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Abstract—Analog-to-Feature (A2F) conversion is an attractive
alternative for the significant reduction of energy consumed by
wireless communication systems during data transfer from sensor
to aggregator. This work illustrates the simulation results of
anomaly detection in ECG signals via A2F conversion based
on Non-Uniform Wavelet Sampling (NUWS). Moreover, another
application is envisioned to show the genericity of the proposed
converter and determine its parameters for a circuit design.

Index Terms—Analog-to-Feature conversion, smart sensors,
Non-Uniform Wavelet Sampling, Machine Learning.

I. INTRODUCTION

Nowadays, the fast development of the Internet of Things
(IoT) and Wireless Sensor Networks (WSN) leads to the
need for new context-aware smart sensors. However, emerging
applications impose certain constraints: such sensors should
remain cheap, compact, reliable, with a lifetime of several
years. Thereby, the reduction of total energy consumed by
wireless communication systems is of primordial importance.
Since the transmission of samples acquired at Nyquist rate
from sensor to aggregator can represent up to 96% of the
global consumption budget of sensors [1], it is, therefore, the
main lever for saving energy and increasing their autonomy.

To achieve this, one needs either to improve the energy
efficiency of the transmission system or to adopt a novel
data acquisition technique, such as compressive sensing (CS)
for Analog-to-Information (A2I) conversion [2]. Although
CS reduces the number of acquired samples, it requires the
reconstruction of the original signal usually with the help of
complex algorithms and it also has a limited compression
ratio [3]. An even greater reduction of energy consumption can
be obtained by Analog-to-Feature (A2F) conversion, which ex-
tracts the useful features directly in the analog domain [4] and
uses them as inputs for Machine Learning (ML) algorithms for
further classification at sensor or aggregator level.

This work is a continuation of [5] aiming to design a generic
A2F converter for different low-frequency signals (electrocar-
diogram (ECG), electroencephalogram (EEG), electromyogra-
phy (EMG), voice, etc.). A2F based on Non-Uniform Wavelet
Sampling (NUWS) [6] has been proposed in [5] mainly for
anomaly detection in ECG signals, showing the benefit of
this approach over A2I and conventional sampling in terms
of energy consumption. In contrast to [5], herein the ML
algorithms are reimplemented using Python and TensorFlow
instead of MATLAB® tools, allowing for more complicated
and efficient ML models, especially Neural Networks (NNs).

II. CURRENT RESULTS

a) Analog-to-Feature conversion: The proposed recon-
figurable converter, given in Fig. 1, is based on the NUWS
architecture, which mixes the analog signal with tunable
wavelets prior to integration and digital conversion to extract
features. NUWS provides several degrees of freedom and,
thus, requires feature selection algorithms to determine a
reduced set of features relevant for a given classification task.

b) Simulation results: Anomaly detection in ECG signals
is performed using the MIT-BIH Arrhythmia database [7] (48
recordings of 30min each, sampled at 360Hz) for supervised
learning with a 70/30% proportion between learning and
test sets. In this work, NUWS exploits only Haar wavelets
(square functions taking values ±1, 0), which reduce the
digital wavelet generator’s complexity and allow to use a
simple mixer composed of 4 CMOS transmission gates [5].
According to [5], the best classification results are obtained
with the Feedforward NN classifier, Information Gain (IG)
method serving as a pre-selection stage to reduce the feature
set before Sequential Forward Search (SFS). Fig. 2 shows the
impact of the SFS algorithm on the ECG anomaly detection
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Fig. 1. Architecture of reconfigurable A2F NUWS-based converter
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(a) Performances without SFS
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(b) Performances with SFS

Fig. 2. Impact of SFS algorithm on accuracy, sensitivity and specificity



performances obtained using NNs with one hidden layer of 10
neurons trained during 1500 epochs. The accuracy, sensitivity
(recall) and specificity (selectivity) of binary classification are
plotted against the number of selected features.

Each extractor is capable of extracting simultaneously only
the sequence of features that do not superpose in the analysis
window of a heartbeat (256 samples long). Therefore, an
adapted SFS algorithm has been proposed, which limits the
maximum number of parallel extractors to reduce the system’s
power consumption. Fig. 3(a) illustrates the performances of
this algorithm for a different number of extractors with distinct
markers indicating the extractor to which a selected feature is
attributed. A2F converter’s energy consumption is estimated
considering the state-of-the-art amplification stage (Low Noise
and Programmable Gain Amplifiers) and ADC (Analog-to-
Digital Converter) from [8], Gm-C integrator from [9], as
well as the digital wavelet generator [5] synthesized in XFAB
CMOS 0.18 µm technology. An optimized SFS algorithm
takes into account the energetic cost during feature selection
in order to minimize the total energy consumption, while
maximizing the classification accuracy, as shown in Fig. 3(b).
The optimized SFS algorithm achieves 98.17% accuracy with
8 extracted features and 2.6 µJ energy consumption, while
the adapted SFS algorithm requires 7 features and 8.5 µJ for
slightly higher accuracy of 98.33%.

c) New applications: As the current work aims at the
design of a generic A2F converter chip, applications other than
ECG arrhythmia detection should be explored. This will allow
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(a) Adapted SFS

2 4 6 8 10 12 14 16 18 20
0.9

0.92

0.94

0.96

0.98

1
Accuracy

nExt=1 ext N°1
nExt=2 ext N°2
nExt=3 ext N°3

2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1
Sensitivity

nExt=1 ext N°1
nExt=2 ext N°2
nExt=3 ext N°3

2 4 6 8 10 12 14 16 18 20
0

3

6

9

12

15

Number of features

Energy (µJ)

nExt=1 ext N°1
nExt=2 ext N°2
nExt=3 ext N°3

(b) Optimized SFS

Fig. 3. Accuracy, sensitivity and energy consumption using adapted and
optimized SFS algorithms

to define the relevant features for extraction and eventually
the required system’s parameters, such as the number of
parallel extractors, their internal parameters (e.g., analysis
window length, integrator’s cut-off frequency, wavelet gener-
ator’s operating frequency), classifier’s structure and position
in chain (in-sensor classification or transmission of features to
aggregator). Although a preliminary study of the converter’s
reconfigurability has been conducted using EEG signals in [5],
the trained NN showed poor seizure detection sensitivity due
to a low occurrence of seizure events in database recordings.
Thus, other applications are yet to be found, including voice
activity [10], physical activity [11], or fall detection [12] using
EMG, accelerometers, gyroscopes, or other signals.

III. CONCLUSION

We have presented a successful transition of earlier imple-
mented A2F conversion based on the NUWS approach to more
suitable and advanced software tools. However, so far only
anomaly detection in ECG signals has been explored. In this
regard, the search for another application is still in progress
in order to show the genericity and reconfigurability of the
proposed A2F converter and determine its parameters required
for the complete circuit design and chip fabrication.
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paramètres flexible pour les capteurs intelligents,” Theses,
Institut Polytechnique de Paris, Feb. 2022. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-03624373

[6] M. Pelissier and C. Studer, “Non-uniform wavelet sampling for RF
Analog-to-Information conversion,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 65, no. 2, pp. 471–484, 2018.

[7] G. Moody and R. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE engineering in medicine and biology, vol. 20, pp. 45–
50, 2001.

[8] H. Bhamra, J. Lynch, M. Ward, and P. Irazoqui, “A noise-power-area
optimized biosensing front end for wireless body sensor nodes and
medical implantable devices,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 10, pp. 2917–2928, 2017.
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