + 1)-multilinear form Φ,

Φ(v 1 , . . . , v s , v t+1 ) = n i=1 λ i a i , v 1 • • • a i , v t a i , v t+1 .
Thus, Φ admits a hypersymmetric formula if and only if Φ is Frobenius-symmetric (in the sense of Theorem 1), and we have

µ hyp (Φ) = µ sym Φ .
In particular, if q ≥ t + 1, then any hypersymmetric t-multilinear map over F q admits a hypersymmetric formula.

Proof. For the only if part in the first assertion, take scalar product with v t+1 . For the if part, use the fact that the scalar product is non-degenerate. The other assertions follow.

Galois invariance. Last we consider another type of symmetry. Let σ : v → v σ be a k-linear automorphism of V that respects the scalar product: v σ , w σ = v, w for all v, w in V . Lemma 2. Let Φ : V t → V be a symmetric t-multilinear map that is compatible with σ, i.e.

Φ(v σ 1 , . . . , v σ t ) = Φ(v 1 , . . . , v t ) σ
for all v 1 , . . . , v t in V , and let (a i ) 1≤i≤n and (b i ) 1≤i≤n in V define a symmetric formula for Φ,

Φ(v 1 , . . . , v t ) = n i=1 a i , v 1 • • • a i , v t b i .
Then (a σ i ) 1≤i≤n and (b σ i ) 1≤i≤n also define a symmetric formula for Φ,

Φ(v 1 , . . . , v t ) = n i=1 a σ i , v 1 • • • a σ i , v t b σ i . Proof. Write Φ(v 1 , . . . , v t ) = Φ(v σ -1 1 , . . . , v σ -1 t
) σ and apply the formula.

We then say that the symmetric formula given by (a i ) 1≤i≤n and (b i ) 1≤i≤n is σ-invariant if it is the same as the formula given by (a σ i ) 1≤i≤n and (b σ i ) 1≤i≤n , i.e. if there is a permutation π of {1, . . . , n} such that

(a σ i , b σ i ) = (a π(i) , b π(i)
) for all i. This applies also to hypersymmetric formulae, setting b i = λ i a i .

If G is a group of k-linear automorphisms of V that respect the scalar product, and if Φ : V t → V is a symmetric t-multilinear map that is compatible with all elements in G, we then define µ sym,G (Φ) (resp. µ hyp,G (Φ)), the G-invariant symmetric (resp. hypersymmetric) multilinear complexity of Φ, as the minimal length n of a symmetric (resp. hypersymmetric) multilinear formula for Φ that is G-invariant, i.e. σ-invariant for all σ in G.

Multiplication formulae in algebras. Let A be a finite dimensional commutative algebra over k. We say a linear form τ : A → k is trace-like if the symmetric bilinear form A × A → k, (x, y) → τ (xy) is non-degenerate. If so, we set x, y = τ (xy), which defines a scalar product on A. In this work we will take k = F q , and either:

-A = F q k a finite field extension, and τ = Tr F q k /Fq the usual trace map; indeed it is well known that the trace bilinear form x, y = Tr F q k /Fq (xy) is non-degenerate

-A = F q [T ]/(T k
) an algebra of truncated polynomials, and τ defined by

τ (x) = x k-1 for x = x 0 + x 1 T + • • • + x k-1 T k-1 in A; indeed, observe that for x = x 0 + x 1 T + • • • + x k-1 T k-1 , y = y 0 + y 1 T + • • • + y k-1 T k-1 , we then have x, y = τ (xy) = x 0 y k-1 + x 1 y k-2 + • • • + x k-1 y 0 , which is non-degenerate.
Let Φ : A × A → A be the multiplication map, Φ(x, y) = xy. It is easily seen that Φ is trisymmetric. Indeed Φ is the trilinear form x, y, z → τ (xyz), which is symmetric. A symmetric bilinear multiplication formula for A is thus the data of (a i ) 1≤i≤n in A and

(ϕ i ) 1≤i≤n in A ∨ such that ∀x, y ∈ A, xy = n i=1 ϕ i (x)ϕ i (y)a i , (1) 
and a trisymmetric formula is the data of (a i ) 1≤i≤n in A and

(λ i ) 1≤i≤n in F q such that ∀x, y ∈ A, xy = n i=1 λ i a i , x a i , y a i . (2) 
We will write µ q (k) (resp. μq (k)) for the bilinear complexity of multiplication in F q k (resp. in

F q [T ]/(T k
)) over F q , and we will write likewise µ sym q (k), μsym q (k), µ tri q (k), μtri q (k), µ sym,G q (k), μsym,G q (k), µ tri,G q (k), μtri,G q (k), etc. for the similar quantities with the corresponding symmetry conditions.

For q ≥ 3 we have µ tri q (k) < ∞ and μtri q (k) < ∞ for all k, while for q = 2 we have

µ tri 2 (1) = μtri 2 (1) = 1 and µ tri 2 (2) = 3, but µ tri 2 (k) = ∞ for k ≥ 3 and μtri 2 (k) = ∞ for k ≥ 2.
This follows essentially from Theorem 1 and Lemma 1 (see also [START_REF] Randriambololona | On products and powers of linear codes under componentwise multiplication[END_REF]Prop. A.14]).

Obviously we have µ q (k) ≤ µ sym q (k) ≤ µ tri q (k) and μq (k) ≤ μsym q (k) ≤ μtri q (k) for all q and k. But when all these quantities are finite, e.g. when q ≥ 3, no example of strict inequality is known.

In the other direction, when q ≥ 4 is not divisible by 3, [16, Thm. 2] gives µ tri q (k) ≤ 4µ sym q (k) and μtri q (k) ≤ 4μ sym q (k). This allows to translate the many known upper bounds on symmetric complexity [START_REF] Ballet | On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry[END_REF] into upper bounds on trisymmetric complexity. However the resulting upper bounds do not seem to be tight, so it would be desirable to have better estimates, and especially upper bounds that work also for q divisible by 3.

Finding trisymmetric decompositions

Algorithmic search. Barbulescu et al. [START_REF] Barbulescu | Finding optimal formulae for bilinear maps[END_REF] and later Covanov [START_REF] Covanov | Improved method for finding optimal formulas for bilinear maps in a finite field[END_REF] found clever ways of exhaustively searching for formulae for (symmetric) bilinear maps. Their method eliminates redundancy in the search but strongly relies on the fact that the vectors a i ∈ A in the symmetric formulae (1) can be chosen independently of the linear forms ϕ i ∈ A ∨ , which is no longer the case when searching for trisymmetric decompositions. For this reason, we use another method that is once again a variant of an exhaustive search and thus still leads to an exponential complexity algorithm. Let Φ be the two-variable product in A. Recall that we are looking for a trisymmetric decomposition:

∀x, y ∈ A, Φ(x, y) = xy = n i=1 λ i x, a i y, a i a i ,
with a i ∈ A and λ i ∈ k for all 1 ≤ i ≤ n. Because we are allowed to use scalars λ i ∈ k, we can limit our search to "normalized" elements in A, as follows. Choose a basis of A, which gives an identification A k k as vector spaces. Then for all 1 ≤ i ≤ k, let

E i = x = (x 1 , . . . , x k ) ∈ A k k | ∀j ≤ i -1, x j = 0 and x i = 1 and E = k i=1 E i .
We search for elements a i in E instead of A. We further use the vector space structure of A by searching for solutions on each coordinate. Let

xy = (π 1 (x, y), . . . , π k (x, y)) ∈ A k k ,
where, for all 1 ≤ i ≤ k, π i is the bilinear form corresponding to the i-th coordinate of the product in F p k . In other words, Φ = (π 1 , . . . , π k ).

We let B be the space of bilinear forms on A and we let f be the application mapping an element in A to its associated bilinear symmetric form:

f : A → B a → (x, y) → x, a y, a .
We then search for elements a 1 , . . . , a n 1 in E 1 and λ 1 , . . . , λ n 1 in k such that

π 1 = n 1 j=1 λ j f (a j ), (3) 
and we obtain

Φ - n 1 j=1 λ j f (a j )a j = (0, π 2 , . . . , π k ),
where for 2 ≤ i ≤ k, π i is some other bilinear form. We then continue the operation with π 2 and elements a n 1 +1 , . . . , a n 2 in E 2 , then with π 3 and elements in E 3 , and so on. In the end, we have n elements a 1 , . . . , a n ∈ E and λ 1 , . . . , λ n ∈ k such that

Φ = n j=1 λ j f (a j )a j .
Now, there is left to see how we compute the elements a 1 , . . . , a n 1 ∈ E 1 and λ 1 , . . . , λ n 1 ∈ k in order to obtain [START_REF] Ballet | Curves with many points and multiplication complexity in any extension of Fq[END_REF]. Let r 1 be the rank of π 1 . We know that the number n 1 of elements in E 1 such that we have (3) is at least r 1 , but there also exist some trisymmetric decompositions where we need more than r 1 elements. To find these elements, we search through elements a 1 ∈ E 1 such that there exists λ 1 ∈ k with rank(π 1 -λ 1 f (a 1 )) < rank(π 1 ), then, for each such a 1 ∈ E 1 , we search through elements a 2 ∈ E 1 such that there exists λ 2 with

rank(π 1 -λ 1 f (a 1 ) -λ 2 f (a 2 )) < rank(π 1 -λ 1 f (a 1 )),
and so on, eliminating a lot of unsuitable elements along the way. This method allows us to find decompositions of π 1 into a sum of exactly r 1 bilinear forms of rank 1. In order to find decompositions containing r 1 + m 1 bilinear forms, we repeat the same process, except that we allow the rank not to decrease m 1 times. Let m j be the number of times we allow the rank not to decrease when dealing with the j-th coordinate in the algorithm. We let M = (m 1 , . . . , m k ) and we call margin this k-tuple. This strategy was implemented in the Julia programming language [START_REF]Julia : a high-level, high-performance dynamic language for technical computing[END_REF] and a package searching for trisymmetric decompositions is available online 4 , along with the source code. This allowed us to compute µ tri 3 (3) = 6, µ tri p (3) = 5 for all primes 5 ≤ p ≤ 257, µ tri 3 (4) = 9, µ tri 5 (4) = 8, and µ tri p (4) = 7 for all primes 7 ≤ p ≤ 23. Details about the computation can be found in Table 1, while examples of formulae obtained via our algorithm are given in Table 2 (actually the formulae in this table are normalized in the sense of [14, Def. A.16], i.e. they satisfy all λ i = 1). 1.1 F 47 3 (0, 0, 0) 7590 5 360 Table 1. Algorithmic results with various degrees, base fields and margins.

Field Margin Solutions Length Time (s) Field Margin Solutions Length Time (s)

Galois invariant formulae. Let A = F q k and G be the cyclic group generated by σ, the Frobenius automorphism over F q . In order to find G-invariant decompositions, we exhaustively search through orbits in F q k , which is fast because the search space is smaller. This allows us to find Galois invariant trisymmetric formulae of length 11 for F 3 5 , and of length 10 for F 5 5 and F 7 5 . Joint with the obvious inequalities µ q (k) ≤ µ sym q (k) ≤ µ tri q (k) ≤ µ tri,G q (k) and with known lower bounds from [2, Thm. 2.2] and [START_REF] Barbulescu | Finding optimal formulae for bilinear maps[END_REF], this gives 10

≤ µ 3 (5) ≤ µ sym 3 (5) = µ tri 3 (5) = µ tri,G 3 (5) = 11, µ 5 (5) = µ sym 5 (5) = µ tri 5 (5) = µ tri,G 5 
(5) = 10, and

µ 7 (5) = µ sym 7 (5) = µ tri 7 (5) = µ tri,G 7 
(5) = 10. Some examples of Galois invariant formulae can be found in Table 2.

For q ≥ 3 we know no example where one of the inequalities in µ q (k) ≤ µ sym q (k) ≤ µ tri q (k) is strict. However, it turns out that the inequality with µ tri,G q (k) can be strict. Indeed, let q = 3 and k = 7. In this setting our exhaustive search found no G-invariant decomposition of length up to 15. Since all orbits are of length 7, except the trivial orbit of length 1, the minimal length for a G-invariant decomposition is congruent to 0 or 1 modulo 7, so we deduce that it is at least 21. Furthermore, we know [2, table 2] that µ sym 3 (7) ≤ 19, so we have

µ 3 (7) ≤ µ sym 3 (7) ≤ 19 < 21 ≤ µ tri,G 3 (7).
Field n Field elements a1, . . . , an such that xy = n i=1 ai, x ai, y ai 2. Examples of trisymmetric multiplication formulae (the first three are Galois invariant).

F 3 3 = F3[α]/(α 3 -α+1) 6 a1 = α, a2 = a σ 1 , a3 = a σ 2 , a4 = 1-α 2 , a5 = a σ 4 , a6 = a σ 5 F 3 4 = F3[α]/(α 4 -α 3 -1) 9 a1 = -1, a2 = -α, a3 = a σ 2 , a4 = a σ 3 , a5 = a σ 4 , a6 = α 2 +α+1, a7 = a σ 6 , a8 = a σ 7 , a9 = a σ 8 F 3 5 = F3[α]/(α 5 -α+1) 11 a1 = 1, a2 = α-1, a3 = a σ 2 , a4 = a σ 3 , a5 = a σ 4 , a6 = a σ 5 , a7 = 1-α-α 2 , a8 = a σ 7 , a9 = a σ 8 , a10 = a σ 9 , a11 = a σ 10 F 5 3 = F5[α]/(α 3 +3α+3) 5 a1 = 3α+2, a2 = -α 2 -α-1, a3 = 3α 2 +2α+2, a4 = -α, a5 = 3α 2 +2α F 5 4 = 8 a1 = -1, a2 = 3α 2 +3α+3, a3 = 3α 3 -α 2 +2α-1, a4 = 2α 3 -α 2 -α+1, F5[α]/(α 4 -α 2 -α+2) a5 = α, a6 = -α 2 +α, a7 = α 3 +α 2 +α, a8 = α 3 +α 2 Table
Universal formulae. As mentioned in Section 2, for q ≥ 3, we do not know any example of algebra A = F q k or A = F q [T ]/(T k ) where the bilinear complexity and the trisymmetric bilinear complexity are different. We can even prove that these quantities are the same in small dimension, by exhibiting trisymmetric universal formulae, i.e. trisymmetric decompositions that are true for (almost) any choice of q ≥ 3. In order to obtain such formulae, it is useful to change our point of view on the problem. Assume we want to compute a trisymmetric decomposition of the product Φ in A, a commutative algebra of degree k. After the choice of a basis of A and a basis of the space B of the bilinear forms on A, we can represent

Φ = (π 1 , . . . , π k )
as a column vector B of length k 3 . The first k 2 coordinates corresponding to π 1 , the next k 2 coordinates corresponding to π 2 and so on up to π k . Now, for each a ∈ E, we note

f (a) = a ⊗ f (a),
where a is the column vector of length k corresponding to a in the basis of A, f (a) is the column vector of length k 2 corresponding to f (a) ∈ B, and ⊗ is the Kronecker product. With these notations, finding a trisymmetric decomposition of the product in A is the same as finding elements a 1 . . . , a n ∈ E and λ 1 , . . . , λ n ∈ k with

B = n j=1 λ j f (a).
Let A be the matrix which columns are the f (a) for all a ∈ E, then the problem is to find a solution X of AX = B with the smallest possible number of nonzero entries in X.

We first consider the case A = F q 2 over k = F q , where the characteristic of k is not 2.

Proposition 1. For any odd q we have µ q (2) = µ tri q (2) = 3.

Proof. That µ q (2) = 3 follows e.g. from [2, Thm. 2.2]. In order to prove that µ tri q (2) = 3, we find an universal trisymmetric formula of length 3. We know that we can find a non-square element ζ in F q , we can then define

F q 2 ∼ = F q [T ]/(T 2 -ζ) = F q (α),
where α = T is the canonical generator of F q 2 . Let x = x 0 + x 1 α and y = y 0 + y 1 α be two elements of F q 2 , we have

xy = (x 0 + x 1 α)(y 0 + y 1 α) = x 0 y 0 + ζx 1 y 1 + (x 0 y 1 + x 1 y 0 )α.
We can lift the matrix B coming from the multiplication formula, that has coefficients in F q , to a matrix with coefficients in Q(ζ), where ζ is an indeterminate. We can also lift the matrix A, because the map f (and therefore f ) has the same expression for all q not divisible by 2. Indeed, one can check that the map f is given by

f (x 0 + x 1 α) = S x 0 x 1 S x 0 x 1 = 4 x 2 0 ζx 0 x 1 ζx 0 x 1 ζ 2 x 2 1 .
where

S = α i , α j 0≤i,j≤1 = Tr(α i+j ) 0≤i,j≤1 = 2 0 0 2ζ .
We can then solve AX = B over Q(ζ) and finally check that

B = (1 -ζ -1 )4 -1 f (1) + (8ζ) -1 f (1 + α) + (8ζ) -1 f (1 -α),
so that the trisymmetric bilinear complexity of F q 2 /F q is 3.

Using the same strategy, we can also find universal formulae for another type of algebra A = F q [T ]/(T k ), namely the truncated polynomials. In that context, we first observe that we have μtri q (k) ≥ μq (k) ≥ 2k -1 for all q and k. Indeed this is a special case of [START_REF] Winograd | Some bilinear forms whose multiplicative complexity depends on the field of constants[END_REF]Thm. 4], which holds for any polynomial that is a power of an irreducible polynomial. Conversely we are able to find formulae for 2 ≤ k ≤ 4 that match this lower bound. Proposition 2. For any odd q we have μtri q (2) = 3. Proof. Let A = F q [T ]/(T 2 ) = F q [α] with α = T , so α 2 = 0. If x = x 0 + x 1 α and y = y 0 + y 1 α are two elements of A, we have xy = (x 0 + x 1 α)(y 0 + y 1 α) = x 0 y 0 + (x 0 y 1 + x 1 y 0 )α.

We can again construct the matrix B and A, and solve AX = B, this time simply over Q. We obtain

B = -f (1) + 2 -1 f (1 + α) + 2 -1 f (1 -α)
so that the trisymmetric bilinear complexity of A = F q [T ]/(T 2 ) is at least 3, which concludes.

Proposition 3. For any q not divisible by 2 nor 3 we have μtri q (3) = 5 and μtri q (4) = 7. Proof. We use the same notations as before. For A = F q [T ]/(T 3 ), we obtain

B = -f (1 -α -α 2 ) + 3 -1 f (α + 2α 2 ) + 2 -1 f (1 -α -2α 2 ) -3 -1 f (α -α 2 ) + 2 -1 f (1 -α).
Therefore the trisymmetric bilinear complexity of A = F q [T ]/(T 3 ) is 5.

Finally, for A = F q [T ]/(T 4 ), we obtain

B = 2 -1 f (1 -α 2 + α 3 ) -f (1 -α 2 ) + 12 -1 f (α + 2α 2 + 2α 3 ) -12 -1 f (α -2α 2 + 2α 3 ) -6 -1 f (α + α 2 -α 3 ) + 6 -1 f (α -α 2 -α 3 ) + 2 -1 f (1 -α 2 -α 3 ) • (1 -α 2 -α 3 ).
The trisymmetric bilinear complexity of A = F q [T ]/(T 4 ) is then 7.

In this section, we work with A = F q k or F q [T ]/(T k ), seen as an algebra over k = F q , and equipped with the trace-like linear form τ introduced at the end of Section 2. Our aim is to show that the trisymmetric bilinear complexities µ tri q (k) and μtri q (k) grow linearly as k → ∞. Our proof will involve higher multilinear maps, and in turn, give results for them as well.

For any t we define the t-multilinear multiplication map in A over k

m t : A t → A (x 1 , . . . , x t ) → x 1 • • • x t
and the t-multilinear trace form

τ t = τ • m t : A t → A (x 1 , . . . , x t ) → τ (x 1 • • • x t ).
If needed, we will write m t A/k or τ t A/k to keep A and k explicit. The (symmetric) multilinear complexity of m t has been considered in [START_REF] Nader | Multilinear complexity is equivalent to optimal tester size[END_REF] in relation with the theory of testers.

Lemma 3. The map m t is hypersymmetric, and we have

µ hyp (m t ) = µ sym (τ t+1 ) ≤ µ sym (m t+1 ).
Proof. Indeed we have m t = τ t+1 , and the equality on the left is a special case of Lemma 1. For the inequality on the right, take a symmetric formula for m t+1 and apply τ .

When studying the variation with the degree of the extension field F q k over F q , we will write µ sym q (k, m t ) for µ sym m t F q k /Fq , and we will also use the similar notations µ hyp q (k, m t ), µ sym q (k, τ t ), etc. In particular for t = 2 we have

µ tri q (k) = µ tri q (k, m 2 ) = µ sym q (k, τ 3 ).
When working in F q [T ]/(T k ) over F q , we will write likewise μsym q (k, m t ), μhyp q (k, m t ), etc. Our aim is, for fixed q and t with q ≥ t + 1, to show that µ hyp q (k, m t ) and μhyp q (k, m t ) grow linearly with k → ∞. Thanks to Lemma 3, it suffices to show that µ sym q (k, m t+1 ) and μsym q (k, m t+1 ) grow linearly with k → ∞. To ease notations we will set

M sym q,t = lim sup k→∞ 1 k µ sym q (k, m t ), M hyp q,t = lim sup k→∞ 1 k µ hyp q (k, m t ), M tri q = lim sup k→∞ 1 k µ tri q (k) = M hyp q,2 ,
and likewise for M sym q,t , M hyp q,t , M tri q , etc. Evaluation-interpolation method. We use the function field terminology and notations presented in [START_REF] Stichtenoth | Algebraic function fields and codes[END_REF]. Let F/F q be an algebraic function field of one variable over F q and let P F be the set of places of F . Let D F the set of divisors on F , and if D ∈ D F is a divisor on F , we denote by L(D) its Riemann-Roch space and (D) = dim L(D). Proposition 4. Assume there exist a place Q ∈ P F of F of degree k, P 1 , . . . , P n ∈ P F places of F of degree 1, and a divisor D ∈ D F of F such that the places Q and P 1 , . . . , P n are not in the support of D and such that the following conditions hold.

(i) The evaluation map

ev Q,D : L(D) → F q k f → f (Q) is surjective. (ii)
The evaluation map ev P,tD : L(tD) → (F q ) n h → (h(P 1 ), . . . , h(P n )) is injective.

Then m t F q k /Fq admits a symmetric formula of length n, i.e. we have µ sym q (k, m t ) ≤ n.

Proof. Since the map ev Q,D is surjective, it admits a right inverse, i.e. a linear map s :

F q k → L(D) such that ev Q,D •s = Id F q k
. For all x ∈ F q k , we denote s(x) ∈ L(D) by f x , so the map x → f x is linear, and f x (Q) = x. We also let a : F q k → (F q ) n x → (f x (P 1 ), . . . , f x (P n ))

be the composite map a = ev P,D •s. The situation is sumed up in the following drawing.

L(D)

F q k (F q ) n s ev Q,D ev P,D a 
Observe that a is linear, so we can write a(x) = (ϕ 1 (x), . . . , ϕ n (x))

where ϕ i : F q k → F q is a linear form, namely ϕ i (x) = f x (P i ).

Similarly, since the map ev P,tD is injective, it admits a left inverse, i.e. a linear map r : (F q ) n → L(tD) such that r • ev P,tD = Id L(tD) . We also let b : (F q ) n → F q k be the composite map b = ev Q,tD •r. The situation is sumed up in the following drawing. in (F q ) n be the coordinatewise product of the vectors a(x 1 ), ..., a(x t ). Then

L(tD)

F q k (F q ) n
h = r(p)
is an element of L(tD) such that h(P i ) = p i = ( t j=1 f x j )(P i ) for all i. Since the map ev P,tD is injective, this forces Proposition 5. Let F/F q be an algebraic function field of genus g. Assume that F admits a place Q of degree k, and a set S of places of degree 1 of cardinality |S| ≥ (k + g -1)t + 1.

Then we have

µ sym q (k, m t ) ≤ kt + (g -1)(t -1).

Proof. Set n = kt + (g -1)(t -1). We will show that there are places P 1 , . . . , P n in S, and a divisor D on F , such that Proposition 4 applies, which gives µ sym q (k, m t ) ≤ n as desired. Using e.g. [3, Lemma 2.1] we know F admits a non-special divisor R of degree g -1. By the strong approximation theorem [START_REF] Stichtenoth | Algebraic function fields and codes[END_REF]Thm. 1.6.5] we can then find a divisor D linearly equivalent to R + Q and of support disjoint from Q and S.

Then D -Q and D are non-special, with (D -Q) = 0 and (D) = k. We thus find Ker(ev Q,D : L(D) → F q k ) = L(D -Q) = 0, so ev Q,D is injective, hence also surjective by equality of dimensions, i.e. the surjectivity condition (i) in Proposition 4 is satisfied.
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  The map b is linear, so there are b 1 , . . . , b n in F q k such that, for all y = (y 1 , . . . ,y n ) ∈ (F q ) n , b(y) = n i=1 y i b i . Now for x, . . . , x t ∈ F q k , let p = (p 1 , . . . , p n ) = (( t j=1 f x j )(P 1 ), . . . , ( t j=1 f x j )(P n ))

  have b(p) = ev Q,tD (r(p)) = ev Q,tD (h) = h(Q) = t j=1 f x j (Q) = x j ))b iand finally we get a symmetric formula for m t : x j ))b i .
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Likewise, tD is non-special, with deg(tD) = (k + g -1)t and (tD) = kt + (g -1)(t -1). Then the evaluation map ev S,tD : L(tD) → (F q ) |S| h → (h(P )) P ∈S has kernel L(tD -P ∈S P ) = 0, because deg(tD -P ∈S P ) = (k + g -1)t -|S| < 0. So ev S,tD is injective, with image of dimension dim Im(ev S,tD ) = (tD) = n. Then we can find a subset P = {P 1 , . . . , P n } ⊂ S of cardinality n, such that ev P,tD : L(tD) → (F q ) n is an isomorphism, and the injectivity condition (ii) in Proposition 4 is also satisfied.

Choice of the curves for q a large enough square. Proposition 6. Let t be given, and assume q is a square, q ≥ (t + 2) 2 . Then we have

Proof. We know [START_REF] Shparlinski | Curves with many points and multiplication in finite fileds[END_REF] that there exists a family of function fields

where

is the number of places of degree 1 of F i . We can also assume that the sequence g i is increasing.

For any k let i(k) be the smallest index such that

Such an i(k) always exists since by (ii) we have N i ∼ ( √ q -1)g i , with √ q -1 > t.

By definition we thus have

As k → ∞ we have i(k) → ∞, and by (i) we get g i(k) ∼ g i(k)-1 , so by (ii) we also get N i(k) ∼ N i(k)-1 . This then gives

From these two relations we deduce

For k large enough this implies in particular 2g i(k) + 1 ≤ q (k-1)/2 ( √ q -1), so F i(k) admits a place of degree k by [START_REF] Stichtenoth | Algebraic function fields and codes[END_REF]Cor. 5.2.10].

From this we are allowed to apply Proposition 5 to F i(k) , which gives

as desired.

Corollary 1. For q a square, q ≥ (t + 3) 2 we have

and in particular we have

for q a square, q ≥ 25.

Conclusion for arbitrary q.

Lemma 4. Let q be a prime power. Then for any integers t, d, k we have

Proof. For the inequality on the left, there is nothing to prove if µ sym q (dk, m t ) = ∞. So let us assume m F q dk /Fq t admits a symmetric multiplication formula of length n = µ sym q (dk, m t ), i.e.

for linear forms ϕ i : F q dk → F q and elements a i ∈ F q dk . Choose a linear projection p : F q dk → F q k left inverse for the inclusion F q k ⊆ F q dk . Then we get

which is a symmetric multiplication formula of length n for m F q k /Fq t . Likewise, for the inequality on the right, there is nothing to prove if

and m F q dk /F q d t admit symmetric multiplication formulae of length r = µ sym q (d, m t ) and s = µ sym q d (k, m t ) respectively, so

which is a symmetric multiplication formula of length rs for m F q dk /Fq t .

Theorem 2. Let t ≥ 2 be an integer and q a prime power. If q < t, then µ sym q (k, m t ) = ∞ for all k ≥ 2.

On the other hand, if q ≥ t, then µ sym q (k, m t ) grows at most linearly with k, i.e. we have

for some real constant C t (q) < ∞.

Proof. If q < t and k ≥ 2, then µ sym q (k, m t ) = ∞ follows from Theorem 1. On the other hand, for q ≥ t, we have µ sym q (d, m t ) < ∞ for any integer d. Choose d such that q d is a square, q d ≥ (t + 2) 2 . Then Proposition 6 shows µ sym q d (k, m t ) grows linearly with k. The Theorem then follows thanks to Lemma 4, with C t (q) = µ sym q (d, m t )(1 + t (q d ))t.

Corollary 2. For q ≥ t + 1 we have

and in particular for q ≥ 3 we have

Further remarks and possible improvements.

1. When q ≥ 4 is not divisible by 3, [16, Thm. 2] gives µ tri q (k) ≤ 4µ sym q (k). On the other hand, [START_REF] Chudnovsky | Algebraic complexities and algebraic curves over finite fields[END_REF] shows that µ sym q (k) grows linearly with k (the result is stated for µ q (k), but it is easily seen that the proof works for µ sym q (k)). Taken together, these results show that µ tri q (k) grows linearly with k when q ≥ 4 is not divisible by 3. One advantage of our method is that it works for all q ≥ 3. Moreover it gives sharper bounds. For instance, when q is a square and large enough, joining [START_REF] Seroussi | On symmetric algorithms for bilinear forms over finite fields[END_REF]Thm. 2] with the best asymptotic upper bound known on µ sym q (k) [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Thm. 6.4] gives M tri q ≤ 8 1 + 1 √ q-2 , which is not as good as M tri q ≤ 3 1 + 2 √ q-4 from Corollary 1. 2. Open question: Lemma 3 reduces (upper) bounds on µ hyp (m t ) to bounds on µ sym (m t+1 ), and in particular it reduces bounds on M tri q to bounds on M hyp q,3 , which does not seem optimal. Indeed we know no example where the inequality µ sym q (k) ≤ µ tri q (k) is strict. So, for instance for q square, q → ∞, our method gives M tri q ≤ 3(1 + o(1)), but one could ask whether it is possible to get a bound of the form M tri q ≤ 2(1 + o(1)), as given by [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]Thm. 6.4] for M sym q . 3. Open question: The condition |S| ≥ (k + g -1)t + 1 in Proposition 5 does not seem optimal since in the end we do evaluation-interpolation at only kt + (g -1)(t -1) places. If one could relax this condition to |S| ≥ kt + (g -1)(t -1), this would improve Proposition 6 to M sym q,t ≤ (1 + t (q))t for q square, q ≥ (t + 1) 2 , with t (q) = t-1 √ q-t . For t = 2 this is done in [START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF][START_REF] Randriambololona | Gaps between prime numbers and tensor rank of multiplication in finite fields[END_REF] using techniques from [START_REF] Randriambololona | 2, 1)-separating systems beyond the probabilistic bound[END_REF]. However, as observed at the end of [START_REF] Randriambololona | 2, 1)-separating systems beyond the probabilistic bound[END_REF], a generalization to t ≥ 3 would require new arguments. 4. Lemma 4, which generalizes [17, Lemma 1.2], is clearly not optimal. When deriving upper bounds on µ sym q (k, m t ) for non-square q, it might be better to use evaluation-interpolation at places of higher degree, as first introduced in [START_REF] Ballet | Multiplication algorithm in a finite field and tensor rank of the multiplication[END_REF], and further developped e.g. in [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF][START_REF] Randriambololona | Bilinear complexity of algebras and the Chudnovsky-Chudnovsky interpolation method[END_REF]. To do this in an optimal way one needs function fields F i defined over F q , of genus g i → ∞,

is the number of places of degree d in F i , for a convenient d. This improves the bound on M sym q,t by a factor 1 d . The existence of these function fields was first claimed in [START_REF] Cascudo | Asymptotic bound for multiplication complexity in the extensions of small finite fields[END_REF], but unfortunately with an incorrect proof. A corrected construction, based on Drinfeld modular curves, will be found in [START_REF] Bassa | [END_REF]. 5. All our bounds for multiplication in extension fields also hold for truncated polynomials. For instance we have M sym q,t ≤ (1 + t (q))t for q square, q ≥ (t + 2) 2 , and M sym q,t ≤ C t (q) for all q ≥ t. This requires only minor changes in our constructions. In Proposition 4, instead of evaluation at a place Q of degree k, one uses evaluation at order k at an extra place P 0 of degree 1. Likewise in Proposition 5, one needs one more place of degree 1, but one does not need Q (then the proof of Proposition 6 is slightly simplified since one does not need to invoke [18, Cor. 5.2.10] anymore).