Antoine Bouvet

Sylvain Guilley

Lukas Vlasak

First-Order Side-Channel Leakage Analysis of Masked but Asynchronous AES

Keywords: Side-Channel Analysis, Masking scheme, Leakage model, Desynchronisation, AES, White-Box, Pre-silicon evaluation

 L'archive ouverte pluridisciplinaire

Introduction

Cryptographic algorithms are known to be sensitive to physical attacks. While theoretically proven to resist algebraic cryptanalysis, the actual implementations of such an algorithm may leak information about a parameter through its observable physical behavior when running on an end-user device. The parameters which must be kept secret are called Critical Security Parameters (CSPs). The computation of an intermediate value, which depends on these CSPs, leads to a statistically biased activity on the device (e.g. its power consumption [START_REF] Kocher | Dierential power analysis[END_REF], its electro-magnetic (EM) emanations [START_REF] Gandol | Electromagnetic analysis: Concrete results[END_REF], the execution time [START_REF] Kocher | Timing Attacks on Implementations of Die-Hellman, RSA, DSS, and Other Systems[END_REF] or the emitted acoustic waves [START_REF] Genkin | RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis[END_REF]), which can be measured, recorded and analysed. This is called a Side-Channel Analysis (SCA). Such an analysis can be performed on subkeys, small parts of a CSP, in order to reduce the strength of a cryptosystem (a Divide-and-Conquer strategy). Even if not all subkeys have been broken, it may be weakened enough to accomplish a brute-force attack. Fortunately, many countermeasures exist, such as noise addition [START_REF] Coron | An Ecient Method for Random Delay Generation in Embedded Software[END_REF], [20, 2.1], constant time operations [START_REF] Almeida | Verifying Constant-Time Implementations[END_REF], shuing [START_REF] Veyrat-Charvillon | Shuing against Side-Channel Attacks: A Comprehensive Study with Cautionary Note[END_REF] or masking schemes [START_REF] Blömer | Provably Secure Masking of AES[END_REF][START_REF] Nassar | RSM: A small and fast countermeasure for AES, secure against 1st and 2nd-order zero-oset SCAs[END_REF]. Each one aims at protecting against specic attacks for instance, constant time operations resist against Timing Attacks, while masking schemes are eective against vertical SCAs. That is why developers and designers do not use only one countermeasure when designing their software, but a combination of them. The goal is always to secure a device against as many attacks as possible.

Contributions. We present how a rst-order SCA such as Dierential Power Analysis (DPA) [START_REF] Kocher | Dierential power analysis[END_REF] or Correlation Power Analysis (CPA) [START_REF] Brier | Correlation power analysis with a leakage model[END_REF] can break a (possibly higher-order) masking scheme. Normally the usage of an n th -order masking scheme countermeasure protects a device against an n th -order SCA (no subkey can be broken). Nevertheless, we show that instead of increasing the cryptosystem's security, the combination of masking and desynchronisations signicantly improves the attack eciency, allowing to break the whole secret key. More precisely, we prove that, if a Boolean masking scheme is used in combination with asynchronous operations that depend on a CSP, then the masking is completely ineective. Moreover, our pre-silicon security White-Box evaluation approach, based on traces generated on CPU, allows an in-depth analysis of the leakage source, including the derivation of the optimal leakage model.

Outline.

Boolean masking schemes against vertical SCAs

Masking techniques aim to protect implementations against vertical SCAs by avoiding statistical dependencies between CSPs and the processed values, which inuence the observable side-channel activity. Boolean masking [START_REF] Chari | Towards Sound Approaches to Counteract Power-Analysis Attacks[END_REF][START_REF] Goubin | DES and Dierential Power Analysis. The Duplication Method[END_REF][START_REF] Maghrebi | Evaluation of countermeasure implementations based on boolean masking to thwart side-channel attacks[END_REF] uses an exclusive or (XOR, ⊕). For a secret parameter x ∈ F N 2 , and d ∈ N randomly chosen masks x 1 , ..., x d ∈ F N 2 , every possible masked value x 0 = x ⊕ x 1 ⊕ . . . ⊕ x d has the same probability (1 2 N). This widely used masking scheme avoids rst- order SCAs and increases the resistance against SCAs of arbitrary order, when d > 1.

One could argue that masked implementations ought be designed constant time in the rst place. This is a good practice we do recommend. We want to underline that there are reasons for some developers who are generally not security experts to implement non-constant masked code:

Blinding for RSA [START_REF] Kocher | Timing Attacks on Implementations of Die-Hellman, RSA, DSS, and Other Systems[END_REF] works even if the implementation is non-constant time, but this countermeasure does not intend to protect against vertical SCA.

One might think randomization would protect the data suciently also against Timing Attacks. This is untrue, as shown in [START_REF] Danger | High-order Timing Attacks[END_REF]. In the next Sec. 3, we will show that even vertical SCAs can be applied on masked code which does not run in constant time.

A programmer may not be aware that he is implementing non-constant time code. For instance, an AES with tabulated substitution boxes is not constant time, as the lookup time can depend on the address (see [START_REF] Bhattacharya | Branch Prediction Attack on Blinded Scalar Multiplication[END_REF]). Examples of potentially vulnerable codes are [START_REF]Census labs[END_REF][START_REF] French | Secure AES128 for ATMega8515[END_REF][START_REF] French | Secure AES128 for STM32[END_REF][START_REF] Yao | Masked AES Implementation[END_REF], which use tables addressed by sensitive variables. Furthermore, [START_REF] French | Secure AES128 for ATMega8515[END_REF][START_REF] French | Secure AES128 for STM32[END_REF] resort to conditional control ow in F 256 multiplication.

3 First-order vertical SCAs against masking schemes Usually, vertical SCAs require that the activity traces are synchronised the target nodes are temporally aligned according to a clock period of interest. In the case of the AES, common target nodes are the rst round S-Box output S(x i ⊕ k i), where S is the S-Box, x i and k i are the i th plaintext and key bytes respectively, or the last round S-Box input S -1 (c i ⊕ k i), where S -1 is the inverse S-Box, and c i is the i th ciphertext byte. In a protected algorithm with rst-order Boolean masking, the rst round's target node becomes S(x i ⊕ k i) ⊕ M , where a random byte value M is used as mask, hence even under the correct key hypothesis the value is unpredictable by an attacker. The current situation can be summarised in the following assertions:

vertical SCAs are very eective against unprotected algorithms; desynchronisations (intentional or not) increase the diculty of vertical SCA; when a cryptographic algorithm is implemented with a rst-order (or higherorder) masking scheme, rst-order CPAs do fail.

However, we highlight hereafter that asynchronous (i.e., non-constant time) activity traces may lead to a side-channel leakage in a masked implementation.

Our study deals with an asynchronous, masked AES (dened in Alg. 1). of the S-Box output, one gets a parameter-dependent misalignment between the traces. This can be exploited with a high-order Timing Analysis [START_REF] Danger | High-order Timing Attacks[END_REF] and, as we show, it also opens the door to a rst-order vertical SCA. The gure 1 illustrates the two paths of execution, depending on line 3 of Alg. 2 is executed or not. During the clock period of interest, if the MSB of the masked S-Box output is 1, the S-Box evaluation is over and the mask is manipulated, whereas if it is 0, at the same time the S-Box evaluation is still ongoing. Let i ∈ {0, . . . , 15} and j ∈ {0, . . . , 7}. For the rest of the paper, the notation S i refers to the S-Box output S(x i ⊕ k i), and S i j to its j th bit. Then the leakage model can be expressed as follows:

MSB(S(x

0 ⊕ k 0) ⊕ M) 1 0 Clock period of interest time S(x 0 ⊕ k 0) ⊕ M M S(x 1 ⊕ k 1) ⊕ M S(x 0 ⊕ k 0) ⊕ M M S(x 1 ⊕ k 1) ⊕ M
Input : b ∈ F2 [x] / x 8 + x 4 + x 3 + x + 1 Output : res = b × x 1 res ← b 1 // Multiplication
L(x 0 , k 0 , M) = M if MSB(S 0 ⊕ M) = 1, S 0 ⊕ M otherwise. = MSB(S 0 ⊕ M) × M + (1 -MSB(S 0 ⊕ M)) × (S 0 ⊕ M). (1)
The optimal model can be derived by averaging L(x 0 , k 0 , M) over M [START_REF] Prou | Statistical Analysis of Second Order Dierential Power Analysis[END_REF]. If this model depends on the sensitive variable x 0 ⊕k 0 , then a key extraction is possible.

The optimal model computes as follows:

(x 0 , k 0) =E M (L(x 0 , k 0 , M)) =E M (MSB(S 0 ⊕ M) × M) + E M ((1 -MSB(S 0 ⊕ M)) × (S 0 ⊕ M)) = 1 256 255 m=0 (MSB(S 0 ⊕ m) × m) + 1 256 255 m=0 ((1 -MSB(S 0 ⊕ m)) × (S 0 ⊕ m)) = 1 256 255 m=0 MSB(S 0 ⊕ m) × m (2) + 1 256 255 m =0 (1 -MSB(m)) × (m).
(3) using variable change m = m ⊕ S(x 0 ⊕ k 0). Notice that (2) does depend on the key, and the term (3) is a constant, thus it can be dropped. Now, let m i be the i th bit of m ∈ F 8 2 :

255 m=0 MSB(S 0 ⊕ m) × m = m∈{0,1} 8 (S 0 7 ⊕ m 7) × (m 7 , . . . , m 0).
For any i ∈ {6, . . . , 0}:

1 256 m∈{0,1} 8 (S 0 7 ⊕ m 7) × m i = 64 256 (m7,mi)∈{0,1} 2 (S 0 7 ⊕ m 7) × m i = 64 256 m7∈{0,1} (S 0 7 ⊕ m 7) = 64 256 (S 0 7 + (1 -S 0 7)) = 1 4 ,
and for the particular case i = 7:

1 256 m∈{0,1} 8 (S 0 7 ⊕ m 7) × m i = 128 256 m7∈{0,1} (S 0 7 ⊕ m 7) × m 7 = 128 256 (1 -S 0 7),
hence we can conclude:

(x 0 , k 0) 7 = 1 2 (1 -MSB(S(x 0 ⊕ k 0))). (4)
It turns out that the optimal model for a SCA on However, if the traces are realigned, the leakage model does not depend on the MSB. Therefore we conrm that the code is rst-order perfectly masked.

Interestingly, this leakage would not have been detected by a static analysis method, such as the one of Barthe et al. [START_REF] Barthe | Veried Proofs of Higher-Order Masking[END_REF], because this approach is unaware of timing issues between executions with dierent data. [START_REF] Bhattacharya | Branch Prediction Attack on Blinded Scalar Multiplication[END_REF] Experiments on a real-world AES code

In Section 3, a theoretical example of leakages due to the combination of masking and desynchronisation, has been studied. In the present section, we consider a real use-case.

Target agnostic analysis on CPU

Traces generation. In order to pinpoint such leakages, we analyse at a presilicon stage, a masked AES-128 which uses the xtime structure presented in Alg. 2, through a target agnostic approach as introduced in [START_REF] Bos | Dierential Computation Analysis: Hiding Your White-Box Designs is Not Enough[END_REF]. The implementation is protected with rst-order Boolean masking, which theoretically resists rst-order SCAs. Static leakage detection tools, such as [START_REF] Barthe | Veried Proofs of Higher-Order Masking[END_REF], cannot detect the vulnerabilities we encounter (since they do not have a notion of time). Dynamic tools, such as SLEAK [START_REF] Walters | SLEAK: A Side-channel Leakage Evaluator and Analysis Kit[END_REF], can be used in this respect.

Our traces are generated at a binary level on a CPU, using a debugger Naive analysis. We use the Pearson's correlation as distinguisher and target the AES rst round using the Hamming Weight leakage model:

N (x 0 , k 0) = HW(S(x 0 ⊕ k 0)) (Naive leakage model)
where HW refers to the Hamming Weight function. Obviously, such analysis is not optimal, since the AES traces are not synchronised on the targeted operation sample. Nevertheless, one can easily break the secret key as if no mask was used, as shown in Fig. 3a. One may think that the implemented masking scheme is not really eective (e.g. in reality some sensitive intermediate value is not masked), however the countermeasure itself is well implemented. The linearity of the xtime function in F 8 2 guarantees that the sensitive values stay perfectly masked. Besides, when repeating the same analysis on a constant time version described by Alg. 3, there is no rst-order leakage (Fig. 3b). The AES is perfectly masked end-to-end, according to the requirement of Blömer et al. [START_REF] Blömer | Provably Secure Masking of AES[END_REF]. This observation is consistent with the situation in Sec. 3, that a protected AES leaks in rst-order, when the 3 RAX is the name of the accumulator register in x86 assembly. We pinpoint all the used addresses, which can dier from one trace to another.

If the situation matches with the theoretical one (Sec. 3), we should get two addresses (as Fig. 1 shows two execution paths at the clock period of interest).

But actually, more than two addresses correspond to the analysed sample, therefore the leakage model is far more complicated than expected. where a = S(x 0 ⊕ k 0) ⊕ M , and d = S(x 15 ⊕ k 15) ⊕ M . By classifying the traces according to this condition C, we observe six dierent classes L 1 , . . . , L 6 , at the leaking sample (dened in Table 1). As a consequence, the real leakage model L = L(x 0 , k 0 , x 15 , k 15 , M), outlined in Fig. 4, can be expressed as follows:

L =            1 if C ∈ L 1 , 0 if C ∈ L 2 , d 1 if C ∈ L 3 , xtime(d) if C ∈ L 4 , d if C ∈ (L 5 ∪ L 6). (5)
Fig. 4 also highlights that there are six execution paths. They happen not to be of the same duration. However, if they were, Timing Analyses [START_REF] Bhattacharya | Branch Prediction Attack on Blinded Scalar Multiplication[END_REF] would not be possible, but the rst-order SCA could still be carried out in the same way. Indeed, over 2 5 = 32 possible combinations (Table 1): As shown in Fig. 5, the experimental distribution is close to the theoretical one, which validates this leakage model as realistic.

Optimal leakage model

Note that the former CPA breaks subkey k 0 (Fig. 3a) by algorithmic values which never depend on x 0 or k 0 (Fig. 4). Therefore, below we compute the optimal leakage model (x 0 , k 0) by deriving the real leakage model L, which is deduced from symbolic values stored in the registers.

Lemma 1 (Expression of the optimal leakage model). Let i ∈ N <64 . The optimal leakage model O,i = O (x 0 , k 0) i for the i th bit of L expresses as follows: Proof. First, we are concerned with x 0 , in order to guess k 0 since the leaking values and the dierent combinations are functions of x 0 , k 0 , x 15 and k 15 . However, we disregard k 15 which is constant, and x 15 . Moreover, M is unknown, hence O (x 0 , k 0) = E M,d (L). While L depends on specic bits' value, which leads to exclusive conditions, we bit-wise construct the optimal leakage model.

O,0 = 1 2 4         2S 0 7 S 0 6 + 2 2 (¬S 0 7) + 2 2 S 0 7 (¬S 0 6) + 2S 0 7 + 2(¬S 0 6) + 2 2 (¬S 0 7)S 0 6         , O,i∈{1,...,7} = 1 2 4         (2 2 + 1)S 0 7 S 0 6 + 2 2 (¬S 0 7) + 2 2 S 0 7 (¬S 0 6) + 2S 0 7 + 2(¬S 0 6) + 2 2 (¬S 0 7)S 0 6         , O,8 = 1 2 4   2
For instance, assume C ∈ L 1 , then L = 1:

E M (L) = 1 2 8 m∈F256 1 ∧ C = 1 2 8 (m7,...,m0)∈F 8 2 (0 ∧ C, . . . , 0 ∧ C, 1 ∧ C)
E M,d (L) 0 = 1 2 8 x15∈F256 E M (L) 0 = 1 2 8 S 15 ∈F256 E M (L) 0 = 1 2 S 15 7 ∈F2 E M (L) 0 = 1 2 3 S 0 7 S 0 6 .
Finally, for every register bit i ∈ {0, . . . , 63} and all possible values of L (5), the optimal leakage model is obtained by summing E M,d (L) i using the Python library SymPy dedicated to symbolic mathematics [START_REF] Meurer | SymPy: symbolic computing in Python[END_REF].

We perform a new SCA with this optimal leakage model and the maximum likelihood (ML) distinguisher [START_REF] Bruneau | Optimal side-channel attacks for multivariate leakages and multiple models[END_REF], on the same traces as previously:

D ML (X, O (x 0 , k 0)) = argmax k∈F8 i∈F64 ρ(X, O (x 0 , k 0) i) 2 , (6
)
where ρ is the Pearson's correlation, X the simulated side-channel activity, and k the key guess. Results are shown in Fig. 6. Fig. 6. Maximum likelihood analysis performed on the asynchronous masked AES-128 using the optimal leakage model (left gure). The subkey k0 is broken with 9, 356 traces.

Its success rate is compared to the naive leakage model in the right gure, averaging over 10 analyses, with randomly chosen traces.

Again, a peak is clearly visible at the rst AES round (left gure), which corresponds to the correct key, conrming this model is eective. We estimate the number of traces needed for breaking the key, to compare it with the leakage model dened in (Naive leakage model). The success rates, using both the naive and the optimal leakage models, are given in the right gure: around 400 traces are needed with O (x 0 , k 0), whereas 1, 300 traces are necessary through the naive approach. This conrms, once again, that the side-channel leakage due to the combination of the masking scheme with some misalignment is not a coincidence, but an exploitable vulnerability.

Discussion

The rst-order leakage on the non-constant time masked AES could as well be detected using metrics such as Quantitative Masking Strength (QMS [START_REF] Eldib | QMS: Evaluating the Side-Channel Resistance of Masked Software from Source Code[END_REF]), Normalized Inter-Class Variance (NICV [START_REF] Bhasin | NICV: Normalized Inter-Class Variance for Detection of Side-Channel Leakage[END_REF][START_REF] Moradi | Detecting Hidden Leakages[END_REF]), or Information Leakage Amount (ILA [START_REF] Zhang | A Unied Metric for Quantifying Information Leakage of Cryptographic Devices Under Power Analysis Attacks[END_REF]). However, those statistical tools do not help in understanding the rootcause for the leakage which is crucial for developers to x their cryptographic implementations.

Our methodology, based on a study of the symbolic values stored in the registers (recall Fig. 4) allows to attribute the bias to the C code of Alg. 2. Such an approach makes non-regression security testing possible, i.e., evaluating and xing an implementation before any integration on end-user devices.

Conclusions

We studied an end-to-end masked AES algorithm. The masking implementation has been analysed and proven correct. Still, we present a successful rst-order analysis. In order to track the leakage back to its responsible code lines, we used an emulated environment and identied that the leakage is produced by a peculiarity of the code: it has some non-constant time structures. As a consequence, the leaking code lines dier from one trace to the other, which complicates the leakage investigation. Evaluation tools which permit to perform Side-Channel

Analyses at register level are good solutions for both, understanding leakages in general and improving analyses on end-user devices. Indeed, combining the analysis on symbolic values during the execution and a simulation at register level, allows to attribute the leakages to the corresponding non-constant time operations. The emerging problem is not trivial, as we are not aware of static tools for leakage detection which work turnkey, when masking is in place.

Again, we must point out the importance of a constant execution time: not only can it be exploited by timing-or cache-based attacks, but as we have shown, it can also ruin a masking scheme.

Input:

 plaintext, key, (mi, mo) ∈ F 2 2 8 , N r ∈ {10, 12, 14} Output : ciphertext 1 KeySchedule = KeyExpansion(key, N r) // Precomputation of the N r round keys 2 for byte = 0 to 255 do 3 M S[byte] = S[byte ⊕ mi] ⊕ mo // Precomputation of the masked S-Box 4 mr = mi ⊕ mo // Precomputation of the mask refresh

Fig. 1 .

 1 Fig. 1. Misaligned traces and the corresponding leakage model.

Fig. 1 Fig. 2 .

 12 Fig. 2. CPA coecients obtained for leakage (1) and leakage model (4) (correct key is k0 = 100) Ideal setup of Fig. 1.

(Fig. 3 .Algorithm 3 :

 33 Fig.3. CPA results with (Naive leakage model) on a masked AES-128, with desynchronisation (3a) and without (3b). Both target subkey k0 = 0xee, with the same number of traces. The subkey is broken only in case of desynchronisation.

 After mapping the assembly instructions to the corresponding algorithmic values, we want to understand the conditions leading to these values. In fact, in our case, each call to the xtime function creates a misalignment of up to 2 samples, depending only on the MSB of xtime input. This leads to a global misalignment of up to 38 samples when targeting k 0 , depending on the following MSB: C = {MSB(M); MSB(xtime(M)); MSB(a); MSB(xtime(a)); MSB(d)}

Interestingly, we canFig. 4 .

 4 Fig. 4. Symbolic values in the registers, depending on the condition C.

L 1 (

 1 symbolic value: 1) contains only 1 combination; L 2 (symbolic value: 0) clusters 2 combinations; L 3 (symbolic value: d 1) clusters 4 combinations; L 4 (symbolic value: xtime(d)) clusters 7 combinations; L 5 and L 6 (symbolic value: d) cluster respectively 12 + 6 = 18 combinations.

. 2 (¬m 7)

 27 Now, C does not depend on m 5 , . . . , m 0 . Thus the rst bit of E M (L) becomes: (¬m 6)(S 0 7 ⊕ m 7)(S 0 6 ⊕ m 6)(S 15 7 ⊕ m 7).

 Naive leakage model N(x0, k0)Optimal leakage model O(x0, k0)

Table 1 .

 1 Classes of each of the 2 5 possible combinations for C.

	L1	L2	L3	L4	L5	L6
	{0; 0; 1; 1; 1} {1; 1; 1; 1; -} {0; 1; 1; 0; -} {0; 0; 1; 1; 0} {0; 1; 0; -; -} {1; 1; 0; -; -}
			{1; 0; 0; 1; -} {0; 0; 1; 0; -} {0; 1; 1; 1; -} {1; 1; 1; 0; -}
				{0; 0; 0; -; -} {1; 0; 1; 1; -}	
					{1; 0; -; 0; -}	
	traces are misaligned. Furthermore, it should be noted that the constant time
	xtime (Alg. 3) increases the computation time by 46%, compared to Alg. 2. This
	again explains a possible motivation for non-constant solutions in practice.

Real leakage model. In White-Box evaluations on CPU, we can map each time sample with its source code. We can narrow this analysis down to the Points of Interest (PoIs) the samples with the highest Pearson's correlation.