
HAL Id: hal-03788732
https://telecom-paris.hal.science/hal-03788732

Submitted on 27 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

First-Order Side-Channel Leakage Analysis of Masked
but Asynchronous AES

Antoine Bouvet, Sylvain Guilley, Lukas Vlasak

To cite this version:
Antoine Bouvet, Sylvain Guilley, Lukas Vlasak. First-Order Side-Channel Leakage Analysis of Masked
but Asynchronous AES. Security and Privacy Second International Conference, ICSP 2021, Jamshed-
pur, India, November 16–17, 2021, Proceedings, 1497, Springer International Publishing, pp.16-29,
2021, Communications in Computer and Information Science, �10.1007/978-3-030-90553-8_2�. �hal-
03788732�

https://telecom-paris.hal.science/hal-03788732
https://hal.archives-ouvertes.fr


First-Order Side-Channel Leakage Analysis

of Masked but Asynchronous AES

Antoine Bouvet1[0000−0002−4364−8371], Sylvain Guilley1,2[0000−0002−5044−3534],
and Lukas Vlasak1[0000−0003−1141−2388]

1 Secure-IC S.A.S., Think Ahead Business Line, 35510 Cesson-Sévigné, France
firstname.lastname@secure-ic.com

2 Télécom ParisTech, 91120 Palaiseau, France
firstname.lastname@telecom-paristech.fr

Abstract. Masking schemes are classical countermeasures against Side-
Channel Attacks on cryptographic implementations. This paper investi-
gates the e�ectiveness of masking when the code does not run in constant
time. We prove that in this case, a �rst-order Correlation Power Analysis
can break an otherwise perfect masking scheme. Furthermore, with an
in-depth leakage analysis on traces generated at a pre-silicon stage, we
pinpoint the leaking instructions and recover a complex leakage model.
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1 Introduction

Cryptographic algorithms are known to be sensitive to physical attacks. While
theoretically proven to resist algebraic cryptanalysis, the actual implementations
of such an algorithm may leak information about a parameter through its ob-
servable physical behavior when running on an end-user device. The parameters
which must be kept secret are called Critical Security Parameters (CSPs). The
computation of an intermediate value, which depends on these CSPs, leads to
a statistically biased activity on the device (e.g. its power consumption [23], its
electro-magnetic (EM) emanations [17], the execution time [21] or the emitted
acoustic waves [18]), which can be measured, recorded and analysed. This is
called a Side-Channel Analysis (SCA). Such an analysis can be performed on
subkeys, small parts of a CSP, in order to reduce the strength of a cryptosys-
tem (a Divide-and-Conquer strategy). Even if not all subkeys have been broken,
it may be weakened enough to accomplish a brute-force attack. Fortunately,
many countermeasures exist, such as noise addition [12], [20, �2.1], constant
time operations [1], shu�ing [29] or masking schemes [5, 27]. Each one aims at
protecting against speci�c attacks � for instance, constant time operations re-
sist against Timing Attacks, while masking schemes are e�ective against vertical
SCAs. That is why developers and designers do not use only one countermeasure
when designing their software, but a combination of them. The goal is always to
secure a device against as many attacks as possible.



2 A. Bouvet et al.

Contributions. We present how a �rst-order SCA such as Di�erential Power
Analysis (DPA) [23] or Correlation Power Analysis (CPA) [8] can break a (possi-
bly higher-order) masking scheme. Normally the usage of an nth-order masking
scheme countermeasure protects a device against an nth-order SCA (no subkey
can be broken). Nevertheless, we show that instead of increasing the cryptosys-
tem's security, the combination of masking and desynchronisations signi�cantly
improves the attack e�ciency, allowing to break the whole secret key. More pre-
cisely, we prove that, if a Boolean masking scheme is used in combination with
asynchronous operations that depend on a CSP, then the masking is completely
ine�ective. Moreover, our pre-silicon security White-Box evaluation approach,
based on traces generated on CPU, allows an in-depth analysis of the leakage
source, including the derivation of the optimal leakage model.
Outline. Boolean masking schemes against vertical SCAs and possible reasons
for non-constant time cryptographic code are explained in Sec. 2. Our contribu-
tions start in Sec. 3; we outline theoretical examples of �rst-order SCAs against
masking schemes. Side-Channel Analyses on pre-silicon traces are carried out in
Sec. 4: the leakage is characterised and its source identi�ed. Section 5 discusses
general aspects about our results. Eventually, conclusions are given in Sec. 6.

2 Boolean masking schemes against vertical SCAs

Masking techniques aim to protect implementations against vertical SCAs by
avoiding statistical dependencies between CSPs and the processed values, which
in�uence the observable side-channel activity.Boolean masking [11,19,24] uses
an exclusive or (XOR, ⊕). For a secret parameter x ∈ FN

2 , and d ∈ N randomly
chosen masks x1, ..., xd ∈ FN

2 , every possible masked value x0 = x⊕x1⊕ . . .⊕xd
has the same probability ( 1

2N
). This widely used masking scheme avoids �rst-

order SCAs and increases the resistance against SCAs of arbitrary order, when
d > 1.

One could argue that masked implementations ought be designed �constant
time� in the �rst place. This is a good practice we do recommend. We want to
underline that there are reasons for some developers � who are generally not
security experts � to implement non-constant masked code:

� Blinding for RSA [22] works even if the implementation is non-constant time,
but this countermeasure does not intend to protect against vertical SCA.

� One might think randomization would protect the data su�ciently also
against Timing Attacks. This is untrue, as shown in [13]. In the next Sec. 3,
we will show that even vertical SCAs can be applied on masked code which
does not run in constant time.

� A programmer may not be aware that he is implementing non-constant time
code. For instance, an AES with tabulated substitution boxes is not constant
time, as the lookup time can depend on the address (see [4]). Examples of
potentially vulnerable codes are [10, 15, 16, 31], which use tables addressed
by sensitive variables. Furthermore, [15,16] resort to conditional control �ow
in F256 multiplication.
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3 First-order vertical SCAs against masking schemes

Usually, vertical SCAs require that the activity traces are synchronised � the
target nodes are temporally aligned according to a clock period of interest. In
the case of the AES, common target nodes are the �rst round S-Box output
S(xi ⊕ ki), where S is the S-Box, xi and ki are the i

th plaintext and key bytes
respectively, or the last round S-Box input S−1(ci⊕ki), where S−1 is the inverse
S-Box, and ci is the i

th ciphertext byte. In a protected algorithm with �rst-order
Boolean masking, the �rst round's target node becomes S(xi ⊕ ki)⊕M , where
a random byte value M is used as mask, hence even under the correct key
hypothesis the value is unpredictable by an attacker. The current situation can
be summarised in the following assertions:

� vertical SCAs are very e�ective against unprotected algorithms;
� desynchronisations (intentional or not) increase the di�culty of vertical SCA;
� when a cryptographic algorithm is implemented with a �rst-order (or higher-
order) masking scheme, �rst-order CPAs do fail.

However, we highlight hereafter that asynchronous (i.e., non-constant time) ac-
tivity traces may lead to a side-channel leakage in a masked implementation.

Our study deals with an asynchronous, masked AES (de�ned in Alg. 1).

Input : plaintext, key, (mi,mo) ∈ F2
28 , Nr ∈ {10, 12, 14}

Output : ciphertext

1 KeySchedule = KeyExpansion(key,Nr) // Precomputation of the Nr round keys

2 for byte = 0 to 255 do
3 MS[byte] = S[byte⊕mi]⊕mo // Precomputation of the masked S-Box

4 mr = mi⊕mo // Precomputation of the mask refresh

5 for i = 0 to 15 do
6 state[i] = plaintext[i]⊕mi // Masking the state

7 AddRoundKey(state,KeySchedule, 0)
8 for round = 1 to Nr − 1 do
9 ShiftRows(state)
10 SubBytes(state,MS)
11 MixColumns(state)
12 RefreshMask(state,mr) // ∀i ∈ {0, . . . , 15}, state[i] ⊕= mr

13 AddRoundKey(state,KeySchedule, round)

14 ShiftRows(state)
15 SubBytes(state)
16 AddRoundKey(state,KeySchedule,Nr)
17 for i = 0 to 15 do
18 ciphertext[i] = state[i]⊕mo // Unmasking the state

19 return ciphertext

Algorithm 1: Main ciphering function of the masked AES.
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Fig. 1. Misaligned traces and the corresponding leakage model.

The desynchronisation occurs in the xtime sub-function which is used in Mix-

Columns, to multiply a polynomial b ∈ F2 [x] /〈x8 + x4 + x3 + x + 1〉 with the
monomial x. A pseudo-code of its naive implementation is given in Alg. 2. As
there is a conditional branch which depends on the Most Signi�cant Bit (MSB)
of the S-Box output, one gets a parameter-dependent misalignment between the
traces. This can be exploited with a high-order Timing Analysis [13] and, as we
show, it also opens the door to a �rst-order vertical SCA.

Input : b ∈ F2 [x] /〈x8 + x4 + x3 + x+ 1〉
Output : res = b× x

1 res← b� 1 // Multiplication by x

2 if b ∧ 0x80 then

3 res← res⊕ 0x11b // Conditional reduction

4 return res

Algorithm 2: Naive xtime (insecure � with conditional branching).

The �gure 1 illustrates the two paths of execution, depending on line 3 of Alg. 2
is executed or not. During the clock period of interest, if the MSB of the masked
S-Box output is 1, the S-Box evaluation is over and the mask is manipulated,
whereas if it is 0, at the same time the S-Box evaluation is still ongoing.

Let i ∈ {0, . . . , 15} and j ∈ {0, . . . , 7}. For the rest of the paper, the notation
Si refers to the S-Box output S(xi⊕ ki), and Si

j to its j
th bit. Then the leakage

model can be expressed as follows:

L(x0, k0,M) =

{
M if MSB(S0 ⊕M) = 1,
S0 ⊕M otherwise.

= MSB(S0 ⊕M)×M
+ (1−MSB(S0 ⊕M))× (S0 ⊕M). (1)

The optimal model can be derived by averaging L(x0, k0,M) over M [28]. If this
model depends on the sensitive variable x0⊕k0, then a key extraction is possible.
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The optimal model computes as follows:

`(x0, k0) =EM (L(x0, k0,M))

=EM (MSB(S0 ⊕M)×M) + EM ((1−MSB(S0 ⊕M))× (S0 ⊕M))

=
1

256

255∑
m=0

(MSB(S0 ⊕m)×m)

+
1

256

255∑
m=0

((1−MSB(S0 ⊕m))× (S0 ⊕m))

=
1

256

255∑
m=0

MSB(S0 ⊕m)×m (2)

+
1

256

255∑
m′=0

(1−MSB(m′))× (m′). (3)

using variable change m′ = m⊕ S(x0 ⊕ k0). Notice that (2) does depend on the
key, and the term (3) is a constant, thus it can be dropped.

Now, let mi be the i
th bit of m ∈ F8

2:

255∑
m=0

MSB(S0 ⊕m)×m =
∑

m∈{0,1}8
(S0

7 ⊕m7)× (m7, . . . ,m0).

For any i ∈ {6, . . . , 0}:
1

256

∑
m∈{0,1}8

(S0
7 ⊕m7)×mi =

64

256

∑
(m7,mi)∈{0,1}2

(S0
7 ⊕m7)×mi

=
64

256

∑
m7∈{0,1}

(S0
7 ⊕m7)

=
64

256
(S0

7 + (1− S0
7)) =

1

4
,

and for the particular case i = 7:

1

256

∑
m∈{0,1}8

(S0
7 ⊕m7)×mi =

128

256

∑
m7∈{0,1}

(S0
7 ⊕m7)×m7 =

128

256
(1− S0

7),

hence we can conclude:

`(x0, k0)7 =
1

2
(1−MSB(S(x0 ⊕ k0))). (4)

It turns out that the optimal model for a SCA on Fig. 1 is simply the selection
signal of the unmasked target node. Correlation coe�cients between measures
and optimal model (4) are shown in Fig. 2, the correct key can easily be recov-
ered.
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Fig. 2. CPA coe�cients obtained for leakage (1) and leakage model (4) (correct key is
k0 = 100) � Ideal setup of Fig. 1.

However, if the traces are realigned, the leakage model does not depend on
the MSB. Therefore we con�rm that the code is �rst-order perfectly masked.
Interestingly, this leakage would not have been detected by a static analysis
method, such as the one of Barthe et al. [2], because this approach is unaware
of timing issues between executions with di�erent data.

4 Experiments on a real-world AES code

In Section 3, a theoretical example of leakages due to the combination of masking
and desynchronisation, has been studied. In the present section, we consider a
real use-case.

4.1 Target agnostic analysis on CPU

Traces generation. In order to pinpoint such leakages, we analyse at a pre-
silicon stage, a masked AES-128 which uses the xtime structure presented in
Alg. 2, through a target agnostic approach as introduced in [6]. The implemen-
tation is protected with �rst-order Boolean masking, which theoretically resists
�rst-order SCAs. Static leakage detection tools, such as [2], cannot detect the
vulnerabilities we encounter (since they do not have a notion of time). Dynamic
tools, such as SLEAK [30], can be used in this respect.

Our traces are generated at a binary level � on a CPU, using a debugger
(gdb) as measurement tool which records the values of multiple registers �, while
running on a 64-bit x86 architecture. That is why in the following sections, bit
indices of a byte can exceed 7 and extend up to 63. We need to record only
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(a) Asynchronous AES � leakage
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(b) Constant time AES � no leakage

Fig. 3. CPA results with (Naive leakage model) on a masked AES-128, with desyn-
chronisation (3a) and without (3b). Both target subkey k0 = 0xee, with the same
number of traces. The subkey is broken only in case of desynchronisation.

Input : b ∈ F2 [x] /〈x8 + x4 + x3 + x+ 1〉
Output : res = b× x

1 return (b� 1)⊕ (((b� 7) ∧ 1)× 0x11b)

Algorithm 3: Constant time xtime.

the RAX3 register values. In such a White-Box context, we can map each RAX
sample with its address, and are therefore able to �nd the corresponding line of
the C source code [7] (leveraging DWARF format).

Naive analysis. We use the Pearson's correlation as distinguisher and target
the AES �rst round using the Hamming Weight leakage model:

`N (x0, k0) = HW(S(x0 ⊕ k0)) (Naive leakage model)

where HW refers to the Hamming Weight function. Obviously, such analysis is not
optimal, since the AES traces are not synchronised on the targeted operation
sample. Nevertheless, one can easily break the secret key as if no mask was used,
as shown in Fig. 3a. One may think that the implemented masking scheme is not
really e�ective (e.g. in reality some sensitive intermediate value is not masked),
however the countermeasure itself is well implemented. The linearity of the xtime

function in F8
2 guarantees that the sensitive values stay perfectly masked. Besides,

when repeating the same analysis on a constant time version described by Alg. 3,
there is no �rst-order leakage (Fig. 3b). The AES is perfectly masked end-to-end,
according to the requirement of Blömer et al. [5]. This observation is consistent
with the situation in Sec. 3, that a protected AES leaks in �rst-order, when the

3 RAX is the name of the accumulator register in x86 assembly.
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Table 1. Classes of each of the 25 possible combinations for C.

L1 L2 L3 L4 L5 L6

{0; 0; 1; 1; 1} {1; 1; 1; 1;−} {0; 1; 1; 0;−} {0; 0; 1; 1; 0} {0; 1; 0;−;−} {1; 1; 0;−;−}
{1; 0; 0; 1;−} {0; 0; 1; 0;−} {0; 1; 1; 1;−} {1; 1; 1; 0;−}

{0; 0; 0;−;−} {1; 0; 1; 1;−}
{1; 0;−; 0;−}

traces are misaligned. Furthermore, it should be noted that the constant time
xtime (Alg. 3) increases the computation time by 46%, compared to Alg. 2. This
again explains a possible motivation for non-constant solutions in practice.

Real leakage model. In White-Box evaluations on CPU, we can map each
time sample with its source code. We can narrow this analysis down to the
Points of Interest (PoIs) � the samples with the highest Pearson's correlation.
We pinpoint all the used addresses, which can di�er from one trace to another.
If the situation matches with the theoretical one (Sec. 3), we should get two
addresses (as Fig. 1 shows two execution paths at the clock period of interest).
But actually, more than two addresses correspond to the analysed sample, there-
fore the leakage model is far more complicated than expected. After mapping
the assembly instructions to the corresponding algorithmic values, we want to
understand the conditions leading to these values. In fact, in our case, each call
to the xtime function creates a misalignment of up to 2 samples, depending only
on the MSB of xtime input. This leads to a global misalignment of up to 38
samples when targeting k0, depending on the following MSB:

C = {MSB(M);MSB(xtime(M));MSB(a);MSB(xtime(a));MSB(d)}

where a = S(x0 ⊕ k0)⊕M , and d = S(x15 ⊕ k15)⊕M . By classifying the traces
according to this condition C, we observe six di�erent classes L1, . . . ,L6, at the
leaking sample (de�ned in Table 1). As a consequence, the real leakage model
L̂ = L(x0, k0, x15, k15,M), outlined in Fig. 4, can be expressed as follows:

L̂ =


1 if C ∈ L1,
0 if C ∈ L2,
d� 1 if C ∈ L3,
xtime(d) if C ∈ L4,
d if C ∈ (L5 ∪ L6).

(5)

Fig. 4 also highlights that there are six execution paths. They happen not to
be of the same duration. However, if they were, Timing Analyses [4] would not
be possible, but the �rst-order SCA could still be carried out in the same way.
Interestingly, we can check the consistency of this leakage model by comparing
the theoretical and the experimental leaking values distributions.
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xtime(d) d� 1 d

d 0

Fig. 4. Symbolic values in the registers, depending on the condition C.

Indeed, over 25 = 32 possible combinations (Table 1):

� L1 (symbolic value: 1) contains only 1 combination;
� L2 (symbolic value: 0) clusters 2 combinations;
� L3 (symbolic value: d� 1) clusters 4 combinations;
� L4 (symbolic value: xtime(d)) clusters 7 combinations;
� L5 and L6 (symbolic value: d) cluster respectively 12+6 = 18 combinations.

As shown in Fig. 5, the experimental distribution is close to the theoretical one,
which validates this leakage model as realistic.

4.2 Optimal leakage model

Note that the former CPA breaks subkey k0 (Fig. 3a) by algorithmic values
which never depend on x0 or k0 (Fig. 4). Therefore, below we compute the
optimal leakage model `(x0, k0) by deriving the real leakage model L̂, which is
deduced from symbolic values stored in the registers.

Lemma 1 (Expression of the optimal leakage model). Let i ∈ N<64. The

optimal leakage model `O,i = `O(x0, k0)i for the i
th bit of L̂ expresses as follows:

`O,0 = 1
24


2S0

7S
0
6 +

22(¬S0
7) +

22S0
7(¬S0

6) +
2S0

7 +
2(¬S0

6) +
22(¬S0

7)S
0
6

 , `O,i∈{1,...,7} =
1
24


(22 + 1)S0

7S
0
6 +

22(¬S0
7) +

22S0
7(¬S0

6) +
2S0

7 +
2(¬S0

6) +
22(¬S0

7)S
0
6

 ,

`O,8 = 1
24

22S0
7S

0
6 +

2(¬S0
7) +

2S0
7(¬S0

6)

 , `O,i∈{9,...,63} = 0.
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Fig. 5. Leaking values distribution for the leakage model: theory v.s. experiments
(based on 9, 356 execution traces).

Proof. First, we are concerned with x0, in order to guess k0 since the leaking
values and the di�erent combinations are functions of x0, k0, x15 and k15. How-
ever, we disregard k15 which is constant, and x15. Moreover, M is unknown,
hence `O(x0, k0) = EM,d(L̂). While L̂ depends on speci�c bits' value, which
leads to exclusive conditions, we bit-wise construct the optimal leakage model.
For instance, assume C ∈ L1, then L̂ = 1:

EM (L̂) =
1

28

∑
m∈F256

1 ∧ C = 1

28

∑
(m7,...,m0)∈F8

2

(0 ∧ C, . . . , 0 ∧ C, 1 ∧ C)︸ ︷︷ ︸
8 bits

.

Now, C does not depend on m5, . . . ,m0. Thus the �rst bit of EM (L̂) becomes:

EM (L̂)0 =
1

22

∑
(m7,m6)∈F2

2

(¬m7)(¬m6)(S
0
7 ⊕m7)(S

0
6 ⊕m6)(S

15
7 ⊕m7).

EM,d(L̂)0 =
1

28

∑
x15∈F256

EM (L̂)0 =
1

28

∑
S15∈F256

EM (L̂)0 =
1

2

∑
S15
7 ∈F2

EM (L̂)0

=
1

23
S0
7S

0
6 .

Finally, for every register bit i ∈ {0, . . . , 63} and all possible values of L̂ (5),
the optimal leakage model is obtained by summing EM,d(L̂)i using the Python
library SymPy dedicated to symbolic mathematics [25].

We perform a new SCA with this optimal leakage model and the maximum
likelihood (ML) distinguisher [9], on the same traces as previously:

DML(X, `O(x0, k0)) = argmax
k∈F8

∑
i∈F64

‖ρ(X, `O(x0, k0)i)‖2, (6)

where ρ is the Pearson's correlation, X the simulated side-channel activity, and
k the key guess. Results are shown in Fig. 6.
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Fig. 6. Maximum likelihood analysis performed on the asynchronous masked AES-128
using the optimal leakage model (left �gure). The subkey k0 is broken with 9, 356 traces.
Its success rate is compared to the naive leakage model in the right �gure, averaging
over 10 analyses, with randomly chosen traces.

Again, a peak is clearly visible at the �rst AES round (left �gure), which cor-
responds to the correct key, con�rming this model is e�ective. We estimate the
number of traces needed for breaking the key, to compare it with the leakage
model de�ned in (Naive leakage model). The success rates, using both the naive
and the optimal leakage models, are given in the right �gure: around 400 traces
are needed with `O(x0, k0), whereas 1, 300 traces are necessary through the naive
approach. This con�rms, once again, that the side-channel leakage due to the
combination of the masking scheme with some misalignment is not a coincidence,
but an exploitable vulnerability.

5 Discussion

The �rst-order leakage on the non-constant time masked AES could as well
be detected using metrics such as Quantitative Masking Strength (QMS [14]),
Normalized Inter-Class Variance (NICV [3,26]), or Information Leakage Amount
(ILA [32]). However, those statistical tools do not help in understanding the root-
cause for the leakage � which is crucial for developers to �x their cryptographic
implementations.

Our methodology, based on a study of the symbolic values stored in the
registers (recall Fig. 4) allows to attribute the bias to the C code of Alg. 2. Such
an approach makes non-regression security testing possible, i.e., evaluating and
�xing an implementation before any integration on end-user devices.
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6 Conclusions

We studied an end-to-end masked AES algorithm. The masking implementation
has been analysed and proven correct. Still, we present a successful �rst-order
analysis. In order to track the leakage back to its responsible code lines, we used
an emulated environment and identi�ed that the leakage is produced by a pecu-
liarity of the code: it has some non-constant time structures. As a consequence,
the leaking code lines di�er from one trace to the other, which complicates the
leakage investigation. Evaluation tools which permit to perform Side-Channel
Analyses at register level are good solutions for both, understanding leakages
in general and improving analyses on end-user devices. Indeed, combining the
analysis on symbolic values during the execution and a simulation at register
level, allows to attribute the leakages to the corresponding non-constant time
operations. The emerging problem is not trivial, as we are not aware of static
tools for leakage detection which work turnkey, when masking is in place.

Again, we must point out the importance of a constant execution time: not
only can it be exploited by timing- or cache-based attacks, but as we have shown,
it can also ruin a masking scheme.
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