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ABSTRACT

This paper presents a semi-guided method to detect lakes in
Sentinel-1 SAR data. The proposed approach is an adaptation
of the grab-cut framework developed in [1]. Starting from a
coarse bounding box around the lake, an accurate segmenta-
tion is extracted using a Conditional Random Field formalism
and a graph-cut based optimization. Then an extension of this
approach to process jointly a stack of multi-temporal data is
presented. A temporal regularization term is introduced to
control the joint segmentation.

The proposed approach is evaluated on Sentinel-1 datasets.

Qualitative and quantitative results demonstrate the interest
of the proposed framework and its robustness to the initial-
ization polygon of the lake.

Index Terms— SAR imaging, lake detection, grabcut,
water surface, Sentinel-1

1. INTRODUCTION

SAR (Synthetic Aperture Radar) is a powerful tool for Earth
observation thanks to its all weather and all-time capacities.
Among the various applications allowed by such sensors,
river and lake monitoring is of the utmost importance, being
a key element for water management and climate change
monitoring.

The future SWOT mission [2] will give invaluable infor-
mation thanks to the interferometric potential of KaRIn sen-
sor and its access to height information. Nevertheless, a fine
delineation of water bodies could be helpful and could be ob-
tained by complementary information provided by Sentinel-1
data.

In this context, we propose a semi-automatic extraction
method of water bodies on sentinel-1 GRD (Ground Range
Detected) data. Inspired from the GrabCut method of [1],
our approach starts from a coarse bounding box of the water
body and extracts an accurate segmentation using a Condi-
tional Random Field (CRF) modeling and a graph-cut based

optimization, while iteratively extracting the statistical prop-
erties of the water class and the background class thanks to a
mixture model. Sentinel-1 provides images of the same area
with a temporal frequency of 6 days. To benefit from this situ-
ation, the method has been extended to multi-temporal stacks
by introducing a temporal regularization.

The proposed framework based on CRF is close to the
approaches based on snakes and deforming an initial set of
edges or a grid [3][4] which have been adapted to take into
account the specificities of the speckle. Besides, many works
have been devoted to flood detection using SAR imaging and
exploiting the low backscattering coefficient of flooded areas
(for example [3]). The context of this work is mainly the use
of an available coarse mask of water bodies that could be ex-
ploited to derive a finer positioning.

This paper is organized as follows. In section 2 we de-
scribe the proposed methodological framework in the case of
a single SAR image. This framework is extended to multi-
temporal stacks in section 3, whereas section 4 presents some
qualitative and quantitative results.

2. PROPOSED METHOD (SINGLE IMAGE CASE)

The objective of the method is to divide the image in two
classes: a water class Cy, which corresponds to water pixels
(label 1), and a land class which corresponds to land (non-
water) pixels (label 0).

The method relies on an initialization step with a rough
initial segmentation given by an a priori polygon. This poly-
gon could be extracted from an available database. Pixels in-
side the bounding polygon are given the label £, = 1, while
pixels outside the polygon are given the label £3 = 0.

Then, the proposed method consists of three steps: the
first step assigns each pixel to a class; the second step learns
(or updates) the class parameters; the third step updates the
segmentation. An overview of the proposed algorithm is pre-
sented Fig. [T}
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Fig. 1. Synoptic of the proposed approach (notations are de-
tailed in section 2).

2.1. Modeling of the water and land classes and parame-
ter estimation

The method is applied on log-transformed images. In this
case the distribution of a physically homogeneous area can
be modeled by a Fisher-Tippett distribution. Here, the classes
Cw (water, label 1) and Cy, (land, label 0) are modeled with
Fisher-Tippett Mixture Models (FTMM) with respectively
ne,, and ne, sub-classes. To take into account land diversity,
more classes are used for land: n¢,, < n¢,. Although water
is rather homogeneous we chose two sub-classes to take into
account wind effects.

Each subclass K is defined by two parameters that are
recomputed at each iteration n;:

* A mean value p(/C, n;¢), which is the arithmetic mean
of the log-reflectivities of the pixels in the subclass.

* A weight 7 (/C, n;;) which is the proportion of pixels in
C that belongs to /C.

The initialization of these parameters can be done using a
K-means approach with the chosen number of sub-classes in-

side the water and land areas defined by the original polygon.
Since the image is log-transformed, the distribution can be ap-
proximated by a Gaussian pdf, particularly for multi-looked
images.

As opposed to the original GrabCut approach, the vari-
ance of the subclass is not considered as a class parameter. In-
deed, with the fully developed speckle model with an assump-
tion of homogeneous reflectivity inside of a sub-class, the
distribution of log-intensities only depends on the reflectiv-
ity and on the equivalent number of looks (ENL) L, which is
a characteristic of the image and thus the same for all classes.

The distribution of the log-intensities y (k) assuming a ho-
mogeneous reflectivity Ry for all the pixels k/V ,,,, (k) = K
of the subclass K is given by Fisher-Tippett. With L the ENL
of the image and zx = log(Rx), the log-reflectivity xx is
related to the arithmetic mean of the log-intensities p(kC, 1)
by: u(K,nit) = zic — log(L) + (L) and the likelihood for
a pixel k of log-intensity y(k) is given by:

L
— 7€L(y(k)—m!6) eXp(—Ley(k)_ﬁK) (1)

LRI = 575

2.2. Segmentation step

The goal of the segmentation step is to find a segmentation
of the image between the two classes. Each class is modeled
by a mixture of Fisher-Tippett distributions defined by the pa-
rameters pu(/C,n) and (K, n;) of its sub-classes as seen
in the previous section. The segmentation is obtained by min-
imizing a global energy & that depends on the classification
£ (£ = 1 for water and £ = 0 for land). & is the sum of one
data term, a CRF-based regularization term, a flux term and a
term preventing water detection outside the a priori polygon:
éa(ea y) = UdIata(e) y) + Ul'eg(ea y) + Uﬂux(ﬁ’ y) + UP(ea eo)

2)

The data term UZ,,, ensures fidelity to the log-intensity image
y = log(I). The regularization term Uy, is derived from
a CRF model, using a gradient computed with the ROEWA
method [6) [7] on the intensities I. The term Up,y favors a
high outward flux of the gradient through the water boundary.
An Up term prevents the classification of pixels outside the a
priori polygon as water.
Data term: In our FTMM, the likelihood of a pixel value
given a class C is the weighted average of the likelihoods of
all its sub-classes K € C
Le(y(k)IC) = Y w(K)L(y(k)|ax) - 3)

KecC

Hence the data term for the whole image is:

Z log(Le(y

Udata E y ( ))) (4)



Regularization term: A regularization term ensures that
the transitions between water and land are compatible with
the gradients of the image, by penalizing the transitions that
would occur where the gradient magnitude is low, or if the
boundaries are not orthogonal to the gradient direction. We
want to minimize over the water boundaries the weighted
total variation (eq [5) on the label field £ whose gradient at
location u is ||V_>£(u) l. The total variation is weighted by a
weight weym(u) defined in (@) The regularization energy is
then given by equation 3}

Usg(€) = 8 Rwsymm)nﬁ(u)nm 5)
u€eER?

with weym(u) = exp 7|V£ V_} )/A). (6)

This symmetric weighting wgy, favors boundaries localiza-
tions that are aligned with the edges (strong gradients) of the
image. The variables A and [ are parameters that allow ad-
justing the regularization and its sensitivity to the gradients.
This regularization energy can be discretized:

=B wym(k,K)-

k' ~k

Ureg(£,Y) [L(K") — (k)] (7)

with wyym(k, k') = exp(—[(£(K") = £(k))(L(K') = L(K))[/A),
k' ~ k means that &’ is an 8-neighbor of k. In the case of
pixels that are 8-neighbors of & but not 4-neighbors, A is mul-
tiplied by /2. (I(k") — I(k)) is actually approximated us-
ing the ROEWA gradient computed on the intensity image to
smooth out noise.

Flux term: In addition to the data term and the regularization
term, a flux term similar to the one proposed in [8]] is used to
favor or penalize the transitions depending on the orientation
and magnitude of the gradient. The gradient is expected to
be strong on the water boundary 9{£ = 1} and oriented in
the outward direction. Over the boundary 9{£ = 1}, this cri-
terion locally corresponds to maximizing the dot product be-
tween the gradient V I (u) and the unit outward normal vector
of the segmentation {£ = 1}. Over each entire water body,
the criterion can be expressed as the outward flux ® of the
gradient through the boundary 9{£ = 1} which is equal to
the integral of the Laplacian of the image over the water body
(divergence theorem). The Laplacian I(u) of the im-
age can be approximated with a Laplacian of Gaussian (LoG)
operator of parameter o,

V. VI ~LoG(I,o1) ®)

that can be computed as the convolution of the image I with
a precalculated LoG kernel. We call the resulting LoG image
LoGy o, .

The influence of the flux energy Upyx (€) can be balanced
with a scaling parameter n > 0 that adjusts its effect.
Prior polygon term: A last term Up can be added for im-
proved robustness. It prevents the classification as water of

pixels outside of the initial a priori polygon (inside this poly-
gon, £y = 1, outside, £5 = 0).
> EKc ©)

UP(£7 20) =
k,l(k)>£q(k)
Here, K¢ is a parameter.

2.3. Resulting graph and minimization

The resulting global energy can be written as follows after

discretization:
y) = log(Le(y(k)
k

+8 ) wym(k, ) - [€(K) — £(K))|

k'~k

+> nLoGrq, (k) +£(k) - (1 —£o(k)) - K¢
K

[£(K)))

where £(k) = 1—£(k). The global energy can be represented
as a cut in a flow network (this is possible as the regulariza-
tion is sub-modular), and is minimized using the min-cut al-
gorithm proposed in [9].

The resulting partition of the image gives the new labels
£(k) for each pixel in the image.

3. EXTENSION TO MULTI-TEMPORAL STACKS

The framework is very similar to the one presented in the
previous section except that the segmentation is done in 3D
and that a temporal regularization term is introduced along
the time axis. The segmentation step consists in minimizing
a global energy éur(£,y) that depends on the 2D+T label
field £(k,t) (k being the spatial index of the pixel and ¢ the
date). This global energy is equal to the sum of the energies
E(L(-,t),y(,t)) for every image in the stack plus a temporal
regularization term between every pair of consecutive images:

Svur(L,y) =

y(,t+1)). (10)

where & (€(-,t),y(-,t)) corresponds to the global energy for
one image, as defined in equation (7). The temporal regular-
ization U (y(-,t), y(-,t + 1)) between the images at date ¢
and ¢+ 1 is the sum of the local regularization energies for ev-
ery pixels. This regularization energy in (k, t) depends on the
difference between the log-intensities y(k, t) and y(k,t + 1):

UTR(('vt)7 ('a t+ 1)) = Br Z |£(]€,t) - E(k,t-i- 1)|
k
oxp (BN YL LD -



Here, S is a tuning parameter for the regularization. To
limit the impact of speckle fluctuations, the temporal change
y(k,t)—y(k,t+1) can smoothed, for example by convolving
with a Gaussian kernel of parameter o, or a better denoising

method like [T0] [T1].

4. RESULTS

In this section, we present the detection results we obtained
by applying the proposed approach to a registered stack of
58 Sentinel-1 IW GRD images (geometric product of co- and
cross-polarization).

Some qualitative results are displayed in Fig. us-
ing a Sentinel-1 GRD image of Sajnam reservoir (India) on
2017-06-03 (above) and 2018-02-22 (below). Right images
compare the results to manually-defined ground truths.

For the first date, the F-score is 97.26% vs. 97.03% with
its single-date counterpart and 95.79% using a basic MRF
method with the true reflectivity for both classes (resp.
95.99%, 95.94% and 94.87% for the second date).

More results can be found in [12] along with a more detailed
description of the method. The data and the ground truth
used for the experiments are available: https://gitlab.telecom-
paris.fr/ring/multitemporal-sar-grabcut.

5. CONCLUSION

The approach presented in this paper is an adaptation of the
GrabCut method of [1]] to SAR images and the specificities
of water detection. A multi-temporal extension has also been
presented. The results are satisfying and could be further im-
proved by the use of information on water elevation. The
method could be easily used for the updating of water-bodies
database.
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