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Abstract—It is well known that the Gaussian distribution has
the largest differential entropy amongst all distributions of equal
variance. In this paper, we derive similar (generalized) Gaussian
upper bounds for discrete (Rényi) entropies of integer-valued
variables. Using a mixed discrete-continuous bounding technique
and the Poisson summation formula from Fourier analysis, it
is proved that in many cases, such Gaussian bounds hold with
an additive term that vanishes exponentially as the variance
increases.

I. INTRODUCTION

As is well known, the Gaussian distribution has the largest
differential entropy amongst all distributions of given variance:
For any real-valued random variable X with variance σ2 and
density f ,

h(X) ≜
∫
f(x) log

1

f(x)
dx ⩽ 1

2 log(2πeσ
2). (1)

One may wonder whether the same inequality could hold for
discrete distributions: For a given discrete random variable
X of variance σ2 with probabilities p(x) = P(X = x), does
one have a similar bound of the (discrete) entropy:

H(X) ≜
∑
x

p(x) log
1

p(x)
⩽ 1

2 log(2πeσ
2)? (2)

The answer is obviously no in general, since for a deter-
ministic random variable (σ2 = 0) one has H(X) = 0 and
1
2 log(2πeσ

2) = −∞.
More generally, this raises the question of the precise rela-

tion between discrete (absolute) and continuous (differential)
entropies. The classical answer to this question dates back
to the 1961 textbook by Reza [19, § 8.3], and has also been
presented in the classical textbooks [13, § 1.3] and [5, § 8.3].
If X is a quantized version of X with step size ∆, one obtains
the well-known approximation h(X) ≈ H(X) + log∆ for
small ∆ (see § II-A below). This explains why h(X) may
become unbounded negative as ∆ → 0, and why (2) is false
in general.

However, a well-known Gaussian bound similar to (2) has
been derived by Jim Massey in an unpublished work in the
mid-1970s—later published in the late 1980s [12]:

H(X) < 1
2 log

(
2πe(σ2 + 1

12 )
)

(3)

for any integer-valued random variable of variance σ2. The
classical textbook [5, Exercice 8.7] also credits an unpublished
work by Frans Willems1.

As it turns out, (3) was in fact first published by
A. G. Djačkov [7] from the Russian school of information

1Possibly related to his work on multiple access channels, see remark 1.

theory, in his 1975 work on coin weighing. Djačkov even
stated that

For some discrete probability distributions (binomial,
hypergeometric, and son on) one can prove that (3)
is approximately exact if σ → ∞.

In fact, it was long observed from numerical experiments that
many discrete distributions over the integers (such as Poisson,
binomial, etc.) do actually satisfy the Gaussian bound (2)
provided that σ2 is “not too small”.

It was pointed out recently to the author that inequality (2)
(without the 1/12 constant) was in fact rigorously established
in the particular case where X follows a binomial B(n, 1/2)
of parameter p = 1/2 and even length n by Chang and Weldon
in their 1979 work on the multiple-user adder channel [3].
More than fifteen years later it was also established for odd
n using the same method based on the theory of Jacobi theta
functions [16], and then generalized under some constraints
on mean and variance by Mow in [17].

Remark 1 (Two seemingly unrelated applications). Gaussian
bounds of the discrete entropy were derived independently
at about the same time (mid 1970s) by Djačkov in Russia
for solving a weighing problem and by Chang and Weldon
in the U.S.A. for solving an adder channel coding problem.
Specifically, these problems were as follows:

• (Djačkov) Consider M coins, among which T ⩾ 2 are
counterfeit coins. There are two distinct (known) weights
w0 (true) and w1 (counterfeit). (One can always set
w0 = 0 and w1 = 1.) We can weigh subsets of coins
in a spring scale. Determine all counterfeit coins in a
minimal number n of weighings (more precisely, find an
asymptotic lower bound on n when M is large);

• (Chang & Weldon) Consider a T -user multiple access
noiseless adder channel using a binary uniquely de-
codable (n,M) code C. The output of the channel is
the component-wise integer addition of the T binary
codewords of C of length n. Determine the maximum
sum-rate (more precisely, find the asymptotic capacity).

Interestingly, it turns out that these two problems are identical!
To see this, consider a n×M matrix A of zeros and ones, x a
column vector of length M of zeros and ones with Hamming
weight T , and let y = Ax. In the weighing problem, the
components of x are the unknown weights of each coin, each
row of A gives the corresponding selection of coins for each
weighing, and the weighing results are the components of y.
In the coding problem, x gives the corresponding selection of
codewords for each user, the columns of A are the codewords



of C, and y is the channel output. In both cases, we assume
that x can be recovered from y = Ax (all counterfeit coins
are identified by the weighings, the coding scheme is uniquely
decodable), and the problem is to find an asymptotic lower
bound on n for large M , or an asymptotic upper bound of
the rate (log2 M)/n.

Such asymptotic bounds were determined in both cases
from Gaussian bounds on the discrete entropy. Djačkov used
a hypergeometric distribution while Chang and Weldon used
the binomial distribution. We refer to [7] and [3] for more
details.

In this paper, we establish generalizations of the Djačkov-
Massey-Willems (DMW) inequality (3) and simple conditions
under which the genuine Gaussian bound (2) actually holds for
integer-valued random variables. With the help of the Poisson
summation formula from Fourier analysis, the original DMW
inequality (3) is improved by removing the constant 1

12 inside
the logarithm at the expense of an additional constant which is
exponentially small as σ2 increases. The resulting inequality
takes the form

H(X) < 1
2 log(2πeσ

2) +O(e−2π2σ2

)

(Equation (25) below). The additional constant can become
negative under some mild conditions and the Gaussian bound
H(X) < 1

2 log(2πeσ
2), which was classically obtained for

continuous random variables, still holds for many examples
of integer-valued random variables including ones whose
distribution satisfies an entropic central limit theorem.

This paper also considers the differential Rényi α-entropy

hα(X) ≜
1

1− α
log

∫
f(x)α dx (4)

which (see Theorem 2 below) is maximized for a given vari-
ance σ2

X when f = φ is a generalized Gaussian distribution
:

φ(x) =



√
β

πσ2
X

Γ( 1
1−α )

Γ( 1
1−α − 1

2 )

1(
1 + β(x−µX

σX
)2
) 1

1−α

for 1
3 < α < 1;√

|β|
πσ2

X

Γ( α
α−1 + 1

2 )

Γ( α
α−1 )

(
1− |β|(x−µX

σX
)2
) 1

α−1

+

for α > 1,
(5)

where β = 1−α
3α−1 . Fig. 1 plots some α-Gaussian densities.

We study similar generalized Gaussian bounds applied to
the discrete Rényi α-entropy2

Hα(X) ≜
1

1− α
log

∑
x

p(x)α (6)

To illustrate, the natural generalization of (3) to the Rényi
entropy of order 1

2 reads

H 1
2
(X) < 1

2 log
(
4π2(σ2 + 1

12 )
)

2The limiting case α→1 gives H1(X) = H(X) and h1(X) = h(X).
For simplicity this is hereafter referred to as the case of α = 1 (by continuity).
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Fig. 1. α-Gaussians (5) for α = 3−3/4, 3−1/2, 3−1/4, 1, 2, 4, 8, 16.

(see (12) below for the general case), which can be improved
as

H 1
2
(X) < log(2πσ) +O(e−2πσ)

(see (37) below). Such improvements depends on the avail-
ability of simple expressions of Fourier transform pairs with
sufficient decay at infinity.

II. MASSEY-TYPE INEQUALITITES

A. Links Between Discrete vs. Continuous Entropies

As recalled in the introduction, the classical approach
for establishing a link between the (discrete) entropy H(X)
and the (continuous) differential entropy h(X) is to “quan-
tize” X with step size ∆ to obtain the discrete X with
distribution p(xk) = P(X = xk) =

∫ (k+1)∆

k∆
f(x) dx where

the discrete values xk correspond to mean values f(xk) =
1
∆

∫ (k+1)∆

k∆
f(x) dx = p(xk)

∆ .
It is easily seen that this approach can equally be applied

to Rényi entropies of any order α > 0. If the density
f of X is continuous within each bin of length ∆ and
the integral defining the differential entropy exists, then by
the continuity assumption, the values xk are well defined
and given by the mean value theorem; since the integral
defining h(X) (resp. hα(X)) converges and f is piecewise
continuous, f log f (resp. fα) is Riemann-integrable and
the integral can be respectively approximated by the Rie-
mann sum

∑
k ∆ ·f(xk) log

1
f(xk)

= H(X) + log∆ (resp.
1

1−α log
∑

k ∆ ·fα(xk) = Hα(X) + log∆) which tends to
h(X) (resp. hα(X)) as ∆ → 0. Therefore,

lim
∆→0

{Hα(X) + log∆} = hα(X)

for any α > 0, which gives the approximation hα(X) ≈
Hα(X) + log∆ for small ∆.

Compared to the classical approach, Massey’s proof [12]
of his bound (3) (similar to Djačkov’s proof in [7]) goes
in the opposite direction: Instead of deriving the discrete
X from the continuous X and expressing the continuous
entropy in terms of the discrete one, it starts from the discrete
random variable X with regularly spaced values, and adds an
independent uniformly distributed random perturbation U to
obtain a “dithered” continuous random variable X = X +U.
This is explained in detail in [5, Exercice 8.7], [6]. By doing



so, the discrete entropy is expressed in terms of the continuous
one. Remarkably, the approximation hα(X) ≈ Hα(X)+log∆
becomes an exact equality hα(X) = Hα(X) + log∆ where
∆ needs not be arbitrarily small:

Theorem 1. Let X be a discrete random variable whose
values are regularly spaced ∆ apart, and define X by

X = X +U (7)

where U is a continuous random variable independent of X ,
with support of finite length ⩽ ∆. Then one has the following

“additivity” property of entropy:

hα(X) = Hα(X) + hα(U). (8)

In particular, if U is uniformly distributed in an interval of
length ∆, then hα(U) = log∆ and the exact equality

hα(X) = Hα(X) + log∆ (9)

holds for any α > 0.

Since the identity (8) or (9) is obviously invariant by
scaling, one can always set ∆ = 1 and restrict oneself to
an integer-valued random variable X , for which one can
identify Hα(X) = hα(X).

Proof of Theorem 1: By direct calculation (see [21,
App. B]). A simpler proof is as follows in the case α = 1:
By the support assumption, X can be recovered by rounding
X + U, hence is a deterministic function of X. Therefore,
H(X|X) = 0 and H(X) = H(X)−H(X|X) = I(X;X) =
h(X)− h(X|X) = h(X)− h(U).

The content of Theorem 1 was recently used in [9] for
α = 1 in connection with the central limit theorem and also
independently in [2] for Rényi entropies of order α > 1.

B. A Closer Look at Massey’s Inequality (3)

Now suppose that X has finite mean µ and variance σ2 and
define X by (7). The mean and variance of X are, respectively,
µX = µ+ µU and σ2

X = σ2 + σ2
U. Theorem 1 and (1) give

H(X) ⩽ 1
2 log

(
2πe(σ2 + σ2

U)
)
− h(U) (10)

where U has support length ⩽ 1. Here the best compromise
between maximum possible h(U) and minimum possible σ2

U

depends on the value of σ2. But it can be observed that the
obtained bound can never be tight for small values of σ2.
Indeed when σ2 = 0, X is deterministic, H(X) = 0 and the
upper bound in (10) becomes 1

2 log(2πeσ
2
U)− h(U) which is

necessarily strictly positive since U cannot be Gaussian when
it has finite support.

Therefore, for large σ2, the best asymptotic upper bound
in (10) is obtained when h(U) is maximum = log 1 = 0. As
is well known, U is then necessarily uniformly distributed in
an interval of length 1. In this case σ2

U = 1
12 and one recovers

Massey’s inequality (3)—which is strict because X = X +U

cannot be Gaussian. Notice that (3) gives an O( 1
σ2 ) additive

term as σ2 increases since H(X) < 1
2 log

(
2πe(σ2 + 1

12 )
)
<

1
2 log(2πeσ

2) + log e
24σ2 .

Not only is (3) asymptotically the best possible result using
this method, but it is also asymptotically tight for large σ2: As
an example, for Poisson distributed X we have [8] H(X) =
1
2 log(2πeσ

2) +O( 1
σ2 ). However, it can still be improved as

shown below in Section IV—the 1
12 constant in (3) will be

replaced by an arbitrary small constant as σ gets large.

C. Generalization to Rényi Entropies

Theorem 2 (Generalized Gaussian Bound). For any continu-
ous random variable X with differential α-entropy hα(X),

hα(X) ⩽



1
2 log

(
3α−1
1−α πσ2

X

)
+ 1

1−α log 2α
3α−1

+ log
Γ( 1

1−α− 1
2 )

Γ( 1
1−α )

for 1
3 < α < 1;

1
2 log

(
3α−1
α−1 πσ2

X

)
+ 1

α−1 log
3α−1
2α

+ log
Γ( α

α−1 )

Γ( α
α−1+

1
2 )

for α > 1,
(11)

with equality iff X is α-Gaussian (with density (5)).

Proof: See e.g., [21]. This was first established in [15]
for integer α > 1 and in [4] in the multivariate case.

Example 1. When α → 1 we recover the usual Gaussian
bound (1). As other examples we have

h 1
2
(X) ⩽ log(2πσX) h 2

3
(X) ⩽ log

(8π σX

3
√
3

)
h2(X) ⩽ log

(5√5σX

3

)
h3(X) ⩽ log

(2π σX√
3

)
with equality iff X is 1

2 -Gaussian, 2
3 -Gaussian, 2-Gaussian

and 3-Gaussian, respectively. Letting α → +∞ one obtains
h∞(X) < log

(
2
√
3σX).

The natural generalization of Massey’s inequality (3) to
α-entropies is given by a similar reasoning as above in the
case α = 1. For large σ2, the best upper bound in Theorem 1
is obtained when U is uniformly distributed in an interval of
length 1 so that σ2

X = σ2+ 1
12 . Thus (11) gives the following

Theorem 3. For integer-valued X with finite variance σ2,

Hα(X) <



1
2 log

(
3α−1
1−α π(σ2 + 1

12 )
)
+ 1

1−α log 2α
3α−1

+ log
Γ( 1

1−α− 1
2 )

Γ( 1
1−α )

for 1
3 < α < 1

1
2 log

(
3α−1
α−1 π(σ2 + 1

12 )
)
+ 1

α−1 log
3α−1
2α

+ log
Γ( α

α−1 )

Γ( α
α−1+

1
2 )

for α > 1.
(12)

The strictness of the inequality follows from the fact that
X = X+U has a staircase density and cannot be α-Gaussian.

Example 2. Thus, referring to Example 1,

H 1
2
(X)< 1

2 log
(
4π2

(
σ2+ 1

12

))
, H 2

3
(X)< 1

2 log
(
64
27π

2
(
σ2+ 1

12

))
H2(X)< 1

2 log
(
125
9

(
σ2+ 1

12

))
, H3(X)< 1

2 log
(
4
3π

2
(
σ2+ 1

12

))
.



and letting α → +∞, H∞(X) < 1
2 log

(
12σ2 + 1

)
.

Remark 2. Since the upper bounds of Theorem 2 are tight
for α-entropies of continuous variables, a simple quantization
argument shows that the upper bounds of (12) (e.g., the
constants in Example 2) are asymptotically tight for integer-
valued variables X as σ2 → +∞.

This means that for any α > 1
3 , the coefficient multiplying

σ2 inside the logarithm:

3α− 1

|α− 1|
π

is optimal. In [2], the more general identity (8) was used
for α > 1 and α-Gaussian U to show that Hα(X) ⩽
1
2 log(4

3α−1
α−1 σ2 + 1) where the constant 4 3α−1

α−1 is suboptimal
for finite α > 1.

Remark 3. Such inequalities cannot exist in general when
α ⩽ 1

3 . To see this, consider the discrete random variable
X ⩾ 1 having distribution P(X = k) = c

(k log k)3 with
normalization constant c =

∑
k>0

1
(k log k)3 . Then X has

finite second moment
∑

k>0
c

k log3 k
< +∞ hence finite

variance, but
∑

k>0
3
√

P(X = k) =
∑

k>0
1

k log k = +∞,
hence Hα(X) ⩾ H 1

3
(X) = +∞ for all α ⩽ 1

3 .

III. AN ALTERNATIVE BOUNDING TECHNIQUE

A. Derivation

Instead of applying the usual entropy bounds on X =
X + U, it is possible, as an alternative, to apply a similar
inequality directly on the discrete entropy of X but using
the same probability density functions. This novel general
bounding technique has its own interest.

Theorem 4 (Case α = 1). Let X be a discrete random
variable and let X be the random variable having density

f(x) ≜
e−T (x)

Z
(13)

where Z =
∫
e−T (x)dx, such that E[T (X)] = E[T (X)] = m

is a fixed quantity. Then

H(X) ⩽ h(X) + logZ ′ (14)

where Z ′ =
∑

x f(x), the sum being over all discrete values
x of X .

Proof: Apply the information inequality D(p∥q) ⩾ 0
to p(x), the probability distribution of X , and to q(x) =
f(x)
Z′ , which is also a discrete probability distribution on the

same alphabet because of the normalization constant Z ′. We
obtain Gibbs’ inequality in the form H(X) ⩽ −E log q(X) =
−E log f(X)+logZ ′ where −E log f(X) = E[T (X)] log e+
logZ = E[T (X)] log e+ logZ = h(X).

Theorem 5 (Case α ̸= 1). Let X be a discrete random
variable and let X be the random variable having density

f(x) ≜
T (x)

1
α−1

Z
(15)

where Z =
∫
T (x)

1
α−1 dx, such that E[T (X)] = E[T (X)] =

m is a fixed quantity. Then

Hα(X) ⩽ hα(X) + logZ ′
α (16)

where Z ′
α =

∑
x fα(x), and fα = fα∫

fα is the α-escort density
of f , the sum being over all discrete values x of X .

Proof: Denoting the “escort” distributions of exponent
α by pα(x) = pα(x)∑

pα(x) and qα(x) = qα(x)∑
qα(x) , the relative

α-entropy [11] between p and q is defined as

∆α(p∥q) ≜ D1/α(pα∥qα) ⩾ 0 (17)

with equality = 0 iff p = q a.e. Here Dα denotes the
Rényi α-divergence [24]. Expanding D1/α(pα∥qα) similarly
as in [20, Prop. 8] gives the following α-Gibbs’ inequality
which generalizes the Gibbs inequality:

Hα(X) ⩽
α

1− α
logE q

1− 1
α

α (X) (18)

with equality iff p = q a.e. Now apply (18) to p(x), the
probability distribution of X , and to q(x) = f(x)

Z′ with
the normalization constant Z ′ =

∑
x f(x), which is also

a discrete probability distribution on the same alphabet. Since
qα(x) =

fα(x)
Z′

α
, we obtain Hα(X) ⩽ α

1−α logE q
1− 1

α
α (X) =

α
1−α logE f

1− 1
α

α (X) + logZ ′
α where α

1−α logE f
1− 1

α
α (X) =

α
1−α logE[T (X)] + logZα = α

1−α logE[T (X)] + logZα =

hα(X).

B. Examples

Corollary 1. Let X be integer-valued with finite mean µ and
variance σ2. Then

H(X) ⩽ 1
2 log(2πeσ

2) + log
∑
x

e−
1
2 (

x−µ
σ )2

√
2πσ2

, (19)

which can be simplified as

H(X) ⩽
log e

2
+ log

∑
x

e−
1
2 (

x−µ
σ )2 , (20)

the sums being taken over all nonnegative integer values x
of X .

For α > 1
3 and any integer-valued X with mean µ and

variance σ2,

Hα(X) ⩽
α

1−α
log

2α

3α−1
+log

∑
x

(
1+

1−α

3α−1

(x−µ

σ

)2) α
α−1

+

(21)
where the sum is taken over all integer values x of X .

Proof: For α = 1 we take X Gaussian of parameters
(µ, σ2) and differential entropy h(X) = 1

2 log(2πeσ
2). Theo-

rem 4 then gives (19).
For α ̸= 1 we take X to be α-Gaussian of parameters

(µX = µ, σ2
X = σ2) and differential entropy hα(X) =

α
1−α log(1 + β) + logZα, given by the r.h.s. of (11). From
the expression of an α-Gaussian (5), we have fα(x) =
1
Zα

(
1+β(x−µ

σ )2
) α

α−1

+
where β = 1−α

3α−1 . Therefore, Theorem 5
gives (21).



Remark 4. It may appear peculiar that the upper bound
in (19), (20) or (21) depends on the mean µ = E(X) while
the entropy Hα(X) should normally not. But this upper bound
is, in fact, invariant by translation X + c (where c ∈ Z
because of the constraint of integer-valued variables), as is
readily seen by making a change of variables in the sum,
e.g.,

∑
x e

− 1
2 (

x−(µ+c)
σ )2 =

∑
x e

− 1
2 (

x−µ
σ )2 . In other words,

the upper bound in (19), (20) or (21) depends only on µ’s
fractional part {µ} = µ mod 1. The constraint of integer-
valued variables makes it impossible to tighten the bound
by minimizing over µ since the only possible changes by
translation are integer shifts.

Remark 5. The sum in (19), (20) or (21) does not need to
be taken over all integers if the support of X is limited. A
tighter bound always results if one takes the sum only on
those integers actually taken by the variable. In particular,
when α > 1, the sum in (21) is restricted to values x in the
interval |x− µ| <

√
3α−1
α−1 .

Remark 6. For large variance, the unsimplified expres-
sion (19) is perhaps preferable because its second term can
be made small (see Example 3 below). It should be noted,
however, that for moderate values of the variance, the obtained
bound in the simplified expression (20) can be valuable. For
example, when X ∼ B(p) is a Bernoulli random variable of
entropy Hb(p) = p log 1

p + (1− p) log 1
1−p , the sum in (20)

has only two terms:

Hb(p) ⩽ log
(
e

1
2
−p

1−p + e
p− 1

2
p

)
. (22)

This is illustrated in Fig. 2. On the scale of the figure, when
the variance is not too small (|p− 1

2 | < 0.2), the two curves
are indistinguishable, while in comparison Massey’s original
bound (3) is much looser.
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p

1
2

log
(
2πe(p(1 − p) + 1

12
)
)

Hb(p) = p log 1
p

+ (1 − p) log 1
1−p

log
(
e

1
2
−p

1−p + e
p− 1

2
p

)

Fig. 2. Moustache bound (22) (blue) vs. Massey’s bound (3) (dashed) on
the binary entropy function (in bits).

C. Use of the Poisson Summation Formula

When σ2 or µ is large, then the additional logarithmic
term logZ ′ in (14) is likely to be small because of the
approximation Z ′ =

∑
x f(x) ≈

∫
f(x) dx = 1. In order

to evaluate this precisely, the Poisson summation formula can
be used.

Lemma 1 (Poisson Summation Formula [22, p. 252]). Let f
be Lebesgue-integrable and let

f̂(t) ≜
∫ +∞

−∞
f(x) e−2iπtx dx (23)

be the Fourier transform of f(x). If both f and f̂ have
O( 1

|x|1+ε ) decay at infinity then Poisson’s summation formula
holds: ∑

x∈Z
f(x) =

∑
x∈Z

f̂(x) (24)

where the x = 0 term in the r.h.s. is f̂(0) =
∫
f(x) dx = 1.

The Fourier transform pairs used in this paper are in Table I.

TABLE I
SOME FOURIER TRANSFORM PAIRS.

f(x) f̂(x)

1√
2πσ2

e−
1
2 (

x−µ
σ )2 e−2iπµxe−2(πσx)2

1

πσ

1

1 + (x−µ
σ )2

e−2iπµxe−2πσ|x|

2

πσ

1

(1 + (x−µ
σ )2)2

e−2iπµx(1 + 2πσ|x|)e−2πσ|x|

Example 3. As an example, using the first Fourier trans-
form pair of Table I in Poisson’s formula (24) one ob-

tains
∑

x∈Z
e−

1
2
(
x−µ
σ

)2

√
2πσ2

=
∑

x∈Z e
−2iπµxe−2(πσx)2 = 1 +

2
∑+∞

x=1 e
−2(πσx)2 cos 2πµx. This identity is historically the

very first occurence of the formula in 1823 by Poisson [18,
Eq. (15)] which was later generalized by other mathematicians
to other Fourier transform pairs. It shows that for large
variance, the second term inthe r.h.s. of (19) is in fact
exponentially small.

IV. IMPROVED (GENERALIZED) GAUSSIAN BOUNDS

In this section, we apply the alternative bounding technique
described in Section III with the aim to improve the previous
(generalized) Gaussian bounds established in Section II.
Applying Theorem 4 or 5 will have the effect of removing
the constant 1

12 in (3) at the expense of a small additional
additive constant logZ ′ or logZ ′

α in the upper bound.

A. Gaussian Bounds for the Discrete Entropy
For large variance σ2, Massey’s original inequality (3)

reads H(X) ⩽ 1
2 log

(
2πe(σ2 + 1

12 )
)
< 1

2 log(2πeσ
2) + log e

24σ2 .
Now (19) together with Poisson’s formula (24) greatly im-
proves Massey’s inequality, since the O( 1

σ2 ) term can be
replaced by the exponentially small O(e−2π2σ2

):

Theorem 6. For any integer-valued X of variance σ2 > 0,

H(X) <
1

2
log(2πeσ2) +

2 log e

e2π2σ2 − 1
. (25)

Proof: Using the first Fourier transform pair of Table I
in Poisson’s formula (24) one obtains

1√
2πσ2

∑
x∈Z

e−
1
2 (

x−µ
σ )2 = 1+2

+∞∑
x=1

e−2(πσx)2 cos 2πµx (26)



The sum in the r.h.s. is bounded by
∑

x⩾1 e
−2(πσx)2 ⩽∑

x⩾1 e
−2(πσ)2x = 1

e2π2σ2−1
. Substituting in (19) and using

the inequality log(1 + z) < (log e)z (when z > 0) gives the
result.

Example 4. As a illustration, consider a binomial X ∼
B(n, p) of variance σ2 = npq (where p + q = 1). The best
known upper bound on H(X) is [1, Eq. (7)]

H(X) <
1

2
log(2πenpq) +

log e

12n
+

log(pq)

2n
+

log e

6npq
(27)

which (25) considerably improves for large n since all O( 1n )

terms are replaced by O(e−2π2npq):

H(X) <
1

2
log(2πenpq) +

2 log e

e2π2npq − 1
. (28)

The exponentially small term can even be made disappear
under mild conditions. For example:

Corollary 2. If the integer-valued variable X ∈ N is
nonnegative and µ

σ2 is bounded by a constant < 2π, then
for large enough σ2,

H(X) <
1

2
log(2πeσ2). (29)

More precisely, this holds true as soon as(µ+ 1

σ2

)2

< (2π)2 − log(8πσ2)

σ2
(30)

Proof: Apply (19) where the sum can be taken only over
x ∈ N. Then by (26),∑

x∈N

e−
1
2 (

x−µ
σ )2

√
2πσ2

⩽ 1 + 2

+∞∑
x=1

e−2(πσx)2 −
+∞∑
x=1

e−
1
2 (

x+µ
σ )2

√
2πσ2

.

To obtain (29) it is sufficient to prove that 2e−2(πσx)2 <
e−

1
2
(
x+µ
σ

)2

√
2πσ2

, i.e., 2(πσx)2 − 1
2 (

x+µ
σ )2 > log

√
8πσ2 for all

x ⩾ 1. When 2πσ2 > 1 we have 2(πσ)2 > 1/2σ2 and it
is enough to prove the required inequality for x = 1, i.e.,
(2πσ)2 > (µ+1

σ )2+log(8πσ2). This will hold for large enough
σ2 provided that 2πσ2 > (1 + ε)µ for some ε > 0.

Example 5. As an example, if X ∼ P(λ) is Poisson-
distributed then µ

σ2 = λ
λ = 1 < 2π so that for large enough

λ,
H(X) <

1

2
log(2πeλ). (31)

It is found numerically that this inequality holds as soon as
λ > 0.1312642451 . . ..

Example 6. Similarly, if X ∼ B(n, p) is binomial, we may
always assume that p ⩽ 1

2 since considering n−X in place
of X permutes the roles of p and q = 1− p without changing
H(X). Then µ

σ2 = np
npq = 1

q ⩽ 2 < 2π, and by Corollary 2,
for large enough n,

H(X) <
1

2
log(2πenpq). (32)

It is found numerically that this inequality holds for all n > 0
as soon as |p− 1

2 | < 0.304449 . . ..

Remark 7. For the last two examples, Takano’s strong central
limit theorem [23, Thm. 2] implies that

H(X) =
1

2
log(2πeσ2) + o

( 1

σ1+ε

)
(33)

for every ε > 0. The above inequalities show that the o
(

1
σ1+ε

)
term is actually negative for large enough σ.

Remark 8. When X has finite support length N , i.e., 0 ⩽
X ⩽ N−1, a similar calculation as in the proof of Corollary 2
gives Mow’s result [16, Cor. 1](max(µ+ 1, N − µ)

σ2

)2

< (2π)2 − log(2πσ2)

σ2
(34)

By contrast, the sufficient condition (30) does not depend on
the support length and is thus valid for any N .

B. Generalized Gaussian Bounds for Discrete Rényi Entropies

We now illustrate the use of the Poisson summation
formula (24) in (21) for α-entropies, in the two cases α = 1

2
and α = 2

3 .

Lemma 2. One has the following Poisson summations:

Z ′
1
2
= 1

πσ

∑
x∈Z

1
1+( x−µ

σ )2
= 1 + 2

+∞∑
x=1

e−2πσx cos 2πµx. (35)

Z ′
2
3
= 2

πσ

∑
x∈Z

1
(1+( x−µ

σ )2)2
=1+2

+∞∑
x=1

(1+2πσx)e−2πσxcos 2πµx.

(36)
Proof: By (5) the 1

2 -Gaussian density is of the form
f(x) = 1

Z (1 + (x−µ
σ )2)−2. It follows that f 1

2
(x) = 1

Zα
(1 +

(x−µ
σ )2)−1 = 1

πσ
1

1+( x−µ
σ )2

. Using the third Fourier trans-

form pair of Table I in Poisson’s formula (24) one obtains∑
x∈Z

1
πσ

1
1+( x−µ

σ )2
=

∑
x∈Z e

−2iπµxe−2πσ|x|, which is (35).

By (5) the 2
3 -Gaussian density is of the form f(x) = 1

Z (1+

β(x−µ
σ )2)−3 where β = 1

3 . It follows that f 2
3
(x) = 1

Zα
(1 +

β(x−µ
σ )2)−2 = 2

πσ
1

(1+( x−µ
σ )2)2

. Using the fourth Fourier

transform pair of Table I in Poisson’s formula (24) one obtains∑
x∈Z

2
πσ

1
(1+( x−µ

σ )2)2
=

∑
x∈Z e

−2iπµx(1+2πσ|x|)e−2πσ|x|,

which is (36).
In the two cases α = 1

2 and 2
3 , the Massey-type inequalities

in Example 2 write H 1
2
(X) ⩽ 1

2 log
(
4π2(σ2 + 1

12 )
)

<

log(2πσ) + log e
24σ2 and H 2

3
(X) ⩽ 1

2 log
(

64
27π

2
(
σ2 + 1

12

))
<

log( 8
3
√
3
πσ) + log e

24σ2 , respectively. In these inequalities, the
O( 1

σ2 ) term can be replaced by the exponentially small
O(e−2πσ) and O(σe−2πσ), respectively:

Theorem 7. For any integer-valued X of variance σ2 > 0,

H 1
2
(X) < log(2πσ) +

2 log e

e2πσ − 1
(37)

H 2
3
(X) < log

( 8πσ
3
√
3

)
+

4(1 + πσ) log e

e2πσ − 1
. (38)



Proof: The sum in the r.h.s. of (35) is bounded by∑
x⩾1 e

−2πσx = 1
e2πσ−1 . Substituting in (21) and using the

inequality log(1 + z) < (log e)z (when z > 0) gives (37).
Likewise, the sum in the r.h.s. of (36) is bounded by∑
x⩾1(1 + 2πσx)e−2πσx = 1+2πσ

e2πσ−1 + 2πσ
(e2πσ−1)2 < 2 1+πσ

e2πσ−1

(where we used that 2πσ < e2πσ − 1). Substituting in (21)
and using the inequality log(1 + z) < (log e)z (when z > 0)
gives (38).

Remark 9. Using the Poisson summation formula on other
Fourier transform pairs, it is possible to generalize Theorem 7
to any value of the form α = k+1

k+2 (k = 0, 1, . . .) and prove
that

H k+1
k+2

(X) < log(ckπσ) +O(σke−2πσ) (39)

where the constant ck is given by

ck = 4
√
2k + 1

(
2k

k

)(
k + 1

2(2k + 1)

)k+1

. (40)

The method of this and the previous section is not easily
applicable to many other cases, however, since it depends on
the availability of simple expressions of Fourier transform
pairs with sufficient decay at infinity.

V. CONCLUSION

Simple bounds on the differential Shannon or Rényi entropy
for a given fixed variance have long been established in
connection with the important maximum entropy problem,
which has been heavily studied for continuous distributions.
By contrast, the similar problem for discrete distributions does
not seem to be as popular: With the exception of discrete
uniform or geometric laws, few results are known on the
maximizing distributions. However, bounding the discrete
entropy or discrete Rényi entropy for fixed variance appears
as a basic question in information theory.

This paper has shown that improving Massey’s approach,
many closed-form bounds on discrete entropies or Rényi
entropies can be deduced from bounds on the α-entropies
of a continuous distribution. Similar derivations can be done
for other types of parameter constraints [21].

A variant of Massey’s approach together with some Fourier
analysis proves very tight Gaussian or generalized Gaussian
bounds for large variance—better than what would have been
expected from convergence in entropy towards the Gaussian
as established by the strong central limit theorem. Therefore,
it is likely that Takano’s σ−1−ε term [23] can be very
much improved in general, at least for integer-valued random
variables with finite higher-order moments.

Since Massey-type bounds easily generalize to Rényi
entropies with tight α-Gaussian bounds, it would also be
interesting to prove some corresponding convergence results
in terms of α-entropies and α-Gaussians.

Generalization to multiple dimensions of the inequalities
of this paper is also straightforward with the same principles
and methodology when X ∈ Zn. A multidimensional version

of the DMW inequality (3) already appears in [10, Lemma 5].
Inequality (25) was used recently for multidimensional integer
lattices in [14].
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