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1.

We demonstrate that a recent improvement on Massey's inequality between Massey' Guessing entropy and Shannon's entropy (Rioul's improved inequality) is asymptotically optimal (which is highly relevant to scalability). 2.

We provide a new improvement on Massey's inequality that is even tighter than the above for all finite-size data distributions.

3.

We extend and prove the above results when dealing with multiple lists of probabilities (distributions), as is the case when dealing with the results of side-channel attacks on multiple key bytes (proving scalability). [START_REF] Camurati | Screaming Channels : When Electromagnetic Side Channels Meet Radio Transceivers[END_REF].

We apply our results on concrete side-channel attack datasets to demonstrate the improvements of the methods from this paper over the state of the art.

Preliminaries

The guessing entropy associated with a (positive descending) probability distribution p = (p 1 , p 2 , . . . , p n ) with p 1 • • • p n > 0 is the expected value of the random variable G(p) given by P[G(p) = i] = p i (i = 1, . . . , n), i.e., E[G(p)] = Â n i=1 ip i . It corresponds to the minimal average number of binary questions required to guess the value of a random variable distributed according to p [START_REF] Massey | Guessing and entropy[END_REF]. J. Massey has provided a well-known relation between guessing entropy and the Shannon entropy (In this formula, as well as the remaining of the paper log() denotes logarithm to base 2.) H(p) = Â n i=1 p i log p i , which reads [START_REF] Massey | Guessing and entropy[END_REF]:

E[G(p)] 2 H(p) 2 + 1, (1) 
when H(p) 2 bits. Massey's inequality has been recently improved in various ways, yet all known refinements share the same shape. For instance, in an ISIT paper, Popescu and Choudary [START_REF] Popescu | Refinement of Massey Inequality[END_REF] proved

E[G(p)] 2 H(p)+2p n 2 + 1 p n 2 H(p)+p n 2 + 1 1 2 p n 2 H(p) 2 + 1,
subject to the same condition H(p) 2 bits as in the Massey inequality. Meanwhile, Rioul's inequality [START_REF] Rioul | On Guessing[END_REF], published in a CHES paper [START_REF] De Chérisey | Best Information is Most Successful[END_REF] states that for all values of H(p) 0,

E[G(p)] > 1 e 2 H(p) , (2) 
which refines Massey's inequality when H(p) log e 1 e/4 ⇡ 3. Finally, in an Entropy paper, Tanasescu and Popescu [START_REF] Tȃnȃsescu | Exploiting the Massey Gap[END_REF] found that under the same condition as in Massey's inequality (here h(a) is the binary Shannon entropy),

E[G(p)] sup a2[0,1/2] 2 H(p)+ h(a) 1 a p n 2 + 1 a 1 a p n 2 H(p)+2p n 2 + 1 p n > 2 H(p) 2 + 1.
The authors of [START_REF] Tȃnȃsescu | Exploiting the Massey Gap[END_REF] hinted that a similar refinement can be found for inequality [START_REF] Network | Security, I. Sectoral/Thematic Threat Analysis: ENISA Thread Lanscape[END_REF].

In the following section, we present one such refinement, by first optimising exponential relations between the guessing and Shannon entropies, i.e., lower bounds of the form E[G(p)] a • b H(p) + c valid when the Shannon entropy lies above a given threshold. We thus arrive at an improved Rioul's inequality [START_REF] Rioul | Variations on a Theme by Massey[END_REF] by an additive constant of 1/2, which is asymptotically optimal among other global lower bounds depending only on the Shannon entropy as H(p) ! • (such condition reflects variables that can take a very large number of values, e.g., when dealing with very large cryptographic keys in our examples). Then, using the techniques of [START_REF] Popescu | Refinement of Massey Inequality[END_REF][START_REF] Tȃnȃsescu | Exploiting the Massey Gap[END_REF] we further refine this inequality for finite support distributions allowing us to increase the multiplicative constant depending on the smallest probability p n . Finally, then, we apply our results in the context of side-channel attacks, where guessing entropy is a key metric [START_REF] Mazumdar | Constrained Search for a Class of Good Bijective S-Boxes With Improved DPA Resistivity[END_REF][START_REF] Choudary | Efficient, portable template attacks[END_REF][START_REF] Carré | Persistent fault analysis with few encryptions[END_REF], showing that our results provide an improvement (tighter bounds) over the method of Choudary and Popescu [START_REF] Choudary | Back to Massey: Impressively fast, scalable and tight security evaluation tools[END_REF], which is known as the most scalable full-key security evaluation method to date.

The Asymptotically Optimal Massey-Like Inequality

Considering the increasingly large key space of cryptographic systems, in this section we seek the best Massey-like inequality E[G(p)] a • b H(p) + c, in the sense that it is optimal for arbitrarily large entropy, i.e., when H(p) ! •, as can be obtained for infinite support (infinitely large probability lists). Then, we show that this asymptotically optimal bound also holds for all possible distributions.

Recently, [START_REF] Rioul | Variations on a Theme by Massey[END_REF] proposed an improved version of Rioul's inequality

E[G(p)] 1 e 2 H(p) + 1 2 . ( 3 
)
Now we show that as H(p) ! • this inequality is in fact the optimal Massey-like inequality.

Theorem 1. The Massey-like inequality (3) is asymptotically optimal.

Proof. Following Massey's approach [START_REF] Massey | Guessing and entropy[END_REF], the best lower bound on guessing entropy based on Shannon entropy is sharp for geometric distributions, i.e., for any guessing entropy value E[G(p)] = µ, the maximal Shannon entropy is obtained for the geometric distribution with mean µ,

p i = 1 µ ⇣ 1 1 µ ⌘ i 1 , H(p)  log(µ 1) µ log(1 1/µ),
as found by Massey [START_REF] Massey | Guessing and entropy[END_REF]. Moreover, in practical applications where p has finite length, this inequality is actually strict, but the upper bound can be approached as closely as desired if the list of probabilities is long enough. We seek bounds of the form As a consequence, we necessarily have log b µ log µ, i.e., log b  1 or b  2, so that the optimal (maximum) value of b is b = 2. Next, we should have log a log e, i.e., a  1/e, so that the optimal (maximum) value of a is 1/e. Finally, we should have c log e (log e)/2, i.e., c  1/2, so that the optimal (maximum) value of c is c = 1/2. The asymptotically optimal bound then writes log(µ 1/2) + log e log(µ 1)

E[G(p)] a • b H(p) + c, i.
µ log(1 1/µ) (4) 
which readily gives (3) when µ or H(p) tend to infinity.

A simple proof of (3) for all values of H(p) > 0 can be found in [START_REF] Rioul | Variations on a Theme by Massey[END_REF].

We conclude this section by remarking that the optimal Massey-like inequality in Theorem 1 is very general, as it also holds for small support corresponding to a few bytes, and even for very small entropy, H(p) ! 0, improving on the original Massey inequality which holds just when H(p) 2.

Refinement for Finite Support Distributions

In this section, we show a new relation between the Shannon and guessing entropy, dependent on the minimal probability of a given distribution, further refining Rioul's improved inequality [START_REF] Garcia | Lock It and Still Lose It-on the (In)Security of Automotive Remote Keyless Entry Systems[END_REF].

We begin with a direct improvement of Theorem 1 following the technique [START_REF] Popescu | Refinement of Massey Inequality[END_REF][START_REF] Tȃnȃsescu | Exploiting the Massey Gap[END_REF] used to improve the Massey inequality. To this end, we make use of the binary Shannon entropy, h(a) = a log a (1 a) log(1 a) for 0  a  1.

Lemma 1. For any positive descending probability distribution p 2 R n such that H(p) 1 bit, we have

E[G(p)] sup a2[0,1/2] 1 e 2 H(p)+p n h(a) ap n + 1 2 1 e 2 H(p)+p n 1 2 p n + 1 2 1 e 2 H(p) + 1 2 .
Proof. Consider a positive decreasing distribution p = (p 1 , p 2 , . . . , p n ) with H(p) 2. Following the approach in [START_REF] Popescu | Refinement of Massey Inequality[END_REF] we construct the new probability distribution q = (p 1 , p 2 , . . . , p n 1 , (1 a)p n , ap n ), which is decreasing and strictly positive if and only if a 2 (0, 1/2]. From the grouping property of entropy, H(q) = H(p) + p n h(a), and moreover

E[G(q)] = E[G(p)] + ap n . Then E[G(p)] =E[G(q)] ap n 1 e 2 H(q) ap n + 1 2 (5) = 1 e 2 H(p)+p n h(a) ap n + 1 2 .
The first desired inequality follows taking the supremum over a in eq. ( 5), the second by substituting a = 1/2. To justify the third, we use

2 x > 1 + x ln 2 for x = p n obtaining 1 e 2 H(p)+p n 1 2 p n 1 e 2 H(p) (1 + p n ln 2) 1 2 p n = 1 e 2 H(p) + 2 H(p) ln 2 e 1 2 ! p n ,
where p n 's coefficient is positive whenever H(p) 1 log e 2 ln 2 . This ends the proof.

We can further refine this lemma using the generalization techniques of [START_REF] Popescu | Refinement of Massey Inequality[END_REF][START_REF] Tȃnȃsescu | Exploiting the Massey Gap[END_REF] as follows.

Theorem 2. For any positive descending probability distributions p 2 R n such that H(p) 1, we have

E[G(p)] sup a2[0,1/2] 1 e 2 H(p)+ h(a) 1 a p n + 1 2 a 1 a p n 1 e 2 H(p)+ 1 2 p n + 1 2 p n 1 e 2 H(p) + 1 2 .
Proof. Given the initial decreasing p, we construct a sequence of probability distributions {Q k }, recursively defined using the procedure in the previous proof. We begin by fixing an arbitrary parameter a 2 [0, 1/2] as above. Denoting by Q k,i the i th component of the sequence Q k , we define the terms of the list {Q k } as follows. We let the support of the first term coincide with p, i.e., Q 0 = (p 0 , p 1 , . . . , p n , 0, 0, . . . , 0, . . . ), and we define the other terms by recurrence:

Q k+1 =(Q k,0 , Q k,1 , . . . , Q k,n+k 1 , ( 1 
a)Q k,n+k
, aQ k,n+k , 0, 0, . . . , 0, . . . ).

and at each step of the construction, we have the inequality

E[G(Q k )] =E[G(Q k+1 )] aQ k,n+k 2 H(Q k+1 ) e aQ k,n+k > 2 H(Q k ) e + 1 2 . 
After the first k steps of the construction we find

E[G(p)] =E[G(Q k )] p n a 1 a k 1 a =E[G(Q k )] + k 1 Â j=0 ⇣ E h G ⇣ Q j ⌘i E h G ⇣ Q j+1 ⌘i⌘ 1 2 2 H(Q k ) + 1 2 + k 1 Â j=0 ⇣ E h G ⇣ Q j ⌘i E h G ⇣ Q j+1 ⌘i⌘ > 1 e 2 H(Q k 1 ) + 1 2 + k 2 Â j=0 ⇣ E h G ⇣ Q j ⌘i E h G ⇣ Q j+1 ⌘i⌘ > • • • > 1 e 2 H(Q 0 ) + 1 2 = 1 e 2 H(p) + 1 2 ,
where the tightest of the enumerated bounds is

E[G(p)] 1 e 2 H(Q k ) + 1 2 + k 1 Â j=0 ⇣ E h G ⇣ Q j ⌘i E h G ⇣ Q j+1 ⌘i⌘ = 1 e 2 H(p)+p n h(a) 1 a k 1 a + 1 2 p n a 1 a k 1 a ,
which as we have shown increases with k up to the limit

E[G(p)] 1 e 2 H(p)+p n h(a) 1 a + 1 2 p n a 1 a
valid for any a 2 [0, 1/2]. The first desired inequality now follows taking supremum over the last equation, the second by substituting a = 1/2 and the third by noting that all bounds in the sequence are greater than the last one 1 e 2 H(p) + 1 2 .

We conclude this section by remarking that Theorem 2 provides a very scalable result as both the Shannon entropy of a joint probability distribution and its minimal entry are very easy to compute, as we will show in the following section.

Scalability of Bounds

For side-channel attack evaluations on full cryptographic keys (e.g., [START_REF] Rioul | On Guessing[END_REF]-byte AES keys or 1024-byte RSA keys), we need to combine the attack results on each key byte to derive a security metric that estimates as well as possible the difficulty of recovering the entire key. For example, given the lists of probabilities p 1 = {p [START_REF] Choudary | Efficient, portable template attacks[END_REF][START_REF] Chari | Template Attacks[END_REF] for the 16 key bytes of AES, we need security metrics that can use this information efficiently.

In this context, Choudary and Popescu [START_REF] Choudary | Back to Massey: Impressively fast, scalable and tight security evaluation tools[END_REF] have provided the following bounds (LB GM and UB GM for full key):

1 1 + ln n N s N s ' i=1 " n  k=1 q p i k # 2  E[G(p)] f  1 2 N s ' i=1 " n  k=1 q p i k # 2 + 1 2 , ( 6 
)
where N s is the number of bytes (e.g., N s = 16 for AES-128), n represents the number of values per byte (list) and E[G(p)] f represents the guessing entropy for the full-key (which cannot be computed for large N s , e.g., N s >= 10). Below we show how to extend the bounds from this paper to apply them in the full-key context.

Theorem 3. For any full list of probabilities p we have

E[G(p)] f 1 e 2 Ns  k=1 H(p k ) + 1 2 .
Theorem 4. For any positive descending probability vectors

n p k o N s k=1 ✓ R n such that H(p) f 1, we have E[G(p)] f sup a2[0,1/2] 1 e 2 Ns  k=1 H(p k ) ! + h(a) 1 a Ns ' k=1 p k n + 1 2 a 1 a N s ' k=1 p k n 1 e 2 Ns  k=1 H(p k ) ! + 1 2 Ns ' k=1 p k n + 1 2 N s ' k=1 p k n 1 e 2 Ns  k=1 H(p k ) + 1 2 .
Proofs. Both results follow immediately from Theorem 1 and Theorem 2 considering the additivity of the Shannon entropy,

H(p) f = H ✓ N s ⌦ k=1 p k ◆ = N s  k=1 H ⇣ p k ⌘ ,
and the fact that the minimal entry in the full list of probabilities p is the product of the individual minima p k n .

In conclusion, we presented the optimal Massey-like inequality for the full-key context in the form of Theorem 3 as well as an improvement of it, Theorem 4, showing that our results are indeed highly scalable.

For practical purposes, given that limited representation of numbers may lead to zero values in large lists of probabilities, in our experiments we consider as p n the least non-zero probability, i.e., p n > 0, which leads to accurate results for the bounds presented in this paper.

As a final remark, we note here that our new improvement which most completely manifests in the form of Theorem 2 is tight whenever the smallest non-zero probability is significant, such as uniform distributions or geometric distributions with truncated tail, but can also be beneficial for other classes of distributions, such as those encountered in side-channel attack evaluation, as will be discussed in the next section.

Evaluation on Side-Channel Attack Data

As mentioned in the introduction, in many security-critical applications, such as banking or physical access control, it is imperative to use hardware that is security certified. In order to obtain a security certification such as those offered by Common Criteria [START_REF]The Common Criteria Web Site[END_REF] it is also typically necessary to prove that a device is resilient to side-channel attacks and this is generally done by showing that the guessing entropy or some other security metric is within certain thresholds. In this context, the bounds from this paper represent a very useful tool for a security evaluator, as they allow improving the tightness of the CHES2017 bounds, which are considered to be the most scalable tool to date for evaluating the security of cryptographic algorithms, allowing security estimation when dealing with very large keys. Hence, in this section we demonstrate the relevance of the results from this paper, by comparing the scalable versions of our bounds (see previous sections) against the bounds from CHES 2017.

Evaluation Data

To easily compare the bounds from this paper against the CHES 2017 method of Choudary and Popescu [START_REF] Choudary | Back to Massey: Impressively fast, scalable and tight security evaluation tools[END_REF], we used the same datasets as in the CHES 2017 paper: (a) a simulated dataset (MATLAB generated power consumption from the execution of the AES S-box) and (b) a real dataset (power traces from the execution of AES in the AES hardware engine of an AVR XMEGA microcontroller).

In both experiments, the AES encryption algorithm is used with 128-bit (16-byte) keys. The AES state is composed of 16 bytes, which are processed sequentially within certain operations such as the Sub Bytes (S-Box) operation, which is the typical target of side-channel attacks, including ours.

The steps for our experiments are as follows:

1.

For each dataset (power traces), we run a Template Attack [START_REF] Chari | Template Attacks[END_REF] using the set of power traces to determine the most likely value of each of the 16 bytes of the AES key. The result of this attack is a list of probabilities p k = {p 1 , p 2 , . . . , p 256 } for each of the 16 bytes of the AES key

(K = [k 1 k 2 . . . k 16 ]). 2.
Using the lists of probabilities p 1 , p 2 , . . . , p 16 , we compute the bounds (those from this paper as well as those from CHES 2017) first for each byte individually and then for attacks on two or more key bytes. Please note that a direct computation of the guessing entropy through the computation of the cross-product of several lists of probabilities (e.g., for more than 8 key bytes) is not feasible as we would have to process lists of more than 2 64 elements. Instead, the bounds from this paper (as well as those from CHES 2017) use directly and very efficiently the lists of probabilities for each key byte, without performing the cross-product, to derive security metrics for attacks on many target bytes.

In the following, we present the results of our evaluations for three interesting cases: (1) application of the bounds on single lists of probabilities-this is equivalent to attacking a single key byte in side-channel attack evaluations; (2) application of the bounds when targeting two bytes-this is interesting to test the scalability of the bounds; (3) application of the bounds when attacking 16 bytes-this represents a complete attack on the full AES key and hence is a representative scenario of a full-fledged security evaluation, where scalability and tightness are very important.

Evaluation on a Single Byte

We show the bounds for a single key byte on the simulated and real datasets in Figure 1. Here we can see that while the CHES lower bound is tighter when the guessing entropy is low (below 4 bits), in the other (most) cases Rioul's lower bound is better. Furthermore, we can see that Theorem 1 provides a better (tighter) lower bound than Rioul's lower bound and Theorem 2 in turn provides an even better lower bound than Theorem 1. An interesting artifact appears when the guessing entropy decreases below two bits (log(G(p)) = 1), where the Massey inequality (and the ones in ISIT 2019 [START_REF] Popescu | Refinement of Massey Inequality[END_REF]) does not necessarily hold (considering for example geometric distributions with p 1 1/2). In this case, most bounds do not hold anymore. Meanwhile, bounds based on Rioul's inequality (Rioul LB, Theorem 1, Theorem 2) all continue to hold in this regime, owing to the fact that it does not impose preconditions on the minimal value of H(p).

For reference, in Figure 1 we included all present refinements of Massey's inequality. However, for clarity, in the following sections we will only compare our bounds with CHES 2017.

Evaluation on Two Bytes

We show the bounds when targeting two key bytes on the simulated and real datasets in Figure 2. Here we see again that Rioul's bound is tight when the guessing entropy is higher, but then the CHES lower bound becomes tighter, as the guessing entropy decreases. We can also confirm here that our theorems provide a better (tighter) lower bound than Rioul's lower bound. 

Evaluation on All 16 Bytes

Finally, we show the bounds when targeting all the 16 bytes of the full AES key on the simulated and real datasets in Figure 3. We did not plot the actual value of the guessing entropy in this case, because it is not possible to compute it: it would require the iteration over (and sorting of) a list of 2 128 elements. Hence, in this case the computationally efficient bounds compared in this paper become very valuable. From the figure we see again that when the guessing entropy is very high (e.g., above 120 bits), all the lower bounds presented in this paper are tighter than the CHES 2017 lower bound (Theorems 3 and 4 provide numerically similar results to Rioul's lower bound), hence tightening the security evaluation results for larger values of the guessing entropy. This allows for an overall improved method than that of CHES 2017 (e.g., by taking the maximum between the CHES 2017 lower bound and Theorems 3/4). 

Conclusions

In this paper, we have improved the security evaluation metric of Choudary and Popescu from CHES 2017, which is considered the most scalable method to date, by tightening Massey's inequality even further. First, we have demonstrated that the improved Rioul's inequality is asymptotically optimal and showed how to scale this method for use in full-key evaluation methods. Then, using the techniques of [START_REF] Popescu | Refinement of Massey Inequality[END_REF][START_REF] Tȃnȃsescu | Exploiting the Massey Gap[END_REF], we further refined this inequality for finite support distributions allowing us to increase the multiplicative constant depending on the smallest probability p n . We compared all our results to those of Choudary and Popescu from CHES 2017 using their datasets, demonstrating the usefulness of the improvements from this paper.

For future work we are very interested in further results based on other (additive) entropies, such as Rényi entropies where other guessing bounds are already investigated [START_REF] Rioul | Variations on a Theme by Massey[END_REF] past their original use in moment inequalities [START_REF] Arikan | An inequality on guessing and its application to sequential decoding[END_REF][START_REF] Sason | Improved bounds on lossless source coding and guessing moments via Rényi measures[END_REF][START_REF] Kuzuoka | On the conditional smooth Rényi entropy and its applications in guessing and source coding[END_REF] and other derived problems such as guessing with limited (or no) memory [START_REF] Huleihel | Guessing with limited memory[END_REF].

  e., H(p)  log b µ c a . In order for this to be valid for all µ, we should necessarily have log b µ c a log(µ 1) µ log(1 1/µ). In particular, as µ ! •, the expression on the left has asymptotic log b µ c a = log b µ log b a c log b e µ + o(1/µ), while the expression on the right has asymptotic log(µ 1) µ log(1 1/µ) = log µ + log e log e 2µ + o(1/µ).
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 1 Figure 1. Bounds for the simulated (left) and real (right) datasets, when targeting a single subkey byte. These are averaged results over 100 experiments.

Figure 2 .

 2 Figure 2. Bounds for the simulated (left) and real (right) datasets, when targeting two subkey bytes. These are averaged results over 100 experiments.

Figure 3 .

 3 Figure 3. Bounds for the simulated (left) and real (right) datasets, when targeting all the 16 AES key bytes. These are averaged results over 100 experiments.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest:

The authors declare no conflict of interest.