%0 Conference Paper %F Oral %T Software Artifact Mining in Software Engineering Conferences: A Meta-Analysis %+ Direction générale déléguée à l'innovation (DGD-I) %+ Institut National de Recherche en Informatique et en Automatique (Inria) %+ Département Informatique et Réseaux (INFRES) %+ Autonomic and Critical Embedded Systems (ACES) %+ Institut Polytechnique de Paris (IP Paris) %A Abou Khalil, Zeinab %A Zacchiroli, Stefano %< avec comité de lecture %B ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2022) %C Helsinki, Finland %8 2022-09-19 %D 2022 %Z 2207.08436 %R 10.1145/3544902.3546239 %K software artifacts %K mining software repository %K systematic mapping %K meta-analysis %K research trends %K academic conferences %Z Computer Science [cs]/Software Engineering [cs.SE]Conference papers %X Background: Software development results in the production of various types of artifacts: source code, version control system metadata, bug reports, mailing list conversations, test data, etc. Empirical software engineering (ESE) has thrived mining those artifacts to uncover the inner workings of software development and improve its practices. But which artifacts are studied in the field is a moving target, which we study empirically in this paper.Aims: We quantitatively characterize the most frequently mined and co-mined software artifacts in ESE research and the research purposes they support.Method: We conduct a meta-analysis of artifact mining studies published in 11 top conferences in ESE, for a total of 9621 papers. We use natural language processing (NLP) techniques to characterize the types of software artifacts that are most often mined and their evolution over a 16-year period (2004-2020). We analyze the combinations of artifact types that are most often mined together, as well as the relationship between study purposes and mined artifacts.Results: We find that: (1) mining happens in the vast majority of analyzed papers, (2) source code and test data are the most mined artifacts, (3) there is an increasing interest in mining novel artifacts, together with source code, (4) researchers are most interested in the evaluation of software systems and use all possible empirical signals to support that goal. %G English %2 https://hal.science/hal-03723556/document %2 https://hal.science/hal-03723556/file/main.pdf %L hal-03723556 %U https://hal.science/hal-03723556 %~ INSTITUT-TELECOM %~ INRIA %~ ENST %~ TELECOM-PARISTECH %~ INRIA-AUT %~ LTCI %~ INFRES %~ ACES %~ IP_PARIS %~ INSTITUTS-TELECOM %~ IP_PARIS_COPIE