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Abstract: In many areas of computer science, it is of primary importance to assess the randomness

of a certain variable X. Many different criteria can be used to evaluate randomness, possibly after
observing some disclosed data. A “sufficiently random” X is often described as “entropic”. Indeed,
Shannon’s entropy is known to provide a resistance criterion against modeling attacks. More generally
one may consider the Rényi a-entropy where Shannon’s entropy, collision entropy and min-entropy
are recovered as particular cases a = 1, 2 and +•, respectively. Guess work or guessing entropy is
also of great interest in relation to a-entropy.
On the other hand, many applications rely instead on the “statistical distance”, a.k.a. total variation

distance to the uniform distribution. This criterion is particularly important because a very small
distance ensures that no statistical test can effectively distinguish between the actual distribution and
the uniform distribution.
We establish optimal lower and upper bounds between a-entropy, guessing entropy on one hand,
and error probability and total variation distance to the uniform on the other hand. In this context, it
turns out that the best known “Pinsker inequality” and recent “reverse Pinsker inequalities” are not
necessarily optimal. We recover or improve previous Fano-type and Pinsker-type inequalities used
for several applications.

Keywords: Statistical (Total Variation) Distance; a-Entropy; Guessing Entropy; Probability of Error

1. Some Well-Known “Randomness” Measures

It is of primary importance to assess the randomness of a certain random variable X, which
represents some identifier, cryptographic key, signature or any type of intended secret. Applications
include pseudo-random bit generators [1], general cipher security [2], randomness extractors [3] and
hash functions [4, Chap. 8], physically unclonable functions [5], true random number generators [6],
to list but a few. In all of these examples, X takes finitely many values x 2 {x1, x2, . . . , xM} with
probabilities pX(x) = P(X = x). In this paper, it will be convenient to denote

p(1) � p(2) � · · · � p(M) (1)

any rearrangement of the probabilities p(x) in descending order (where ties can be resolved arbitrarily).
Thus p(1) = maxx pX(x) is the maximum probability, p(2) the second maximum, etc. Also define the
cumulative sums

P(k) , p(1) + . . . + p(k) (k = 1, 2, . . . , M) (2)

where in particular P(M) = 1.
Many different criteria can be used to evaluate randomness of X or its distribution pX , depending

on the type of attack that can be carried out to recover the whole or part of the secret, possibly after
observing disclosed data Y. The observed random variable Y can be any random variable and is not
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necessarily discrete. The conditional probability distribution of X having observed Y = y is denoted
by pX|y to distinguish it from from the unconditional distribution pX . To simplify notation we write

p(x) , pX(x) = P(X = x) (3)

p(x|y) , pX|y(x) = P(X = x|Y = y). (4)

A “sufficiently random” secret is often described as entropic in the literature. Indeed, Shannon’s entropy

H(X) = H(p) , Â
x

p(x) log
1

p(x)
= E log

1
p(X)

(5)

(with the convention 0 log 1
0 = 0) is known to provide a resistance criterion against modeling attacks.

It was introduced by Shannon as a measure of uncertainty of X. The average entropy after having
observed Y is the usual conditional entropy

H(X|Y) , Ey H(pX|y) = E log
1

p(X|Y) . (6)

A well-known generalization of Shannon’s entropy is the Rényi entropy of order a > 0 or a-entropy

Ha(X) = Ha(p) , 1
1�a log Â

x

p(x)a = a
1�a log kpXka (7)

where by continuity as a ! 1, the 1-entropy H1(X) = H(X) is Shannon’s entropy. One may consider
many different definitions of conditional a-entropy [7], but for many applications the preferred choice
is Arimoto’s definition [8–10]

Ha(X|Y) , a
1�a logEykpX|yka (8)

where the expectation over Y is taken over the “a-norm” inside the logarithm. (Strictly speaking, k · ka

is not a norm when a < 1.)
For a = 2, the collision entropy H2(X) = H2(p) = log 1

P(X=X0) , where X
0 is an independent copy

of X, is often used to ensure security against collision attacks. Perhaps one of the most popular criteria
is the min-entropy defined when a ! +• as

H•(X) = H•(p) = log
1

p(1)
= log

1
1 � Pe(X)

, (9)

whose maximization is equivalent to a probability criterion to ensure a worst-case security level.
Arimoto’s conditional •-entropy takes the form

H•(X|Y) = log
1

1 � Pe(X|Y) (10)

where we have noted
Pe(X) = Pe(p) , 1 � p(1) = 1 � P(1) (11)

Pe(X|Y) , EyPe(X|y). (12)

These quantities correspond to the minimum probability of decision error using a MAP (maximum a
posteriori probability) rule (see, e.g., [11]). Guess work or guessing entropy [2,12]

G(X) = G(pX) ,
M

Â
i=1

i · p(i) (13)

and more generally guessing moments of order r > 0 or r-guessing entropy

Gr(X) = Gr(pX) ,
M

Â
i=1

i
r · p(i) (14)
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are also of great interest in relation to a-entropy [10,13,14]. The conditional versions given observation
Y are the expectations

Gr(X|Y) , EyGr(X|y) (15)

For r = 1 this represents the average number of guesses that an attacker has to make to guess the
secret X correctly after having observed Y [13].

2. Statistical (Total Variation) Distance to the Uniform Distribution

As shown in the sequel, all quantities introduced in the preceding section (H, Ha, Pe, G, Gr) have
many properties in common. In particular, each of these quantities attains

• its minimum value for a delta (Dirac) distribution p = d, that is, a deterministic random variable X

with p(1) = 1 and all other probabilities = 0;
• its maximum value for the uniform distribution p = u, that is, a uniformly distributed random

variable X with p(x) = 1
M

for all x.

In fact, it can be easily checked that

0  Ha(X)  log M (16)

1  G(X)  M+1
2 (17)

0  Pe(X)  1 � 1
M

(18)

where the lower (resp. upper) bounds are attained for a delta (resp. uniform) distribution. Thus the
uniform distribution is the “most entropic” (Ha), “hardest to guess” (G), and “hardest to detect” (Pe).

The maximum entropy property is related to the minimization of divergence [15]

D(pku) = log M � H(p) (19)

where D(pkq) = Â p(x) log p(x)
q(x) � 0 denotes the Kullback-Leibler divergence which vanishes if and

only if p = q. Thus entropy appears as the complementary value of the divergence to the uniform
distribution. Similarly for a-entropy,

Da(pku) = log M � Ha(p) (20)

where Da(pkq) = 1
a�1 log Âx p(x)a

q(x)1�a denotes the Rényi a-divergence [16] (Bhattacharyya
distance for a = 1

2 ).
Instead of the divergence to the uniform distribution, it is often desirable to rely instead on the

statistical distance, a.k.a. total variation distance to the uniform distribution. The general expression of
the total variation distance is

D(p, q) = 1
2 Â

x

|p(x)� q(x)| (21)

where the 1/2 factor is there to ensure that 0  D(p, q)  1. Equivalently,

D(p, q) = max
T

|P(T)�Q(T)| (22)

where the maximum is over any event T and P, Q denote the respective probabilities w.r.t. p and q. As
is well known, the maximum

D(p, q) = P(T+)�Q(T+) (23)

is attained when T = T+ = {x | p(x) � q(x)}.
The total variation criterion is particularly important because a very small distance D(p, q) ensures

that no statistical test can effectively distinguish between p and q. In fact, given some observation X

following either p (null hypothesis H0) or q (alternate hypothesis H1), such a statistical test takes the
form « is X 2 T? » (then accept H0, otherwise reject H0). If |P(X 2 T)�Q(X 2 T)|  D(p, q) is small
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enough, the type-I or type-II errors have total probability P(X 62 T) +Q(X 2 T) ⇡ 1. Thus, in this
sense the two hypotheses p and q are undistinguishable (statistically equivalent).

By analogy with (19), (20) we can then define ”statistical randomness” R(X) = R(p) � 0 as the
complementary value of the statistical distance to the uniform distribution, i.e., such that

D(p, u) = 1 � R(p) (24)

holds. With this definition,
R(X) = R(p) , 1 � 1

2 Â
x

|p(x)� 1
M
| (25)

is maximum = 1 when D(p, u) = 0, i.e., p = u. Thus the uniform distribution u is the “most random”.
What is fundamental is that R(X) ⇡ 1 ensures that no statistical test can effectively distinguish the actual

distribution from the uniform distribution.
Again the “least random” distribution corresponds to the deterministic case. In fact, from (23) we

have
D(p, u) = P(T+)� K

M
= P(K) � K

M
(26)

where T+ = {x | p(x) � 1
M
} of cardinality K = |T+|, and P(T+) = P(K) by definition (2). It is easily

seen that D(p, u) attains its maximum value = 1 � 1
M

if and only if p = d is a delta distribution. In
summary

1
M

 R(X)  1 (27)

where the lower (resp. upper) bound is attained for a delta (resp. uniform) distribution. The conditional
version is again taken by averaging over the observation:

R(X|Y) , EyR(X|y). (28)

3. F-Concavity: Knowledge Reduces Randomness and Data Processing

Knowledge of the observed data Y (on average) reduces uncertainty, improves detection or guessing,

and reduces randomness in the sense that:

Ha(X|Y)  Ha(X) (29)

G(X|Y)  G(X) (30)

Pe(X|Y)  Pe(X) (31)

R(X|Y)  R(X) (32)

For a = 1 the property H(X|Y)  H(X) is well-known (“conditioning reduces entropy” [15]) : the
difference H(X)� H(X|Y) = I(X; Y) is the mutual information, which is nonnegative. Property (29)
for a 6= 1 is also well known, see [7,8]. In view of (9)-(10), the case a = +• in (29) is equivalent to (31)
which is obvious in the sense that any observation can only improve MAP detection. This, as well
as (30), is also easily proved directly (see, e.g., [17]).

For all quantities H, Pe, G, R, the conditional quantity is obtained by averaging over the
observation as in (6), (12), (15) and (28). Since p(x) = Ey p(x|y), the fact that knowledge of Y reduces
H, Pe, G or R amounts to saying that these are concave functions of the distribution p of X. Note that
concavity of R(X) = R(p) in p is clear from the definition (25), which shows (32).

For entropy H, this also has been given some physical interpretation: “mixing” distributions
(taking convex combinations of probability distributions) can only increase the entropy on average. For
example, given any two distributions p and q, H(lp+ l̄q) � lH(p)+ l̄H(q) where 0  l = 1� l̄  1.
Similarly, such mixing of distributions increases the average probability of error Pe, guessing entropy G, and

statistical randomness R.
For conditional a-entropy Ha(X|Y) where a 6= 1, averaging over Y in the definition (8) is done on

the a-norm of the distribution pX|y, which is known to be convex for a > 1 (by Minkowski’s inequality)
and concave for 0 < a < 1 (by the reverse Minkowski inequality). Thus the fact that knowledge
reduces a-entropy (inequality (29)) is equivalent to the fact that Ha(p) in (6) is an F-concave function,
that is, an increasing function F of a concave function in p, where F(x) = a

1�a log(sgn(1 � a)x). The
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average over Y in Ha(X|Y) is done on the quantity F
�1(Ha) instead of Ha. Thus, for example, H1/2(p)

is a log-concave function of p.
A straightforward generalization of (29)–(32) is the data processing inequality: for any Markov chain

X � Y � Z, i.e., such that p(x|y, z) = p(x|y),

Ha(X|Y)  Ha(X|Z) (33)

G(X|Y)  G(X|Z) (34)

Pe(X|Y)  Pe(X|Z) (35)

R(X|Y)  R(X|Z) (36)

For a = 1 the property H(X|Y)  H(X|Z) amounts to I(X; Z)  I(X; Y), i.e., (post)-processing

can never increase information. Inequalities (33)–(36) can be deduced from (29)–(32) by considering a
fixed Z = z, averaging over Z to show that H(X|Y, Z)  H(X|Z), etc. (additional knowledge reduces

randomness) and then noting that p(x|y, z) = p(x|y) by the Markov property—see, e.g., [7,18] for Ha

and [17] for G. Conversely, (29)–(32) can be re-obtained from (33)–(36) as the particular case Z = 0
(any deterministic variable representing zero information).

4. S-Concavity: Mixing Increases Randomness and Data Processing

Another type of mixing (different from the one described in the preceding section) is also useful
in certain physical science considerations. It can be described as a sequence of elementary mixing
operations as follows. Suppose that one only modifies two probability values pi = p(xi) and pj = p(xj)
for i 6= j. Since the result should be again a probability distribution, the sum pi + pj should be kept
constant. Then there are two possibilities:

• |pi � pj| decreases; the resulting distribution is “smoother”, “more spread out”, “more
disordered”; the resulting operation can be written as (pi, pj) 7! (lpi + l̄pj, lpj + l̄pi) where
0  l = 1 � l̄  1, also known as “transfer” operation. We call it elementary mixing operation or
M-transformation in short.

• |pi � pj| increases; this is the reverse operation, an elementary unmixing operation or U-transformation

in short.

We say that a quantity is s-concave if it increases by any M-transformation (equivalently, decreases by
any U-transformation). Note that any increasing function F of an s-concave function is again s-concave.

This notion coincides with that of Schur-concavity from majorization theory [19]. In fact, we can
say that p is majorized by q, and we write p � q, if p is obtained from q by a (finite) sequence of
elementary M-transformations, or, what amounts the same, that q majorizes p, that is, q is obtained
from p by a (finite) sequence of elementary U-transformations. A well-known result [19, p.34] states
that p � q if and only if

P(k)  Q(k) (0 < k < M) (37)

(see definition (2)) where always P(M) = Q(M) = 1.
From the above definitions it is immediate to see that all previously considered quantities H,

Ha,G, Gr, Pe, R are s-concave. Thus mixing increases uncertainty, guessing, error, and randomness, that is,
p � q implies

Ha(p) � Ha(q) (38)

Gr(p) � Gr(q) (39)

Pe(p) � Pe(q) (40)

R(p) � R(q). (41)

For Ha and R this can be easily seen from the fact that these quantities can be written as (an
increasing function of) a quantity of the form Âx f(p(x)) where f is concave. Then the effet
of an M-transformation (pi, pj) 7! (lpi + l̄pj, lpj + l̄pi) gives f(lpi + l̄pj) + f(lpj + l̄pi) �
lf(pi) + l̄f(pj) + lf(pj) + l̄f(pi) = f(pi) + f(pj). For Pe it is obvious, and for G and Gr it is
also easily proved using characterization (37) and summation by parts [17].

Another kind of (functional or deterministic) data processing inequality can be obtained
from (38)–(41) as a particular case. For any deterministic function f ,
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Ha( f (X))  Ha(X) (42)

G( f (X))  G(X) (43)

Pe( f (X))  Pe(X) (44)

R( f (X))  R(X) (45)

Thus deterministic processing (by f ) decreases (cannot increase) uncertainty, can only make guessing or detection

easier, and decreases randomness. For a = 1 the inequality H( f (X))  H(X) can also be seen from the
data processing inequality of the preceding section by noting that H( f (X)) = I( f (X); f (X)) 
I(X; f (X))  H(X) (since X � f (X)� f (X) is trivially a Markov chain).

To prove (42)–(45) in general, consider preimages by f of values of y = f (x); it is enough to show
that each of the quantities Ha, Pe, G, or R decreases by the elementary operation consisting in putting
together two distincts values xi, xj of x in the same preimage of y. But for probability distributions this
operation amounts the U-transformation (pi, pj) 7! (pi + pj, 0) and the result follows by s-concavity.

An equivalent property of (42)–(45) is the fact that any additional random variable Y increases

uncertainty, probability of error, guessing, and randomness in the sense that

Ha(X)  Ha(X, Y) (46)

G(X)  G(X, Y) (47)

Pe(X)  Pe(X, Y) (48)

R(X)  R(X, Y) (49)

This is a particular case of (42)–(45) applied to the joint (X, Y) and the first projection f (x, y) = x.
Conversely, (42)–(45) follows from (46)–(49) by applying it to ( f (X), X) in place of (X, Y) and noting
that the distribution of ( f (X), X) is essentially that of X.

5. Optimal Fano-Type and Pinsker-Type Bounds

We have seen that informational quantities like entropies H, Ha, guessing entropies G, Gr on
one hand, and statistical quantities like probability of error for MAP detection Pe and statistical
randomness R on the other hand, satisfy many common properties: decrease by knowledge, data
processing, increase by mixing, etc. For this reason, it is desirable to establish the best possible bounds
between one informational quantity (like Ha or Gr) and one statistical quantity (Pe or R = 1 � D(p, u)).

To achieve this, we remark that for any distribution p, we have the following majorizations. For
fixed Pe = 1 � Ps:

(Ps, Pe

M�1 , . . . , Pe

M�1 ) � p � (Ps, . . . ,Ps, 1 � KPs, 0, . . . , 0) (50)

where (necessarily) K = b 1
Ps
c, and for fixed R = 1 � D:

( 1
M

+ D
K

, . . . , 1
M

+ D
K| {z }

K times

, 1
M

� D
M�K

, . . . , 1
M

� D
M�K| {z }

M � K times

) � p � (D + 1
M

, 1
M

, . . . , 1
M| {z }

L � 1 times

, R � L

M
, 0, . . . , 0) (51)

where K = |{p � 1
M
}| as in (26) and (necessarily) L = bMRc (K can possibly be any integer between 1

and L). These majorizations are easily established using characterizations (11), (26) and (37).
Applying s-concavity of entropies Ha or Gr to (50) gives closed-form upper bounds of entropies

as a function of Pe, known as Fano inequalities; and closed-form lower bounds, known as reverse Fano

inequalities. Figure 1 shows some optimal regions.
The original Fano inequality was an upper bound on conditional entropy H(X|Y) as a function of

Pe(X|Y). It can be shown that upper bounds in the conditional case are unchanged. Lower bounds of
conditional entropies or a-entropies, however, have to be slightly changed due to the average operation
inside the function F (see § 3 above) by taking the convex enveloppe (piecewise linear) of the lower
curve on F

�1(Ha). In this way, one recovers easily the results of [20] for H, [11] for Ha, and [14,17] for
G and Gr.

Likewise, applying s-concavity of entropies Ha or Gr to (51) gives closed-form upper bounds of
entropies as a function of R, similar to Pinsker inequalities; and closed-form lower bounds, similar to
reverse Pinsker inequalities. Figure 2 shows some optimal regions.

The various Pinsker and reverse Pinsker inequalities that can be found in the literature give
bounds between D(p, q) and D(pkq) for general q. Such inequalities find application in Quantum
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Figure 1. Optimal regions: Entropies (in bits) vs. error probability. Top row M = 4; bottom row M = 32
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Figure 2. Optimal regions: Entropies (in bits) vs. randomness R. Top row M = 4; bottom row M = 32

physics [21] and to derive lower bounds on the minimax risk in nonparametric estimation [22]. As they
are of more general applicability, they turn out not to be optimal here since we have optimized the
bounds in the particular case q = u. Using our method, one again recovers easily previous results of
[23] and [24, Thm. 26] for H, and improves previous inequalities used for several applications [3,4,6].

6. Conclusion

Using a simple method based on “mixing” or majorization, we have established optimal
(Fano-type and Pinsker-type) bounds between entropic quantities (Ha, Gr) and statistical quantities (Pe,
R) in an interplay between information theory and statistics. As a perspective, similar methodology
could be developed for statiscal distance to an arbitrary (not necessarily uniform) distribution.
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