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Abstract

Anatomical structures such as blood vessels in contrast-enhanced CT (ceCT) images
can be challenging to segment due to the variability in contrast medium diffusion. The
combined use of ceCT and contrast-free (CT) CT images can improve the segmenta-
tion performances, but at the cost of a double radiation exposure. To limit the radiation
dose, generative models could be used to synthesize one modality, instead of acquiring
it. The CycleGAN approach has recently attracted particular attention because it allevi-
ates the need for paired data that are difficult to obtain. Despite the great performances
demonstrated in the literature, limitations still remain when dealing with 3D volumes
generated slice by slice from unpaired datasets with different fields of view. We present
an extension of CycleGAN to generate high fidelity images, with good structural con-
sistency, in this context. We leverage anatomical constraints and automatic region of
interest selection by adapting the Self-Supervised Body Regressor. These constraints en-
force anatomical consistency and allow feeding anatomically-paired input images to the
algorithm. Results show qualitative and quantitative improvements, compared to state-
of-the-art methods, on the translation task between ceCT and CT images (and vice versa).

© 2022. The copyright of this document resides with its authors.
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Moreover, using the CT images produced by our algorithm, we achieve blood vessel seg-
mentation performance on par with the segmentation performance using real CT images.

1 Introduction
Heterogeneity in contrast is one of the major difficulties in medical image segmentation when
using Convolutional Neural Networks (CNN), in particular in constrast-enhanced Computed
Tomography (ceCT) images. The effect of the contrast agent on the pixel intensity is not
always the same among patients due to different factors, such as acquisition times and patient
morphology. Furthermore, the presence of a tumor or thrombosis in the vessels can also
cause heterogeneity in contrast within an anatomical structure. This raises difficulties during
segmentation, and manual corrections are often needed.

In [23, 27, 33] the authors show that the combined use of ceCT and contrast-free (CT)
CT images is able to deal with the heterogeneity of ceCT images and thus improves segmen-
tation. However, in order to limit ionising radiations, clinicians often acquire only one CT
modality. One common computational approach to compensate for the absence of an imag-
ing modality is to use generative models [4, 31] to synthesise it. In the absence of paired
data sets, unsupervised translation methods, based on CycleGAN [32] and UNIT [17], have
been proposed [7, 14, 21, 31]. Some authors have also already considered applying Cycle-
GAN [23, 27] or UNIT [33] to artificially remove or add contrast medium on CT images.
CycleGAN [32] is an evolution of Generative Adversarial Network (GAN) [10], which in-
troduces a second neural network that tries to solve the inverse task, namely reconstructing
the input. A cycle consistency loss function is combined to the adversarial loss to overcome
the lack of paired data. UNIT [17] is another model conceived for the unpaired setting.
This generative model is composed of two variational autoencoder networks, which work
on two different domains but share the same latent space. Different modifications have al-
ready been proposed for both methods, such as the use of Wasserstein distance [1], attention
mechanisms [8, 15] and U-Net as discriminator network [24]. However, these models do not
guarantee to preserve fine structures [33] and may produce artefacts [25, 31], which prevent
their use for the segmentation of small and heteregoneous structures, such as blood vessels.
In particular, the cycle consistency loss function enforces a relationship only at a distribution
level. In [19], the authors demonstrate that CycleGAN can deliver ambiguous solutions, es-
pecially for substantially different distributions as in medical imaging. Several works tried
to address this limitation by adding more terms to the loss function, such as mutual informa-
tion [9] and perceptual loss term [2, 29], that require no supervision. Despite the different
methods proposed, the anatomical constraint remains insufficient.

As a matter of fact, another challenge when dealing with unpaired 3D medical images
is the lack of 3D consistency. With current hardware memory limitations, it is difficult
to train a 3D network taking as input a whole 3D volume. Instead, a common approach
is to use 2D networks that take a slice of a 3D volume along one axis. Moreover, in the
unpaired scenario we can have different number of slices for the same anatomical region
among patients, leading to difficulties to select anatomically-paired slices. In fact, in [25],
authors showed that it is fundamental to inform the generator on the specific regions that
should be affected by the contrast materials. For this reason, the use of not-aligned paired
data is more effective than unpaired data. Some authors [30] claim that the use of unpaired
data can be mitigated by exploiting the approximately common anatomy between subjects.
They refer to this as position-based selection (PBS) strategy. However, in the abdominal
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region, the different sizes and lengths of the organs must be taken into account, implying
that the slice n of the patient i with N slices may not have the same anatomical content as
slice m = n · M

N of patient j with M slices. Eventually, the use of 3D affine registration (e.g.,
as in the Simple-Elastix [18] library) could be a solution to the problem, but the difference
between the two domains, the difficulty of identifying the fixed reference image, and the
high variability in shape and relative size and pose of abdominal organs among subjects
(especially in 3D) may lead to misalignment.

To address these issues, we propose an extension of the CycleGAN method which in-
cludes:

(i) the automatic selection of the region of interest by exploiting anatomical information,
in order to reduce the anatomical distribution of 3D data acquired with different fields
of view;

(ii) the use of a Self-Supervised Body Regressor (SSBR), adapted from [28], to select
anatomically-paired slices among the unpaired ceCT and CT domains, and help the
discriminator to specialize in the task;

(iii) the use of the SSBR score as an extra loss function that constrains the generator to
produce a slice describing the same anatomical content as the input, inspired from the
auxiliary classifier GAN [20];

(iv) the use of the input image as a template for the generator, as in [3], and the use of an
anatomical binary mask to constrain the output.

The proposed method is generic and could be used in different medical applications, i.e.
different body regions such as brain or lungs, or different translation modalities such as MRI
to CT or T1-w to T2-w. Here, we propose to use it for the generation of CT abdominal
images from ceCT images and vice versa. We test the use of a generated modality, in combi-
nation with the complementary original one, to improve segmentation performance on blood
vessels of pathological patients. To the best of our knowledge, this strategy has never been
tested for such an application.

We show that our method greatly improves the ceCT-CT translation quality compared to
state-of-the-art methods. As a consequence, the segmentation performances using generated
images are also improved, achieving both qualitative and quantitative results comparable to
the ones using both real images.

It is important to highlight that, in this work, the use of synthetic images is intended to
increase segmentation performances and not to use for clinical diagnosis.

It should be also noted that in this paper we focus on CNN-based methods, as state-
of-the-art methods for unsupervised medical image translation. While interesting works on
image-to-image translation based on trans f ormers are starting to be explored [13, 16], their
application in the medical domain is limited due to the restricted number of data available.
For this reason, existing works focus only on paired medical data sets [6]. Nevertheless,
for the sake of completeness, we test a transformer-GAN, namely TransGAN [13], on our
unsupervised medical task.

2 Proposed Method
As stated in Section 1, when using 2D unpaired medical data, the selection of consistent
(i.e., corresponding to the same region of interest (ROI)) and anatomically similar slices
between the two domains is highly important to facilitate the generative process. To this end,
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Figure 1: Proposed method for the selection of anatomically-paired slices via Self-Supervised
Body Regressor, and its use as a loss function LACL.

we propose to leverage a Self-Supervised Body Regressor (SSBR) [28], a CNN that finds
common features on anatomically similar slices from unlabeled CT images. This results in
assigning the same label for slices describing the same anatomy while belonging to different
patients. The SSBR is trained to estimate slice scores which are monotonous functions of the
slice indices. However, there is no guarantee to obtain the same range of scores for different
modalities. We propose a solution to this problem. The method described in this section is
summarized in Figure 1.

Input selection via SSBR First of all, because of the different fields of view (FOV)
in the two datasets, it is important to select an appropriate ROI. This can be done off-line
and manually, as in [23, 33]. Here, instead, we first propose a simple, automatic and on-
line method to select only slices from the abdominal region. We automatically select the first
slice of the lungs and the last slice of the intestinal area as upper and lower landmarks, which
is easy due to the strong presence of black pixels in both ceCT and CT acquisitions.

Then, instead than PBS strategy as in [30], we propose the use of an SSBR, as shown
in Figure 1. For training, we optimize three loss functions that do not require annotated
anatomical labels. The first one, as in [28], favors an increasing order of SSBR scores
according to the positions of the slices, avoiding repeating scores and ensuring similar scores
for adjacent regions:

Lorder =−
K

∑
k=1

P−1

∑
p=1

log(h(Scorek,p+1 −Scorek,p)) (1)

where Scorek,p∈ [−1,1] is the SSBR output for slice p of CT volume k, h is the sigmoid
activation function, K is the number of CT volumes in the chosen set (mini-batch) and P is
the number of slices in each volume.

The second loss function exploits the automatic selection of the ROI, forcing the first and
last slices to have a score of -1 and +1 respectively:

Lnorm =
K

∑
k=1

( f (Scorek,1 +1)+ f (Scorek,P −1)) (2)
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where f is a smoothed L1 norm. This function guarantees the same score range for both
modalities.

The third loss function takes into account the anatomical variability of the abdominal
area. Using the binary mask BM of the body for each slice (easily obtained in CT), we
want the difference between successive scores to be an increasing function of the normalized
cardinality of the intersection of the BM of successive slices:

Lanat =
K

∑
k=1

N−1

∑
p=1

f (∆BM
k,p+1 −∆k,p+1))

with ∆
BM
k,p = 1−

|BMk,p ∩BMk,p−1|
|BMk,p−1|

and ∆k,p = Scorek,p −Scorek,p−1

(3)

This is done in order to increase the difference in score between slices with higher anatomi-
cally difference and not fall into the trivial linear solution.

Eventually, the terms of the cost function are combined by a weighted average, and the
function to be optimized is:

LSSBR = αLorder +βLanat + γLnorm (4)

where α , β and γ are empirically chosen weights that balance the three losses.
Once the SSBR is properly trained (details in the next section), to extract the anatomically-

paired slices for each iteration of the CycleGAN we do the following:

1. A single patient is selected for each of the unpaired ceCT and CT domains, called
domains A and B;

2. The 3D volumes are automatically restricted to the abdominal region;
3. SSBR scores are predicted for each 2D slice of the two 3D ROIs, using the pre-trained

SSBR;
4. J random SSBR scores, denoted by ScoreR j , are sampled in [−1,1], where J is the

selected number of slices corresponding to the size of the mini-batch;
5. For each ScoreR j , the slice with the closest score is selected in each domain, as

arg minp |ScoreR j − Score·,p| where · is the domain (A or B) and p is the selected
slice in [1,N] for A and [1,M] for B.

Anatomically constrained CycleGAN Inspired by [20], we propose the use of the pre-
trained SSBR as an auxiliary classifier to enforce the anatomical consistency (i.e., same
body parts) between the input and the synthesized output. During the training phase of the
generator, we add to the loss functions of the standard CycleGAN an L1 norm between the
SSBR score of the input real A (resp. real B) and the SSBR score of the generated slice
f ake B (resp. f ake A), called the Anatomical Constraint Loss (ACL), as shown in Figure 1:

LACL =
1
J

J

∑
j=1

|ScorerealA/B, j −Score f akeB/A, j| (5)

We also propose to further constrain the models in two ways. First, as in [3], we use
the input image as a template (InAd in images and tables), i.e. the generators only need to
estimate how to modify the input image without estimating an output image from scratch.
Secondly, during inference, we remove the artefacts created in the original black areas (e.g.
background or air). Here, we use the binary mask BM used also in Equation 3.
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3 Results and Discussion

3.1 Implementation details

The hyperparameters for CycleGAN and UNIT were found empirically on the training set,
starting from those in [32] and [17] respectively. The best combination of weights for Cycle-
GAN losses was found as 0.5 for identity loss, 10 for cycle-consistency loss and 1 for both
adversarial loss and our LACL loss function. For KL loss of UNIT we set a weight of 0.01.

For the SSBR, we operated as in [28], using ResNet-34 [11] as the backbone. The best
weights in Eq. 4 were found empirically as: α = 5 ·10−3,β = 1,γ = 10.

All trainings and tests were run on a GPU NVIDIA® Tesla® P100 with 16 GB of VRAM
using a mini-batch size of 8.

Figure 2: Comparison of some state-of-the-art methods on slices of the unpaired test set. Top
table: ceCT to CT. Bottom table: CT to ceCT. The slices in all tests are selected with PBS.
The input in the other direction gives an idea of what the expected result should look like.
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3.2 Qualitative results on unpaired datasets

Dataset For the unpaired image-to-image translation training, the images were obtained from
the Cancer Imaging Archive (TCIA) [5]. Two databases of pathology-free abdominal CT im-
ages were used: CT Pancreas [22] with 82 ceCT images of abdomens, and CT Colonogra-
phy [26] which contains non-contrast CT images of which 82 healthy subjects were retained
for consistency with the first dataset. For both datasets, 72 patients are used for training and
10 for testing. All axial slices were resized from 512×512 to 128×128 pixels to make the
training less computationally and memory intensive.
Experiments First, we tested several existing methods [1, 8, 17, 32] to select the best net-
works for the generators (G) and the discriminators (D). The use of the only renal region
slices was deemed essential for our experiments to obtain anatomically consistent images
and our automatic detection of the abdominal region proved effective, removing the need
for manual selection. Some qualitative examples about automatic ROI selection is showed
in supplementary materials. Moreover, in all these tests, we used the PBS [30] strategy for
selecting slices at the same relative position. Although different methods gave satisfactory
results for the easier task of ceCT2CT, only the CycleGAN [32] with ResNet as the gen-
erating network and PatchGAN as the discriminating mechanism produced good results in
terms of contrast realness for the task of CT2ceCT, as shown in Figure 2. Probably for
methods such as TransGAN, performances are limited by the restricted amount of data and
computational power.
Despite the good results shown in the method identified as the best ones in Figure 2, in
terms of overall shape and contrast intensity, the PBS selection was not sufficient and several
anatomical artefacts appeared (see Figure 3). Another existing strategy for anatomically-
paired selection that we tested was the use of 3D affine registration with Simple-Elastix [18]
algorithm. Given the high variability between the two domains, we decided to perform the
registration at each iteration between the two selected patients. Anatomical coherence was
improved but some important artefacts still appeared. Finally, our proposed selection with
SSBR was tested, which reduced the severity of artefacts, as shown in the forth column of
Figure 3.

We then added the LACL loss function, which significantly improved anatomical coher-
ence, particularly in the binary mask regions. Eventually, we combined in a first moment the
use of input as template InAd and in a second moment the binary mask BM. The complete
proposed method based on SSBR selection with LACL, InAd and BM produced high quality
synthetic images, without visual artefacts and with realistic contrast intensity according to
physicians’ evaluation. Some qualitative results are detailed in Figure 3.

3.3 Quantitative ablation study on paired database

Dataset For quantitative testing we used a pathological private pediatric database of paired
abdominal ceCT-CT images of 10 patients with renal cancer. It is important to note that
the small number of patients in this data set prevents achieving satisfactory performance
on training generative models.No public paired ceCT-CT datases is available, so this small
dataset we gathered is quite rare. Moreover, we want to emphasize that for each subject we
have at our disposal about 100 2D slices of the renal ROI and therefore the results refer to a
total of about 1000 2D images.
Results The quantitative ablation and comparative study was performed using the presented
methods, pre-trained on the unpaired data-sets. The results are presented in Table 1 using
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Figure 3: Qualitative results on unpaired slices. Top table: CT to ceCT. Bottom table: ceCT
to CT. Tests based on CycleGAN. Last four columns: results with our methods, we add each
proposition to the SSBR selection. InAd indicates the input addition while BM the use of
binary mask. Arrows: high (red), low (orange) and no (green) artefacts.



LA BARBERA ET AL.: ANATOMICALLY CONSTRAINED CYCLEGAN 9

mean square error (MSE), structure similarity (SSIM) and peak signal to noise ratio (PSNR)
between real and fake images, and training time (TIME). All our contributions improve on
the original CycleGAN with PBS [30], at the cost of some additional learning time (note that
the inference time remains the same for all methods). Their combination produces the best
results for both tasks. The use of affine registration seems to be quantitatively comparable
to the use of SSBR for the selection and loss function LACL, but the network requires a very
high computational time in addition to the creation of artefacts, as illustrated in Figure 3.

Table 1: Quantitative study on the 10 patients with paired images. Mean square error (MSE),
structure similarity (SSIM) and peak signal to noise ratio (PSNR) are shown as mean and
standard deviation. TIME is the training time. Tests based on CycleGAN. The first section of
rows presents the ablation study, in which each proposition is added to the SSBR selection.
InAd indicates the input addition while BM the use of binary mask.

CycleGAN Method MSE [10−2] (↓) SSIM [10−1] (↑) PSNR (↑) TIME (↓)
real CT→fake ceCT vs real ceCT

+LACL + InAd +BM 6.37 (2.01) 6.81 (0.62) 18.14 (1.23) 7h 55m
+LACL + InAd 6.41 (1.97) 6.67 (0.63) 18.11 (1.22) 7h 55m
+LACL +BM 8.19 (2.32) 6.36 (0.72) 17.02 (1.14) 7h 49m

+InAd 6.79 (2.85) 6.60 (0.74) 17.97 (1.54) 7h 14m
+BM 8.42 (2.46) 6.24 (0.73) 16.91 (1.17) 7h 5m
+LACL 8.55 (2.28) 6.19 (0.69) 16.82 (1.07) 7h 49m

SSBR selection 9.07 (2.39) 5.99 (0.71) 16.56 (1.07) 7h 5m
AFFINE REG. 8.16 (1.80) 6.36 (0.57) 16.99 (0.87) 16h 33m

PBS 10.05 (2.89) 5.76 (0.65) 16.14 (1.15) 3h 2m
real ceCT→fake CT vs real CT

+LACL + InAd +BM 4.05 (0.83) 7.23 (0.53) 20.03 (0.92) 7h 55m
+LACL + InAd 4.24 (0.86) 6.80 (0.37) 19.83 (0.92) 7h 55m
+LACL +BM 5.08 (0.85) 6.87 (0.52) 19.02 (0.74) 7h 49m

+InAd 6.16 (1.15) 5.87 (0.23) 18.18 (0.79) 7h 14m
+BM 6.07 (1.28) 6.61 (0.65) 18.28 (0.99) 7h 5m
+LACL 5.87 (1.73) 6.08 (0.22) 18.47 (1.12) 7h 49m

SSBR selection 7.15 (2.16) 5.68 (0.52) 17.64 (1.26) 7h 5m
AFFINE REG. 4.72 (0.95) 6.77 (0.37) 19.36 (0.93) 16h 33m

PBS 8.26 (1.97) 5.36 (0.28) 16.96 (1.04) 3h 2m

3.4 Blood vessel segmentation using ceCT and CT
Dataset For the proposed segmentation application, the synthetic images used were pro-
duced using generative methods trained as explained previously but with images at the orig-
inal size 512×512. Reference segmentations of arteries and veins were manually performed
by medical experts on our paired pathological dataset.
Segmentation performances To further demonstrate the realness of the images generated
by our method, similarly to [4, 23, 27, 33], we compared the performance of a segmentation
network when using either a real image and a fake image, or both real images. Given the re-
stricted dataset, all tests were done with the Leave-One-Patient-Out (L-O-P-O) method using
the 3D nnU-Net [12]. Results show that replacing a real CT modality with a synthetic one
produced with CycleGAN and the PBS method, as in [23, 27], is not sufficient to achieve
performances as good as when using both real modalities. By contrast, the synthetic CT
images produced by our method achieve the highest Dice score and the lowest Hausdorff
distance, with the best combination of precision and recall. This is even more evident for
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the more heterogeneous cases, particularly for the veins. Quantitative results are shown in
Table 2. Some qualitative results and other quantitative results for an extended ceCT dataset
(no CT images available) can be found in the supplementary material.

Table 2: Segmentation performance on real ceCT of 10 patients (and then on the only 5
more heterogeneous cases) using L-O-P-O methods. Dice score (DS), precision (PR), recall
(RC) and 95th percentile of the Hausdorff distance (HD95) are given (mean and standard
deviation). All tests were done using 3D nnU-Net [12] with intensity (except if indicated)
and geometric data augmentation.

INPUT Database Structure DS [100%] (↑) PR [100%] (↑) RC [100%] (↑) HD95 [mm] (↓)
on 10 patients

real ceCT and real CT Arteries 74.61 (5.89) 85.22 (8.32) 69.06 (8.15) 15.39 (5.72)
Veins 45.62 (13.72) 60.61 (19.53) 38.68 (14.83) 31.47 (16.53)

real ceCT without data aug. Arteries 63.75 (11.18) 80.33 (10.99) 53.88 (12.48) 23.43 (8.18)
Veins 21.18 (19.70) 64.04 (34.08) 15.45 (16.04) 42.14 (23.79)

real ceCT Arteries 73.01 (6.57) 81.08 (8.70) 67.19 (8.43) 15.80 (7.01)
Veins 40.58 (23.50) 55.94 (31.39) 33.72 (26.61) 40.65 (30.90)

real ceCT and fakePBS CT Arteries 69.59 (8.89) 79.54 (10.85) 63.47 (12.59) 18.08 (8.21)
Veins 44.40 (22.75) 58.44 (21.78) 38.38 (23.20) 39.31 (16.79)

real ceCT and fakeOurs CT Arteries 72.33 (7.41) 77.29 (10.32) 68.63 (8.88) 15.48 (6.38)
Veins 44.49 (22.50) 54.98 (26.74) 40.28 (22.69) 38.90 (32.76)

on 5 more heterogeneous

real ceCT and real CT Arteries 75.01 (5.82) 85.17 (4.37) 67.50 (8.57) 12.79 (6.04)
Veins 40.87 (14.73) 56.93 (18.63) 32.62 (13.05) 31.16 (10.76)

real ceCT without data aug. Arteries 66.59 (8.31) 86.89 (5.70) 54.83 (10.29) 23.34 (9.14)
Veins 14.66 (17.05) 71.31 (39.90) 8.89 (10.98) 50.35 (29.50)

real ceCT Arteries 72.94 (6.30) 84.37 (3.80) 64.89 (9.71) 13.49 (5.14)
Veins 28.28 (19.84) 51.97 (38.06) 17.50 (18.41) 35.57 (14.33)

real ceCT and fakePBS CT Arteries 70.77 (9.18) 84.41 (5.96) 63.00 (15.51) 13.83 (5.95)
Veins 33.47 (26.92) 45.48 (34.33) 27.73 (23.78) 37.73 (23.42)

real ceCT and fakeOurs CT Arteries 73.18 (7.51) 80.58 (4.59) 67.63 (11.25) 12.73 (4.10)
Veins 40.57 (20.25) 62.01 (13.31) 31.96 (18.91) 32.83 (13.84)

4 Conclusion

We presented an extension of CycleGAN via the use of a Self-Supervised Body Regressor
to: (i) better select anatomically-paired slices; (ii) anatomically constrain the generator to
produce a slice describing the same anatomical content as the input. We applied our method
to the unsupervised synthesis of ceCT-CT images. We showed significant improvements
in the generated images compared to existing methods. To further validate our method,
we demonstrated that the synthesized images can be used to guide a segmentation method
by compensating, without loss of performance, for the absence of the complementary real
acquisition modality. Future work aims to apply our method on other translation tasks, such
as MRI to CT or T1-w to T2-w, and other body sections. Moreover, once more data and
more powerful GPUs will be available, trans f ormer-based methods will be futher explored.
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