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Abstract—This article describes a computationally-efficient sta-
tistical approach to joint (semi-)blind source separation and dere-
verberation for multichannel noisy reverberant mixture signals. A
standard approach to source separation is to formulate a generative
model of a multichannel mixture spectrogram that consists of
source and spatial models representing the time-frequency power
spectral densities (PSDs) and spatial covariance matrices (SCMs)
of source images, respectively, and find the maximum-likelihood
estimates of these parameters. A state-of-the-art blind source sep-
aration method in this thread of research is fast multichannel
nonnegative matrix factorization (FastMNMF) based on the low-
rank PSDs and jointly-diagonalizable full-rank SCMs. To perform
mutually-dependent separation and dereverberation jointly, in this
paper we integrate both moving average (MA) and autoregressive
(AR) models that represent the early reflections and late rever-
berations of sources, respectively, into the FastMNMF formalism.
Using a pretrained deep generative model of speech PSDs as a
source model, we realize semi-blind joint speech separation and
dereverberation. We derive an iterative optimization algorithm
based on iterative projection or iterative source steering for jointly
and efficiently updating the AR parameters and the SCMs. Our
experimental results showed the superiority of the proposed ARMA
extension over its AR- or MA-ablated version in a speech separation
and/or dereverberation task.

Index Terms—Multichannel audio signal processing, source
separation, dereverberation, joint diagonalization.
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Fig. 1. The probabilistic generative model of a multichannel reverberant mix-
ture spectrogram based on an arbitrary source model, a jointly-diagonalizable
full-rank spatial model, and autoregressive (AR) and moving average (MA)
reverberation models for joint source separation and dereverberation.

I. INTRODUCTION

ULTICHANNEL audio source separation and derever-

beration play essential roles for computational auditory
scene analysis with smart speakers, conversational robots, and
hearing aid systems [1], [2] because real recordings are usu-
ally contaminated by utterances of non-target speakers, envi-
ronmental noise, and reverberation. To improve the accuracy
of automatic speech recognition (ASR) for a target speaker,
supervised methods based on deep neural networks (DNNs) have
actively been proposed for speech separation (enhancement) and
dereverberation. Such methods, however, often work poorly in
a real noisy echoic environment whose acoustic characteristics
are not covered by training data. This calls for unsupervised
methods that use neither prior information about the acoustic
environment nor that about the sound sources (blind condition)
or use only the latter (semi-blind condition).

A standard approach to unsupervised blind source separation
(BSS) is to perform maximum-likelihood (ML) estimation for a
probabilistic generative model of a multichannel mixture spec-
trogram (complex-valued tensor in the time-frequency-spatial
domain) that consists of source and spatial models representing
the time-frequency (TF) power spectral densities (PSDs) and
spatial covariance matrices (SCMs) of sources, respectively
[3]-[13]. Independent component/vector analysis (ICA [3] and
IVA [4], [5]) are the most basic BSS methods assuming the
SCMs to be rank-1 matrices. To deal with moderate reverber-
ation, the SCMs can be relaxed to unconstrained or jointly-
diagonalizable (JD) full-rank matrices. Combining these three

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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types of spatial models with a source model based on nonnega-
tive matrix factorization (NMF) [14], modern BSS methods such
as independent low-rank matrix analysis (ILRMA) [6], multi-
channel NMF (MNMF) [7]-[10], and FastMNMF [11]-[13] are
derived, respectively. When the target source is human speech,
a DNN-based latent variable model learned from clean speech
data [15] can be used as a precise source model for semi-blind
speech enhancement and separation [16]-[19].

To jointly perform mutually-dependent BSS and blind source
dereverberation (BSD), one can integrate the aforementioned
generative model of a dry multichannel mixture spectrogram
used for BSS with a multivariate autoregressive (AR) generative
model of late reverberation used for BSD [20]-[23]. The AR
reverberation model was originally proposed for a BSD method
called weighted prediction error (WPE) that estimates both
the PSDs of a target source with early reflection and the AR
coefficients [24], [25]. To deal with multiple sources, WPE was
integrated with ICA (called AR-ICA) [20], which was extended
to use an NMF-based source model (called AR-ILRMA) [21] or
a DNN-based source model [22]. More recently, WPE was inte-
grated with FastMNMF based on an NMF-based source model
and a JD full-rank spatial model to attain the state-of-the-art
performance (called AR-FastMNMF) [23].

A practical problem of these joint blind source separation
and dereverberation (BSSD) methods [20]-[23] is that a large
number of computationally-expensive matrix inversions need to
be computed for optimizing the AR coefficients (dereverberation
matrices). To mitigate this problem, one can use an efficient
algorithm called iterative projection (IP) [26] or iterative source
steering (ISS) [27] for optimizing integrated dereverberation
and demixing matrices [28], [29]. Note that IP was originally
proposed for optimizing demixing matrices in ICA [26] and
then used for IVA [30], ILRMA [6], and FastMNMF [12], [13]
and that ISS was proposed as an alternative to IP. The joint
diagonalizability (including the rank-1 constraint) of source
SCMs plays a key role in the applicability of IP and ISS.

Another essential problem of the aforementioned BSSD meth-
ods [20]-[23] is that the early reflection is not represented
explicitly. The early reflection strongly reflects the acoustic
characteristics (e.g., PSDs) of dry sources. In contrast, the late
reverberation is mainly affected by the acoustic characteristics
of the surrounding environment because source-specific features
are obscured in a complicated mixture of sounds corresponding
to a large number of echoic propagation paths. This obser-
vation motivates us to use an autoregressive moving average
(ARMA) model that represents the early reflection and late
reverberation with a source-dependent moving average (MA)
model and a source-independent AR model, respectively. For
BSSD, the ARMA model was integrated with a BSS method
called full-rank spatial covariance analysis (FCA) [31] based on
a non-structured source model and an unconstrained full-rank
spatial model (called ARMA-FCA) [32], [33]. Unfortunately,
the IP- or ISS-based optimization algorithm [28], [29] cannot be
used for ARMA-FCA because of the non-joint-diagonalizability
of the source SCMs, resulting in heavy computational cost.

In this paper, we propose a unified BSSD framework based
on a probabilistic generative model that consists of an arbitrary
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source model, a JD full-rank spatial model, and an ARMA rever-
beration model (Fig. 1)'. To use the efficient optimization algo-
rithms [28], [29], we assume the SCMs of not only direct sounds
but also the early reflections represented by the MA model to
be jointly diagonalizable at once in each frequency bin, i.e.,
each of the SCMs is given as a weighted sum of common rank-1
SCMs. Using an NMF-based source model, we instantiate a new
versatile BSSD method called ARMA-FastMNMF, which was
experimentally found to achieve a state-of-the-art performance
of BSSD. For a reverberant noisy environment, we propose
a semi-blind method called ARMA-FastMNMF-DP that uses
DNN- and NMF-based source models for representing the PSDs
of directional speech and those of diffuse noise, respectively.
A wide variety of directivity can be dealt with thanks to the
full-rankness of the spatial and reverberation models.

The main contribution of this study is to propose the unified
framework of computationally-efficient BSSD based on the JD
full-rank spatial model and the ARMA reverberation model that
encompasses BSS methods such as ICA [3], [26], IVA [4], [5],
[30], ILRMA [6], FastMNMF [12], [13], and FastFCA [34] (a
JD version of FCA [31]), a BSD method called WPE [24], and
BSSD methods such as AR-ICA [20], AR-ILRMA [21], and
AR-FastMNMF [23]. We have comprehensively investigated
ARMA-FastMNMF with possible combinations of AR and MA
parameters using IP or ISS, in comparison with the state-of-the-
art existing blind and semi-blind methods.

The rest of this paper is organized as follows. Section II
reviews unsupervised methods for separation, dereverberation,
and joint separation and dereverberation. Section III explains
a unified statistical framework based on source, spatial, and
reverberation models for joint separation and dereverberation.
Section IV describes the proposed blind and semi-blind meth-
ods as instances of the unified framework. Section V reports
comparative experiments. Section VI concludes this paper.

II. RELATED WORK

We here review unsupervised methods for source separation
and/or dereverberation under a blind or semi-blind condition
(Table I). The main focus of this paper is on unsupervised learn-
ing of some probabilistic model with a maximum-likelihood
principle. Supervised methods, which are typically implemented
with signal processing techniques informed by DNNs (e.g.,
beamforming and/or WPE with DNN-based TF mask estimation
for speech enhancement [37], [38], joint speech enhancement
and dereverberation [39], [40], and joint speech separation and
dereverberation [41]), are thus not dealt with in this paper.

A. Separation

We review versatile BSS methods based on rank-1 and uncon-
strained and jointly-diagonalizable full-rank spatial models. We
also review extensions of these methods based on a DNN-based
source model for semi-blind speech separation.

1) Rank-1 Spatial Modeling: Assuming an instantaneous
mixing system, each TF bin of a source image is typically

I'The source code is available at https:/github.com/sekiguchi92/TASLP2022
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TABLE I
COMPARISON OF JOINT SOURCE SEPARATION AND DEREVERBERATION METHODS (SEMI-BLIND METHODS ARE INDICATED BY “*”’)

Method Spatial model Source model Reverb. model Condition

AR-ICA [20] Non-structured

AR-ILRMA [21], [28] NMF N=M

AR-MVAE* [22] Rank-1 DNN (speech) AR

AR-OverlIVA [35] Freq. invariant (speech) | Time invariant (noise) N N =M

AR-OverILRMA [36] NMF (speech) Time invariant (noise) speech notse

ARMA-FCA [32], [33] Unconstrained Non-structured Not applicable

ARMA-MNMF full-rank NMF

ARMA-FastFCA Non-structured

ARMA-FastFIA . . Frequency invariant ARMA T

ARMA-FastMNMF (cf, [237) | Oindy-diag. NMF Nli(’t]\f[p?h“ble.

ARMA FastMNMFE-TI full-rank NMF (speech) Time invariant (noise) (N < M in practice)

ARMA-FastMNMF-DP* DNN (speech) NMF (noise)

assumed to follow a degenerate multivariate complex Gaussian
distribution whose covariance matrix is given by the product
of a TF-varying PSD and a frequency-dependent rank-1 SCM.
ICA [42] is the most basic method that estimates a demixing
matrix in each frequency bin such that the separated sources
are made independent. To avoid the permutation problem, in-
dependent vector analysis (IVA) [4], [5] jointly considers all
frequency bins. Assuming the low-rankness of source PSDs,
ILRMA [6] introduces an NMF-based source model. These BSS
methods, however, are applicable to only a determined condition
because as many source images with rank-1 SCMs as micro-
phones should be added up to yield a mixture with a full-rank
SCM. In an overdetermined condition, OverIVA [43], [44] and
OverILRMA [36] internally recover a determined condition by
padding additional sources of no interest.

2) Unconstrained Full-Rank Spatial Modeling: Relaxing the
idealized rank-1 constraint, each TF bin of a source image
is assumed to follow a non-degenerate multivariate complex
Gaussian distribution with a full-rank SCM. FCA [31] pioneered
this approach for dealing with diffuse noise and moderate re-
verberation. To avoid the permutation problem of FCA with
the non-structured source model, MNMF [7]-[10] used the
NMF-based source model, where ILRMA is its special case.
These BSS methods are computationally demanding and hard
to optimize because of the large degree of freedom (DOF).

3) Jointly-Diagonalizable Full-Rank Spatial Modeling: To
attain a smaller DOF, the SCMs in each frequency bin are
constrained to JD yet full-rank matrices. This strategy was
first used for deriving FastFCA [34], [45] from FCA and then
used for deriving FastMNMF [11]-[13] from MNMF, where
a non-singular matrix called a diagonalizer used for jointly
diagonalizing the SCMs can be optimized with fixed point
iteration (FPI) [11], [34], [45] or IP [12], [13]. Note that IP
is guaranteed to converge, whereas FPI is not. In this paper we
focus on a well-behaved variant of FastMNMF with IP (called
FastMNMF?2 in [13]) that shares the direction weights of each
source over all frequencies.

4) DNN-Based Source Modeling: Under a semi-blind con-
dition that some sources are known to be human speeches, one
can use a DNN-based latent variable model of speech PSDs as
a precise source model. Such a speech model, for example, is
obtained as the decoder of a variational autoencoder (VAE) [46]
pretrained with clean speech signals in an unsupervised manner.

Fixing the parameters of the speech model, the latent variables
and a spatial model are adaptively estimated in an unsupervised
manner at run-time. This approach was originally proposed
for single-channel speech enhancement [15], and then used for
multichannel speech enhancement and separation based on a
full-rank spatial model [16]-[18], a rank-1 spatial model (called
MVAE) [17], [19], and a JD spatial model [12].

B. Dereverberation

Linear prediction (LP) and its multichannel extension
(MCLP) have effectively been used for BSD, where the reverber-
ation is represented with an AR model in the time domain [47]
or in the frequency domain [24], [25]. Assuming that the direct
signal is Gaussian white noise, the AR coefficients are estimated
in the maximum likelihood sense. This approach, however, tends
to yield an over-whitened estimate of the direct signal.

WPE [24], [25] is an extension of MCLP based on a local
Gaussian source model. The reverberation consists of the early
reflection and late reverberation and the latter is empirically
known to be more harmful to the speech intelligibility and
ASR performance [48]. To avoid the over-whitening, a delay
parameter is introduced for removing only the late reverberation.
The PSDs of the target signal with the early reflection and the AR
coefficients are updated alternately until convergence. A DNN
can be used for estimating the PSDs at once [49].

C. Joint Separation and Dereverberation

AR-ICA [20] is an extension of ICA with the AR rever-
beration model for BSSD. Various BSS methods have been
extended in the same way, resulting in AR-ILRMA [21], AR-
MVAE [22], AR-FastMNMF [23], AR-OverIVA [35], and AR-
OverILRMA [36]. ARMA-FCA [32] is an extension of FCA
with the ARMA reverberation model. Both AR-FastMNMF
and ARMA-FCA can deal with diffuse noise thanks to the
full-rankness of the SCMs, but ARMA-FCA suffers from the
permutation problem because of the frequency-wise indepen-
dence of the non-structured source model. Under a determined
condition, AR-ILRMA is used for initializing ARMA-FCA [33].
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III. UNIFIED FRAMEWORK

This section provides a unified view of multichannel audio
source separation and dereverberation based on a combination
of source, spatial, and reverberation models.

A. Problem Specification

Let M, N, T, and I’ be the numbers of microphones,
sources, time frames, and frequency bins, respectively. Let S,, =
{snst}p—y € CT*T be the single-channel complex spectro-
gram (short- time Fourier transform (STFT) coefficients) of
source n. Let X £ {xf;}}; € C*T*M be the multichannel

complex spectrogram of a (reverberant) mixture and X,, =
{ant}?thl € CF*TxM pe that of source n (called an image).
We assume the additivity of complex spectra:

N
Xpr =Y Xnfi. ()
n=1
Given X as observed data, we aim to optimize a generative
model of X such that the log-likelihood log p(X) is maximized
and then decompose X into the source images {X,, })\_;.

B. Source Models

The source model represents a generative process of each
source spectrogram S,,. Assuming both the independence of
sources and that of time-frequency bins, s, r; is assumed to
follow a complex Gaussian distribution as follows:

Snft NNC (vanft)> (2)

where A,y represents the power spectral density (PSD) of
source n at frequency f and time t and N¢ (1, 0?) indicates
a univariate complex Gaussian distribution with mean p and
. 2 A N,F,T
variance 0”. Let A = {Anpe}, 12y
1) Frequency-Invariant Source Model: AsinIVA [4],[5], an
effective way of avoiding the permutation problem is to use a

frequency-invariant (FI) source model given by

= Tnt (3)

where ,,; is the frequency-invariant PSD of source n at time .
A N,T
Let Y= {’Y’nt}n,t:l'
2) Time-Invariant Source Model: As in OverIVA [43], [44],
stationary sources (e.g., background noise) are well represented
with a time-invariant (TT) source model given by

}\nft

“)
where nn f is the PSD of source n at frequency f. Let np £

3) NMF Based Source Model: The NMF-based source
model assumes the PSDs {,, ft}fj’tT: , of each source n to have
low-rank structure as follows:

)‘nft =1nf,

Anft = ankfhnkt; &)

where K is the number of bases, wpx¢ > 0 is the PSD of basis
k of source n at frequency f, and h,x; > 0 is the activation
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of basis k of source n at time ¢. Let W = {wnkf}inKfFl and

A N,K,T
H= {hnkt}'rL,k,t:l'

4) DNN-Based Source Model: To precisely represent the
PSDs of a particular type of source (e.g., speech), one can
formulate a DNN-based source model as follows [15]:

(6)

where oy, ¢ > 0 and 3,,; > 0 are scaling factors of source n at
frequency f and time ¢, respectively, o4 (+) isa DNN with param-
eters @ that maps a latent variable z,,; € R” to a nonnegative
vector o3 (zne) € RY, and [/ indicates the f-th element of
a vector. To estimate the parameters 0, a VAE is trained in an
unsupervised manner using a large amount of clean speech data.
The decoder is used as o3 (+) and the encoder can be used for ini-

)Lnft = anfﬁnt [0% (Znt)]f

tializing and/or inferring z,; at run-time. Let o 2 {7} ’szl,
B= {ﬂnt}n j—ppand Z £ {znt}n t=1-

C. Spatial Models

The spatial model represents a generative model of each
source image X, € CI*T*M haged on the corresponding
source spectrogram S,, € CF>7T

1) Rank-1 Spatial Model: Assuming a time-invariant linear
system, we have

(N

where a,,; € CM is the steering vector of source n at frequency
f. Using (2) and (7), we have

Xnft ~ Ne(0, A, 5:Gry)

Xnft = AnfSnft,

®)

where G5 = anfagf S Sf is a rank-1 SCM of source n at

frequency f and Sf indicates the set of positive semidefinite
matrices of size M. Using (1) and (8) and the additive property

of the Gaussian distribution, we have

N
,anftenf) : ©)

Xt~ N(C (0
n=1

2) Full-Rank Spatial Model: To deal with diffuse noise and
modest reverberation, the SCMs {G,, f}ﬁlle are assumed to
be unconstrained full-rank matrices. Since the full-rank spatial
model has a considerably larger number of parameters than
the rank-1 spatial model, an iterative parameter optimization
algorithm is computationally expensive and tends to get stuck
in bad local optima.

3) Jointly-Diagonalizable Full-Rank Spatial Model: To mit-
igate these problems, all the SCMs {G., ;s }1_, are restricted to
jointly-diagonalizable (JD) matrices as follows [13]:

M

G = Q;'Diag(g,) Q" = > Gumugmuf,,  (10)
m=1

where Qs 2 [qf1,. .., a7 € CM*M is a non-singular ma-

trix called a diagonalizer, g, = [Gn1,-- ., Gnm]’ € RY is a
nonnegative vector specific to source n, and uy,, is the m-th
column of Uy £ Q’l. Under a determined condition, when
each g, is a one-hot vector, the JD spatial model reduces to
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the rank-1 spatial model. Because {u s, }27_, act like steering
vectors corresponding to M directions, g, can be regarded as
the weights of these directions for source n [13]. FastMNMF
sharing g,, over all frequency bins [13] outperforms FastMNMF
using frequency-wise weight vectors [11], [12].

D. Reverberation Models

When the reverberation is longer than the window size of
STFT, each source image x,, s, is represented as the sum of the
direct sound x‘fl ¢ corresponding to (7), the early reflection X‘;‘Lft,

and the late reverberation xln 7t s follows:

Xnft = X g+ X g0+ X gy (n
The observed reverberant mixture X s; is then given by
Xft =Xy + X5, + Xy, (12)

where X}, = Zg 1 ant (x € {d,e,1}).

The early reflection x%, strongly reflects the PSDs of individ-
ual sources, whereas the late reverberation x! 7+ is a complicated
mixture of sounds arriving through numerous echoic paths.
This calls for an ARMA model that represents xj ., with a
source-dependent MA model (FIR filter) with a tap length Lya
and xlft with a source-independent AR model (IIR filter) with a
tap length Lag as follows [32]:

Xnftl = AnfSnf i1, (13)

Xflft = Xnft0, (14)

Xnft = Z Xn ftls (15)
lelva

g:;t = Z Xnftl = X(rlzft +X$Lft7 (16)
lelf,

x§i 2 in*;t =Y Buxp a7

n=1 lelf
X =Y Bpuxpi, (18)

lelar

where HMA = []. LMA], MA = {O} U HMA’ ]IAR = [A A +
Lag — 1], I[:R £ {0} Ulag are index sets, A > 0 is the de-
lay of the late reverberation [24], a,; € CM is the steering
vector of source n with delay ! at frequency f and, By, =
b, .. ,bﬂM]T € CM*M js an AR coefficient. Let B £
{Bfl}?:l,le]lz'k’ where B £ _T,, and I; denotes an identity
matrix of size M.

When Lya =0 and N =1, the AR model proposed for
WPE [24] is obtained, where A = 2 or 3 is used. To improve
the expressiveness of the ARMA model, one can allow the MA
and AR periods to overlap with a configuration of Lya > A.

E. Integration of Source, Spatial, and Reverberation Models

A unified probabilistic model of X is obtained by arbitrarily
integrating the aforementioned source, spatial, and reverberation
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models. Using (2), (14), and (15), we have
Xnft NN(C(OvYTLftO £ Y7d7,ft> )

03 Z Ynftl = Yth 5

l€]IMA

19)

Xp e ~ Ne (20)

where Y, fy £ Angi-1Gnp1 € Si\r/[ and G = anflaz'fl S

SM is a rank-1 SCM of source n at frequency f and delay [ €

HJIA Let G £ {anz} = leLE
tion III-C1) can be removed (Section III-C2) or relaxed to the
joint diagonalizability (Section III-C3). The PSDs of each source
can be represented with a frequency-invariant (Section III-B1),
time-invariant (Section I1I-B2), NMF-based (Section III-B3), or
DNN-based (Section III-B4) source model. Using (12), (18),
(19), and (20), the observed reverberant mixture Xy, can be
modeled in an AR manner as follows:

The rank-1 constraint (Sec-

xgt | {xfe-thiere ~ Ne Xftvz Y Yo £ YGE

n= lle]l+

.21

Given X as observed data, our goal is to estimate the PSDs
A, the SCMs G, and the AR coefficients B such that the total
likelihood for X given by aggregating (21) over all TF bins
is maximized. Once these parameters are estimated, the late
reverberation xlft is given by (18) and the direct sound xn ft
and early reflection x7, ;, of each source n can be inferred with
Wiener filtering as follows:

E [XSLft ‘ X] Ynft (Ydf-;e)_l (Xft - let) ) (22)

E [550 | X] = Yo (YF) ' (x0—X}).
Various unsupervised (semi-)blind methods can be instan-
tiated from the unified model given by (21). Modern BSS
methods such as ILRMA [6], MNMF [9], and FastMNMF [13]
without the reverberation model (Lya = Lag = 0) are given
by integrating the NMF-based source model with the rank-1,
unconstrained, and JD full-rank spatial models, respectively.
Semi-blind extensions for speech enhancement such as ILRMA-
DP [17], MNME-DP [16], [17], and FastMNMF-DP [12] are
given by using the NMF- and DNN-based source models for
noise and speech sources, respectively. A semi-blind extension
of ILRMA for speech separation called MVAE [19] is given
by using only the DNN-based source model. As listed in Ta-
ble I, extensions for joint separation and dereverberation such as
AR-ILRMA [21], AR-FastMNMF [23], and AR-MVAE [22] are
given by introducing the AR reverberation model (Ly4a = 0 and
Lar > 0). A BSSD method called ARMA-FCA [32] without
any assumption on the source PSDs A is given by integrating
the full-rank spatial model and the ARMA reverberation model,
which could be straightforwardly extended to ARMA-MNMF
based on the NMF-based source model.

(23)

IV. PROPOSED METHOD

Based on the unified model given by (21), we propose a
state-of-the-art joint BSSD method called ARMA-FastMNMF
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(including AR-FastMNMF [23]) using the NMF-based source
model, the JD full-rank spatial model, and the ARMA reverber-
ation model (Table I). For stable initialization, we also derive a
variant of ARMA-FastMNMEF called ARMA-FastFIA using the
FI source model.

Under a semi-blind condition, we propose ARMA-
FastMNMF-DP using the DNN- and NMF-based source models
for speech and noise, respectively. For initialization of ARMA-
FastMNMF-DP, we propose ARMA-FastMNME-TT using the
NMEF-based and TI source models for speech and noise, respec-
tively.

A. Probabilistic Formulation

We integrate the MA model with the JD full-rank spatial
model glven by (10). Specifically, we assume that all the SCMs
{Gnysi }n ’ 1“[‘ o corresponding to not only the direct sounds but
also the early reflections are jointly diagonalizable for each
frequency bin as follows:

M
= Q;lDlag(gnl)Q;H = Z gnlmufmu;'mv

m=1

Gy (24)

where Qs £ [qf1,...,qrm]" € CM*M s a diagonalizer,
& = [Gnits- -+, Gum)' € RY is a nonnegative vector spe-
cific to source n and delay [/, and uy,, is the m-th column
vector of Uy £ QL. This means that each of N(Lya + 1)
SCMs corresponding to N direct paths and N Ly echoic
paths are represented by a weighted sum of M rank 1 matrices
{ufmufm}m 1- Let G= {gnl} =1,lel, and Q = {Qf}f 1

For the sake of brevity, we deﬁne several symbols. Let X ¢,
and X, be the absolute squares of the linear transforms of x 7,
and x%, (x € {d,e,1,d+e}), respectively, as follows:

£ 1Qxse?,
X5 2 1QpxG|?,

(25)

Xft
(26)

where |z|? denotes the element wise absolute square for a vector
7. Let Yngit, Yo po Yiopio Yors» and ¥4 be the predicted PSDs
corresponding to (13)—(17) as follows

Ynftl = Anft—18nl, (27
f’fmﬁ £ Ynt0, (28)
S’fot = Z S’nftl; (29)
1elya
S’i?t = Z Ynftl = y%ft + Yot (30)
lelt,
v 2 Z I 31)
n=1

Substituting (24) into (21), the generative model of an ob-
served reverberant mixture X ; is given by

Xpt | {Xf-1}iere ~ Ne (leta Q}lDiag(Yﬁe)Q}H) . (32)
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B. Maximum Likelihood Estimation

We aim to estimate the parameters © £ {A, Q, G, B} such
that the log-likelihood log p(X) obtained by aggregating (32)
over all TF bins is maximized. Using (25)—(31), log p(X) can
be briefly written as follows:

FT,M gdre F
_ t
logp(X) = > (logy?fm - ~§+em> +T) log|Q,QY|,
fit,m=1 yftm =
(33)
where 47, and g}, are given by
2
B = | | x50 — Z Buxpiei || - (34
lelar
N
:U;l:{fn = Z Z )Lnf,tflgnlm- (35)
n=1jelf,

1) Updating A: Using the current estimates of Q, G, and
B, we update A. Since A is involved only in the first and
second terms of (33), the maximization of (33) with respect
to A is equivalent to the minimization of the Itakura-Saito (IS)
divergence between {74¢ i ?tT "]Lw , and {"ﬁfﬂ fjtT "Jil

a) Frequency-Invariant Source Model: In the same way
as the NMF-based source model (explained later), we use a
convergence-guaranteed minorization-maximization (MM) al-
gorithm for deriving multiplicative update (MU) rules of ~:

ZF,M ) Gnim @S
fym=1 Zailel dre 2
Yt % (#fisim) (36)
nt nt ZF M Gnim
fim=1 IGHMA yf+t+l m

b) Time-Invariant Source Model: We can fix a,y = 1 to
avoid the scale ambiguity between o, s and Gy, ¢;.

c¢) NMF-Based Source Model: As in NMF based on the
IS divergence [14], we use an MM algorithm for deriving MU
rules of W and H:

= ~d
Rk, t—1 gnhnxf-;,em,

Et ym=1 lE]I (~d+e )2

ftm
Wnkf < Wnkf .M Bkt 1Gnim (37
tm=1 Zalelf, gj:;m
~ d+e
WnkfInlmTy 411 m
me 1 ZlemA (5% )2

t41,m

hnkt — hnkt ) (38)

wnkfgnhn
MA yf t+l m

me 1Zl611

d) DNN-Based Source Model: We use an MM algorithm
for deriving MU rules of « and 3:

Brn,t-1 [0'3 (Zn,t-1 )] anZmi‘?fm

M
Zt,m:1 ZzemA (5% )2
Jftm
Qn f <~ Qnf —
Bn,t—l [0'9 (zn t— l)}fgnl'm
Zt m=1 Zulel, TFem

(39)
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ng[03(Zne)]  Grim Y,
Zf m=1 Zzeﬂ;A (5% : -

Bnt < Bt yfmm)z
n n
Zf,m 1

QAnf [ag(znt)]fgnlm
lely 75
MA fot+1, (40)
Since the latent variables Z are hard to optimize such that
(33) is maximized, we use a stochastic gradient descent method
based on backpropagation as in [12].
2) Updating G: We also use an MM algorithm for deriving

MU rules of G:

Anf 18,
Erim "G

Z Anfit-l
fit=1 gt};ﬁ

(41)

gnlm — gnlm

3) Updating Q and B: Instead of alternately updating Q
and B as proposed in [23], we jointly update Q and B with
IP or ISS for significantly better time-space complexity. IP
and ISS were originally used for jointly updating demixing
and dereverberation matrices (corresponding to Q and B) in
AR-ILRMA based on the rank-1 spatial model [28], [29].

We here aim to estimate an integrated demixing and derever-
beration matrix Py £ [ps1,...,pru]t € CM*M(Eartl) de.
termined by Q and B as follows:

P;2(Qs—QsBsa,-- -, —QiBratry] (42
Then, :E‘}J;em involved in (33) can be written as follows:
- 2 2
Bfien = [PFnXse” = |l Prxp| 43)

where e, 6 {0 1}M is a one-hot vector whose m-th element is
landXp £ (X}, XF nsee Xy A pq) € CMEat g
an aggregated observed vector.

a) Iterative Projection: Since (33) with (43) has the sim-
ilar form as the likelihood function of IVA [30], as proposed
in [28], {p fm}?:g:l can be updated one by one as follows:

T T

Cfmé<(Qflem> ,OKMAR> , (44)
T - <—H
Xftxft

Dy = - (45)
f ; yftm

-4
Prm & s (Fu@iherm) T 46)

where 0 ; denotes a zero vector of size .J.

b) Iterative Source Steering: As an efficient alternative
to IP, we can use either of ISS variants called ISS1 and
1SS2,as proposedin [29]. Let Py = [py1, . . ., f)f,M(LAR-s-l)]H €
CM(Lar+1)xM(Lar+1) e g square matrix given by

_ P
P; 2 f :
f <0MLAR,M Inira >

where 07 ; denotes a zero matrix of size I x J. Then, P ¢ can
be updated for each m € [1, M] as follows:

(47)

Cfrm
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where ¢y, £ [cfml, ey cme] € CM and Cfmm 18 calculated
so that the log-likelihood is maximized as follows:

(m #m’),

3 (m=m').

—H _
me/éfm/})fm
P}, ® fm/Pim

1- (I_);'»,,L/(I)fm’pfm’)

(49)

Cfmm' =

It is proven that updating the whole P ; with (48) is equivalent
to updating only the m-th column vector of P! [27].

Foreachm € [M + 1, M(Lag + 1)],inISS1, (48) is used to
update the remaining M column vectors of f’Jil. In ISS2, they
are updated at once as follows:

Py« Py— ( Orexar ) : (50)
ON Lagx M(Lag+1)
where C¢ £ [¢f1,...,¢p0] € CM*MLar gnd
T zde gH T o <H\ !
cH LrtmX st XXy
Crm =\ 2 G —=] . 6D

where X £ [X-]EJFA, ...
gregated observed vector.

4) Ngrmalization: In each iteration, we adjust the scales of
A, Q, G, and B without affecting (33) such that

T T MULag :
’Xf7t*A*LAR+1} € (C AR 1§ an ag-

F

> wakp =1, (52)
f=1

F

> anp =1, (53)
f=1
r(QsQY) = (54)

M

DD Gum =1 (55)

lelf, m=1

C. Multichannel Wiener Filtering

Using (22) and (23), the late reverberation xlft is given by
(18) and the direct sound x¢ ¢ and early reflection x7, , of each
source n can be inferred as follows:

<d

p— . YH
E[x$, | X] = QﬁDmg(_‘?(}g) Qs (x5t —xY,),  (56)

<€

Ynr
Elx s | X] = Qlelag<yd+e> Qs (x5t — Xft) (57)
ft

where % denotes the element-wise division for vectors a and

b. For better intelligibility, )" X, (the sum of x4, and
an initial part of x;, F¢ up to L' frames) obtained by replacing

Vo pe with ZILZ/O Ynfu in (56) for some number L' < Ly can
be used instead of x4 ¢ as the final result.

D. Stabilized Optimization

We explain parameter initialization and updating techniques
for ARMA-FastMNMF(-DP) for better performance. In this
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paper we deal with speech enhancement/separation and derever-
beration under a practically-important (over)determined situa-
tion with N = Ngyeech + Npoise < M, where Nypeeen and Nyige
are the numbers of speech and noise sources, respectively. In
particular, the spatial parameters Q and G should be initialized
appropriately. Let G 2 [&1-1,...,8n]" € RfXM.

1) Progressive Update: For ARMA-FastMNMEF, we can use
a modified version of a progressive update technique proposed
for FastMNMF [13]. First, the NMF parameters W and H are
initialized randomly and the spatial parameters Q and G and
the reverberation parameters B are initialized as follows:

1 ¢ ... € 1 €
- e 1 ... € € 1 ...
Go« | . . . o ) (59)
e € ... 1 € ¢
Gy« ely s (1 € Tya), (60)
Bfl <_OM,M (l EHAR), (61)

where e is set to some small number (¢ = 1072 in this paper).
Then, Q, Gy, and B are updated 50 times with AR-FastFIA
(ARMA-FastFIA with Lya = 0) as an initialization-insensitive
method with a smaller DOF, where the source parameters
specific to AR-FastFIA are randomly initialized and updated as
well. The circular initializer given by (59) makes the SCMs given
by (24) close to rank-1 or low-rank matrices and is expected to
mitigate the initialization sensitivity as in IVA or (AR-)ILRMA
based on the rank-1 spatial model [13]. Finally, B is initialized
again with (61) because B estimated by AR-FastFIA is not
accurate due to the severely limited expressive capability of the
FI source model.

For ARMA-FastMNMF-DP, the NMF parameters W and H
are initialized randomly and the scaling parameters o and 3
are initialized with all-one vectors. Q, G, and B are initialized
with (58)—(61) and updated 50 times with AR-FastMNMF-TI,
a blind method with a smaller DOF, using the NMF-based
model with K = 2 for Nypeecn sources and the TI source model
for Nyoise sources, where the NMF parameters specific to AR-
FastMNMF-TI (different from those of ARMA-FastMNMEF-
DP) are initialized randomly and updated as well. Finally, B is

initialized again with (61), and the latent variables Z are initially
Nspeech

inferred by the encoder of a VAE given {x{, , },,7*" estimated
by AR-FastMNMF-TT.
2) Rank-Constrained Initialization: For ARMA-

FastMNMF, we can use an extended version of a rank-
constrained technique proposed for vanilla FastMNMF [13]
with Lar = Lya = 0. The ranks of the SCMs {Gnﬂ}?:l
can be fixed by initializing a specified number of elements of
g.; to zero for each source n and delay . Once gy, 1S set to
zero, it remains zero due to the multiplicative nature of (41).
As proposed in [13], for example, if source n is directional
speech with strong directivity, g,,o can be set to a one-hot vector
such that {G,, fo}?zl are rank-1 matrices as in ILRMA [6]. If
source n is diffuse noise with weak directivity, in contrast, all
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elements of g,,o should be initialized to non-zero values such
that { G, fo}?zl are full-rank matrices as in MNMF [9].

When the MA model is used (Lya > 0), the rank constraint
(RC) for {G,, fl}f::l, lelya plays another important role to avoid
partially modeling the direct sound as the early reflection. To
keep G, s (I € Ima) far from Gy, o, one can use (59) and
(60) and then G, < 0 (I € Tya) such that {anl}?:LlE]IMA
become rank-(M — 1) matrices.

V. EVALUATION

This section reports comparative experiments conducted for
evaluating ARMA-FastMNMF(-DP). First, we compare various
combinations of source and reverberation models in a speech
dereverberation task. Second, we investigate the impacts of the
hyperparameters Lya, Lar, and A, and the choice of IP or
ISS in a speech separation and dereverberation task. Finally, we
compare the proposed methods with the state-of-the-art methods
under noisy reverberant conditions.

A. Configurations

1) Test Data: Multichannel reverberant speech signals used
for evaluation were synthesized by convolving single-channel
dry speech signals with room impulse responses (RIRs) taken
from the development and evaluation subsets of the REVERB
Challenge dataset [SO]. The RIRs were measured with an eight-
channel circular array with a diameter of 0.2 [m] under six
conditions where the reverberation time RTgo was 250, 500, or
700 [ms] and the distance between the source and array was 0.5
(near) or 2.0 [m] (far). To compensate for the time gaps between
the source and microphones, multichannel dry speech signals
were also synthesized as ground-truth data by using non-echoic
RIRs obtained by masking the original RIRs except at the peak
and its previous and next two samples. Through all experiments,
audio signals were sampled at 16 kHz and processed by STFT
with a shifting interval of 256 samples and a Hann window of
1024 samples (F' = 513).

2) Training Data: The DNN-based source model was ob-
tained as the decoder of a VAE trained from clean dry speech
signals taken from the training subset of the REVERB Challenge
dataset (14.8 [h] in total). The configuration of the VAE was the
same as that of [19] except for the dimensions of the observed
and latent spaces (F' = 513 and D = 16 in our work and F' =
2048 and D = 256 in [19]) and the speaker conditioning [19]
was not used. There was no overlap between the speakers of
the training data and those of the test data. The volume of each
utterance was perturbed with a uniformly distributed random
number between 0.5 and 1.5.

3) Optimization: The number of iterations was set to 150
for achieving convergence (100 and 150 iterations for M = 3
and M = 8 were sufficient in our preliminary evaluation, re-
spectively). A (the parameters of the source model), G,and P
(i.e., Q and B) were updated in this order. For the NMF-based
source model, W and H were updated in this order. For the
DNN-based source model, U, V, and Z were updated in this
order, and Z was updated five times per iteration by using the
Adam optimizer [51] with a learning rate of 0.01.
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4) Evaluation Measures: We used the signal-to-distortion
ratio (SDR) [52], [53], the perceptual evaluation of speech
quality (PESQ) [54], the frequency-weighted segmental SNR
(FWSegSNR) [55], and the cepstrum distance (CD) [55] for
evaluating the source separation and dereverberation perfor-
mance. Larger SDR, PESQ, and FWSegSNR and smaller CD
mean better performance.

B. Comparison of Source and Reverberation Models

Using reverberant speech signals, we investigated the combi-
nations of the NMF-based, DNN-based, FI, and non-structured
source models and the AR, MA, and ARMA reverberation
models in a speech dereverberation task.

1) Experimental Conditions: Twenty reverberant speech sig-
nals were randomly selected from the development subset of the
REVERB Challenge dataset [50] under each of the six condi-
tions (120 signals in total). Each signal included only a single ut-
terance without noise contamination. The hyperparameters were
set as N = 1 (Ngpeech = 1 and Npgie = 0), M =8, Lya = 8,
Lar =4, and A = 3. We compared ARMA-FastMNMF(-DP)
with K € {4,16,64} with its ablated versions, AR- and MA-
FastMNMF(-DP), where FastMNMF-DP used only the DNN-
based source model for a single speech source. We also tested
AR-, MA-, and ARMA-FastFCA based on the non-structured
source model and AR-, MA-, and ARMA-FastFIA based on the
FI source model. As a reasonable baseline, we tested WPE [24],

@
12 DR S A G SRR TN SHRY SR Sy

10,

80 100 120 140 0 20 40 60 80 100 120 140

Iteration

(i) ARMA, 700ms

The evolutions of average SDRs. The dotted lines indicate the rank-constrained versions.

which can be interpreted as a special case of AR-FastFCA with
the SCMs equal to identity matrices.

Given the PSDs {|z ftm|2}i’tT: , of the observed reverber-
ant speech, which were considered to be close to the PSDs
{|x‘}tm |2};~“th , of the dry speech, W and H of the NMF-based
source model were initially estimated with NMF [14], Z of the
DNN-based source model was initially inferred with the encoder
of the VAE, A of the non-structured model was initialized as
Mg = ﬁ > [T ftm|?, and v of the FI source mode was
initialized as y1; = w37 me |xftm|2.

Regarding the spatial and reverberation models, Q and B
were initialized with (58) and (61), respectively. G € R1*8
was initialized with [1, ¢, . .., €] and G (le Ivia ) was initialized
with [1,. .., 1] or with the RC technique [0, 1, ..., 1]. Under the
simple experimental condition with N = 1, the progressive up-
date technique (Section IV-D1) was not used. B was optimized
with IP.

2) Experimental Results: Fig. 2 shows the evolutions of the
average SDRs obtained by the AR, MA, and ARMA methods
under RTg € {250,500, 700 [ms]}. The dotted lines indicate
the MA and ARMA methods initialized by the RC technique.

As for the AR methods, AR-FastMNMF with K = 64, AR-
FastMNMF-DP, and AR-FastFCA achieved almost the same
performance as WPE, and AR-FastFIA performed worst in all
cases. AR-FastMNMF with larger K performed better. When
N =1, a source model capable of precisely representing the
speech PSDs A is crucial for precisely estimating the AR
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coefficients B. The NMF-based source model with large K
and the DNN-based source model have sufficiently large DOFs,
whereas the FI source model does not, resulting in the significant
performance difference in speech dereverberation. We found that
the performance as well as the average power of the dereverber-
ated speech slightly decreased during the initial several tens of
iterations. This indicates that the AR model excessively removed
the reverberation, i.e., the direct sound was partially regarded as
the reverberation.

As for the MA methods, a source model with a larger DOF
was crucial for better performance as in the AR methods. When
RTgp was 250 [ms], the MA methods were comparable with
their AR counterparts. When RTgg was 500 or 700 [ms], in
contrast, the MA methods slightly underperformed their AR
counterparts. The ARMA methods outperformed their AR and
MA counterparts by a larger margin under a longer RTgo. When
RTgp was 250 [ms], the performance of the methods without the
RC technique decreased as the number of iterations increased,
especially when the source model had small degree of free-
dom. The roughly estimated PSDs lead to the overestimation of
the reverberations. The RC technique alleviated this problem.
When RTgp was 500 or 700 [ms], the RC technique yielded
no significant performance difference. For ARMA-FastFCA, its
performance and the average power of the dereverberated speech
decreased continuously, probably because of the too high DOF
of the source model. These results indicate the importance of
the source model for dereverberation.

C. Investigation of Hyperparameters and Optimizers

Using reverberant speech mixtures, we investigate the perfor-
mance of ARMA-FastMNMF according to the hyperparameters
Lma, Lagr, and A, and the optimizer (IP, ISS1, or ISS2) in a
speech separation and dereverberation task.

1) Experimental Conditions: Twenty reverberant speech
mixtures were made from the REVERB Challenge dataset [50]
under each of the six conditions (120 signals in total). Each
mixture was obtained by superimposing a reverberant speech
signal randomly taken from the development subset and another
one from the evaluation subset.

We tested ARMA-FastMNMF with N = 2, M € {3,8}, and
K =16. We investigated the impact of the delay parame-
ter A € {2,3,4} using Lya = 0 and Lagr € {2,4,8,16}. We
then investigated the combination of Ly € {0,2,4,8,16} and
Lag €{0,2,4,8,16} using A =2 for M =3 or A =3 for
M = 8. ARMA-FastMNMF reduces to vanilla FastMNMF [13]
when Lya = 0 and Lag = 0, MA-FastMNMF when Ly # 0
and Lag = 0, and AR-FastMNMF [23] when Lya = 0 and
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TABLE I
THE p VALUES OBTAINED BY THE DEPENDENT ONE-SIDED ¢-TESTS FOR THE
SDRS OF 40 SAMPLES OBTAINED BY IP, ISS1, AND ISS2 WITH THE BEST

CONFIGURATIONS
M =3 M =38
RTgo 250 500 700 | 250 500 700

Ho: IP = 1SS1, Hy: IP > ISS1
Ho: ISS2=ISS1, Hy: ISS2>1SS1
Ho: IP = 1SS2, Hy: IP > ISS2

0.058 0.020 0.000
0.000 0.020 0.000
0.630 0.225 0.038

0.042 0.140 0.158
0.008 0.001 0.000
0.260 0.364 0.573

Lagr # 0. The parameters were initialized with the progressive
update technique (Section IV-D1). The integrated spatial and
AR coefficients P were updated with IP, ISS1, or ISS2. In
addition to the SDR, we measured the elapsed time per iteration
for processing a mixture signal of 9.2 [s] (average length) on
NVIDIA GeForce Titan RTX. We used the dependent one-sided
t-test for statistical significance assessment.

2) Experimental Results: Fig. 3 shows the average SDRs ob-
tained by AR-FastMNMEF with ISS2 with respectto M € {3,8}
and RTg € {250,500, 700 [ms]}. The best configuration of the
delay parameter was A = 2 for M =3 or A =3 for M =8,
regardless of RTgy. When A = 2 for M = 8, the direct sound
was partially represented by the AR model, resulting in the
excessive dereverberation. We thus decided to use the same
configuration for ARMA-FastMNME.

Figs. 4, 5, and 6 show the average SDRs obtained by ARMA-
FastMNMEF with IP, ISS1, and ISS2 with respect to M € {3, 8}
and RTgp € {250,500, 700 [ms]}. Note that ISS1 is equivalent
to ISS2 when Lag = 0. MA-FastMNMEF always outperformed
FastMNMF in any condition (see the most-left column of each
table). When M = 8, ARMA-FastMNMF outperformed AR-
FastMNMEF by a large margin. For IP, when M = 8 and RTgp =
250 [ms], MA-FastMNMF with Lya = 8 outperformed vanilla
FastMNMF (p < 0.001), and ARMA-FastMNMF with Lya =
8 and Lar = 2 outperformed AR-FastMNMF with Lag = 4
(p = 0.022). This indicates the effectiveness of using both the
source-independent AR and source-dependent MA models for
precise reverberation modeling. When M = 3, in contrast, the
performance gain of ARMA-FastMNMF from AR-FastMNMF
was smaller. Since each of the N (Lya + 1) SCMs of the direct
sounds and early reflections was represented as a weighted sum
of common M rank-1 SCMs in (24), the effectiveness of the
MA model was limited by the severely restricted representation
capability. Comparing IP, ISS1, and ISS2 used for AR- and
ARMA-FastMNMEF, where the best configuration of Lagr and
Lyia was used for each method, the SDRs and likelihoods of TP
and ISS2 were higher than those of ISS1. Table II shows the p
values in comparison of IP, ISS1, and ISS2. This indicates that
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AR- and ARMA-FastMNMF with ISS1 are more likely to get TABLE III

. . THE ELAPSED TIME [ms] PER ITERATION OF ARMA-FASTMNMF FOR
stuck at bad local op.tlma. This was because only M elemer.lts PROCESSING A 9.2 SECONDS SIGNAL ON GPU
of P are updated with (48) for each m (> M) in ISS1, while

M(Lag + 1) and M Lag elements are updated at once with IP (a) M =3, 1P (b) M =8, 1P

and ISS2, respectively. We also found that there were strong  Lma\Zag 0 2 4 8 16 rLwmarLag 0 2 4 8 16

correlations between the SDRs of ISS1 and ISS2, resulting in 16|52 55 57 64 120 16160 180 320 590 1600
8 39 41 43 50 110 8 110 140 270 550 1500

the small p values.
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Table III shows the elapsed times of ARMA-FastMNMF 2 28 31 33 39 96 2 83 100 240 510 1500
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the others, especially for M = 8 and a larger Lag, because

M = 3, ISS1 d) M = 8, ISS1
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ARMA-FastMNMF(-DP) with the state-of-the-art methods in 16 136 65 67 73 130 16| 110 190 210 390 1200
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a speech separation and dereverberation task. 4 |16 24 26 52 110

1) Experimental Conditions: 100 noisy reverberant speech 2 |13 40 42 48 100
mixtures were made from the REVERB Challenge dataset [50] 0 |93 36 38 44 097
under each of the six conditions (600 signals in total). Each
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TABLE IV
THE SEPARATION AND DEREVERBERATION PERFORMANCES OF THE CONVENTIONAL AND PROPOSED METHODS FOR M = 3
SDR (Observation = —4.1 dB) PESQ (Observation = 1.1) FWSegSNR (Observation = —0.2 dB) CD (Observation = 7.6)

- |MA |WPE| AR WPEJ AR AR | MA |WPE| AR WPEJ AR AR | MA |WPE| AR WPE|AR| AR | MA |WPE| AR WPE| AR | AR

Method 1ss |1ss | 1ss |1ss [PMAMAIMAL 6ol iss | 1ss |1ss [PMAIMAIMA] 6ol iss | 1ss |1ss [FMAIMAT MA ool igs | 1ss | 1ss [FMA|MA|MA
ISS | IP |ISS ISS | IP |ISS ISS | IP | ISS ISS | IP |ISS

IVA 121 - [ 3.0 (29| - - - |1.28] - |1.35(1.39| - - - 10.74] - 10.82(0.77| - - - 1695 - |6.81(6.80| - - -
ILRMA K=4 I.1| - 30|33 - - |- 128 - 133|137 - - | - [0.76] - ]0.85|0.90| - - - 16.99] - |6.85(6.81| - - -
ILRMA K=16 09| - |28 (32| - - - |1.28] - |1.32(1.37| - - - 10.77) - 10.85(0.92| - - - |7.01| - |6.87(6.83] - - -
ILRMA K=64 08| - | 27|31 - - |- (127 - 134|136 - - | - [0.76] - ]0.84|0.92| - - - |7.01] - |6.88(6.84| - - -
ILRMA-DP 1.0 - |28 (32| - - - |1.27) - |1.37(1.38]| - - - 10.80] - |0.88(0.94| - - - |7.04| - |691(6.87| - - -
FastFIA 1318|3129 35|3.5]3.5[1.27/1.29| 1.32 |1.36| 1.32 [1.34[1.34|0.69(0.71| 0.76 |0.70| 0.79 |0.74| 0.75 |6.97(6.96|6.85 |6.84|6.83 |6.81|6.80
FastMNMF K=4 [3.6(5.0 5.1 |55 6.0 6.5 |64 [1.37/1.37/1.39|1.42|1.39|1.43|1.43|0.90/1.33| 1.07 |1.14| 1.40 | 1.56| 1.57 [6.81|6.84|6.67 |6.60|6.70 |6.59|6.60
FastMNMF K=16 2.5 4.0 | 4.1 [ 4.6 | 5.1 |55 |55 |1.32(1.36]1.39 |1.43| 1.39 | 1.42|1.42|0.79|1.10| 0.86 |0.91| 1.13 | 1.20| 1.22 |6.91/6.74|6.80 |6.76| 6.67 |6.63|6.62
FastMNMF K=64 | 1.4 | 2.8 | 3.2 | 3.7 | 4.0 | 4.5 |4.5]1.29/1.34]1.36|1.39| 1.38 |1.40{1.40|0.73|0.79{ 0.78 |0.84| 0.81 |0.91| 0.88 [6.99|6.87|6.88 |6.84|6.81|6.77(6.78
FastMNMF-TI 2714042 46|50 |47 |54(1.32/1.35/1.36|1.40| 1.37 [1.40{1.43]0.91|1.14| 0.92 [0.95| 1.11 [0.99| 1.18 |6.98|6.89| 6.88 |6.86 6.83 [6.92(6.79
FastMNMF-DP 43153159 (65|64 |6.1]68|1.35/1.38|1.42(1.46|1.43[1.43/1.46(1.76/1.94|1.97|2.18|2.02|2.00| 2.20 |7.20(7.26|7.04 (6.94|7.12 |7.15|7.01

TABLE V
THE SEPARATION AND DEREVERBERATION PERFORMANCES OF THE CONVENTIONAL AND PROPOSED METHODS FOR M = 8
SDR (Observation = —4.1 dB) PESQ (Observation = 1.1) FWSegSNR (Observation = —0.2 dB) CD (Observation = 7.6)

vt |- [T Tl e [SPEARTORT - Toluoe] e [SPERT ST oo e [T 2T
ISS | ISS | ISS |ISS ss | |1ss ISS|ISS | ISS [ISS 1ss | P |1ss ISS | 1SS | ISS | 1SS s | | 1ss ISS | ISS | ISS [ISS ss | |1ss

VA 63 - | 81|77 - - | - |165] - |171|1.66| - - | - [1.86] - [1.96|1.78| - - - 16.26] - |6.13(6.21| - - -
ILRMA K=4 6.6 - | 84 (91| - - - |L63] - | 1.72(1.73] - - - 201 - |2.11(2.24| - - - 1625 - |6.12(6.05| - - -
ILRMA K=16 6.1 - [ 8290 - - |- (162 - | 172|173 - - | - 201 - [2.12(2.30| - - - |6.28] - |6.14(6.05| - - -
ILRMA K=64 60 - |80 (89| - - - |1.59] - | 1.70(1.73] - - - |1.99] - |2.11(2.30| - - - 1630 - |6.15(6.07| - - -
ILRMA-DP 570 - |77|86]| - - | - [163] - |170|1.72| - - | - [2.03] - [2.15|2.38| - - - |6.40| - |6.27]6.19| - - -
FastFIA 6.117.0|79 |7.8]| 87 85|84 |1.60[1.62|1.66[1.63|1.691.74|1.71|1.69(1.82|1.81 |1.71|1.90 |1.87| 1.81 |6.33|6.26|6.21 |6.22|6.15 |6.14|6.17
FastMNMF K=4 [9.1]9.9(10.9[11.2]11.3 [11.6[11.5|1.69(1.73|1.78 |1.79| 1.82 |1.85|1.85|2.35|2.32| 2.53 |2.64| 2.46 |2.69| 2.63 |6.04|6.39|5.90 |5.87| 6.18 |6.02|6.08
FastMNMF K=16 | 8.3 9.5 [ 10.2{10.3|10.9 |{11.2|11.1{1.68|1.73| 1.75|1.77| 1.79 | 1.88|1.82{2.11|2.52| 2.25 |2.30| 2.53 | 2.66| 2.65 |6.09]6.06|5.96 [5.99|5.96 |5.88|5.91
FastMNMF K=64 | 7.3 | 8.6 | 9.2 | 9.4 | 10.0 [10.2[10.1|1.65[1.67| 1.71 |1.72| 1.74 |1.77|1.75|1.88|2.23| 1.96 |2.12| 2.14 |2.30| 2.25 |6.26/6.07|6.13 |6.12| 6.04 |5.99|6.03
FastMNMF-TI 6.1183]9.1 [9.8]99 [10.3|10.4/1.59(1.77|1.64|1.67|1.77 |1.80|1.82(2.12|2.56|2.30(2.49|2.58 |2.69| 2.74 |6.47|6.24|6.19 [6.13|6.10 |6.06|6.04
FastMNME-DP 7.619.610.5(11.0/ 109 [11.3|11.4|1.70{1.73| 1.79 |1.80| 1.80 |1.84|1.83(2.43|2.83|2.70|2.98|2.80 |3.06| 3.08 |6.75/6.76|6.58 [6.49| 6.65 [6.51|6.50

mixture was obtained by superimposing a reverberant speech
signal randomly taken from the development subset, another
one from the evaluation subset, and a real diffuse noise signal
(mainly caused by air conditioners) from the development or
evaluation subset. The SNR of the clean speech mixture was set
to 0 dB.

We tested ARMA-FastMNMF(-DP/TI) and ARMA-FastFIA
with M € {3,8}, Lma € {0,8}, and Lagr € {0,4}. The delay
parameter was set as A = 2 for M =3 and A =3 for M =8
and the number of bases was set as K € {4, 16, 64} for ARMA-
FastMNMF and K = 16 for ARMA-FastMNMEFE-DP/TI. ISS2
was used for updating the integrated coefficients P. IP was also
tested only when Lyja = 8 and Lag = 4. For comparison, we
tested AR-IVA and AR-ILRMA(-DP) with the same config-
uration except for Lya. In addition to these joint separation
and dereverberation methods, we tested sequential methods
that perform dereverberation with WPE and separation (and
further dereverberation) with the MA methods (Lya € {0,8}
and Lar = 0) in this order. Since the rank-1 spatial model is
applicable to only a determined condition with N = M and an
unknown number of noise sources were included, we set N = 3
(Nspeech = 2and Npoise = 1) for M = 3and N = 8 (J\]speech =2
and N = 6) for M = 8, where two sources were selected out
of N sources such that the performance was maximized in terms
of each measure.

2) Experimental Results: We first validate the effectiveness
of the combination of the AR and MA reverberation models.
Tables IV and V show the SDRs, PESQs, FWSegSNRs, and CDs
averaged over all conditions. In most cases, ARMA-FastMNMF
outperformed AR-FastMNMEF in terms of all measures. How-
ever, ARMA-FastMNMF attained only a marginal gain (0.4 dB
when K = 4) over AR-FastMNMF for M = 8,inwhich N = 8
sources were estimated. These extra sources were exploited by
AR-FastMNMF to represent the early reflection and the residual
late reverberation that was not represented with the AR model.
In ARMA-FastMNME, these reflection and reverberation were
represented by the MA model. Therefore, the dereverberation
performance of ARMA-FastMNMF and AR-FastMNMF were
not so different. Nonetheless, ARMA-FastMNMF is still con-
sidered to be advantageous in estimating the actual number
of speech sources from the separated signals under a noisy
reverberant condition thanks to the little leakage of speech
components to noise components. Note that ARMA-FastMNMF
has a clear performance advantage under a noise-free condition
(Section V-C).

We then compare the source models. ARMA-FastMNMF
with K =4 and ARMA-FastMNMF-DP performed best in
terms of the SDR. The NMF-based source model with a larger K’
worked worse for speech separation and dereverberation under a
noisy condition because it fit not only the PSDs of clean isolated
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speech but also those of any noisy sound mixtures. Note that
it worked better for speech dereverberation under a noise-free
condition (Section V-B). In contrast, the DNN-based source
model, which also had rich expression capability, was trained
to represent only the PSDs of clean isolated speech. In fact,
however, the performance improvement was small because the
latent variables Z of the test data were hard to update gradually
towards the global optimum with the gradient descent algorithm
(backpropagation) through unseen areas that were not covered
by the training data. To make the latent space widely covered
by the training data, adversarially learned inference (ALI) [56]
would help.

We finally validate the effectiveness of the joint separation and
dereverberation approach. As for the NMF-based source model,
the joint method, AR(MA)-FastMNMF, attained a marginal
gain over its sequential counterpart, WPE+(MA-)FastMNME,
in terms of the SDR. One reason is that although the PSDs of
each direct sound were estimated individually, only the sum of
those PSDs over all the sources made an effect on the estimation
of the AR coefficients B with (46) or (48). As for the FI source
model, in contrast, the joint method, AR(MA)-FastFIA, un-
derperformed its sequential counterpart, WPE+(MA-)FastFIA
because the expression capability of the source model was not
enough to precisely estimate B, as discussed in Section V-B.

VI. CONCLUSION

This paper presented a computationally-efficient joint source
separation and dereverberation framework based on a unified
probabilistic model consisting of the non-structured, FI, TI,
NMF-based, and/or DNN-based source model(s), the JD full-
rank spatial model, and the source-independent AR and/or
source-dependent MA reverberation model(s). We derived three
optimization methods called IP, ISS1, and ISS2 for jointly updat-
ing the diagonalizers used for separation and the AR coefficients
used for dereverberation.

In our comparative experiments, we comprehensively vali-
dated MA-, AR-, and ARMA-FastMNMF(-DP) with IP, ISS1,
and ISS2 in terms of the computational cost and the separation
and dereverberation performance. We revealed the mutual ben-
efit of the AR and MA models used for representing the late
reverberation and the early reflection, respectively. We found
that a source model with a higher expression capability is crucial
in speech dereverberation, whereas such a rich source model is
not necessarily effective for joint source separation and derever-
beration. We also showed the superiority of the proposed joint
method, ARMA-FastMNMF(-DP), over the sequential counter-
part and the conventional (semi-)blind methods based on the
rank-1 spatial model.

In the future, we will extend both the spatial and reverberation
models to deal with time-varying acoustic environments (e.g.,
moving sources and microphones). One promising way is to use
normalizing flows (NFs) for representing the diagonalizers and
AR coefficient matrices in a time-varying manner as proposed
for a determined BSS method called NF-IVA [57] with time-
varying demixing matrices.
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