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Abstract
The reliability of a Boolean Conjunctive Query (CQ) over a tuple-independent probabilistic database
is the probability that the CQ is satisfied when the tuples of the database are sampled one by one,
independently, with their associated probability. For queries without self-joins (repeated relation
symbols), the data complexity of this problem is fully characterized in a known dichotomy: reliability
can be computed in polynomial time for hierarchical queries, and is #P-hard for non-hierarchical
queries. Hierarchical queries also characterize the tractability of queries for other tasks: having
read-once lineage formulas, supporting insertion/deletion updates to the database in constant time,
and having a tractable computation of tuples’ Shapley and Banzhaf values.

In this work, we investigate a fundamental counting problem for CQs without self-joins: how
many sets of facts from the input database satisfy the query? This is equivalent to the uniform
case of the query reliability problem, where the probability of every tuple is required to be 1/2. Of
course, for hierarchical queries, uniform reliability is in polynomial time, like the reliability problem.
However, it is an open question whether being hierarchical is necessary for the uniform reliability
problem to be in polynomial time. In fact, the complexity of the problem has been unknown even
for the simplest non-hierarchical CQs without self-joins.

We solve this open question by showing that uniform reliability is #P-complete for every non-
hierarchical CQ without self-joins. Hence, we establish that being hierarchical also characterizes
the tractability of unweighted counting of the satisfying tuple subsets. We also consider the
generalization to query reliability where all tuples of the same relation have the same probability,
and give preliminary results on the complexity of this problem.
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1 Introduction

Probabilistic databases [23] extend the usual model of relational databases by allowing
database facts to be uncertain, in order to model noisy and imprecise data. The evaluation
of a Boolean query Q over a probabilistic database D is then the task of computing the
probability that Q is true under the probability distribution over possible worlds given by D.
This computational task has been considered by Grädel, Gurevich and Hirsch [10] as a
special case of computing the reliability of a query in a model which is nowadays known as
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17:2 Uniform Reliability of Self-Join-Free Conjunctive Queries

Tuple-Independent probabilistic Databases (TIDs) [6, 23]. In a TID, every fact is associated
with a probability of being true, and the truth of every fact is an independent random
event. While the TID model is rather weak, query evaluation over TIDs can also be used
for probabilistic inference over models with correlations among facts, such as Markov Logic
Networks [11,13]. Hence, studying the complexity of query evaluation on TIDs is the first
step towards understanding which forms of probabilistic data can be tractably queried.

To this end, Grädel et al. [10] showed the first Boolean Conjunctive Query (referred to
simply as a CQ hereafter) for which query evaluation is #P-hard on TIDs. Later, Dalvi and
Suciu [6] established a dichotomy on the complexity of evaluating CQs without self-joins
(i.e., without repeated relation symbols) over TIDs: if the CQ is safe (or hierarchical [8, 23]
as we explain next), the problem is solvable in polynomial time; otherwise, the problem is
#P-hard. (This result was later extended to the class of all CQs and unions of CQs [7].)

The class of hierarchical CQs is defined by requiring that, for every two variables x and
y, the sets of query atoms that feature x must contain, be contained in, or be disjoint from,
the set of atoms that feature y. Interestingly, this class of hierarchical queries was then
found to characterize the tractability boundary of other query evaluation tasks for CQs
without self-joins, over databases without probabilities (and under conventional complexity
assumptions). Olteanu and Huang [18] showed that a query is hierarchical if and only if, for
every database, the lineage of the query is a read-once formula. Livshits, Bertossi, Kimelfeld
and Sebag [15] proved that the hierarchical CQs are precisely the ones that have a tractable
Shapley value as a measure of responsibility of facts to query answers (a result that was later
generalized to CQs with negation [15]); they also conjecture that this complexity classification
also holds for another measure of responsibility, namely the causal effect [21]. (We discuss
these measures again later in this section.) Berkholz, Keppeler and Schweikardt [3] showed
that the hierarchical CQs are (up to conventional assumptions of fine-grained complexity)
precisely the ones for which we can use an auxiliary data structure to update the query
answer in constant time in response to the insertion or deletion of a tuple.

In this paper, we show that the property of being hierarchical also captures the complexity
of a fundamental counting problem for CQs without self-joins: how many sets of facts from
the input database satisfy the query? This problem, which we refer to as uniform reliability,
is equivalent to query evaluation over a TID where the probability of every fact is equal
to 1

2 . In particular, it follows from the aforementioned dichotomy that this problem can
be solved in polynomial time for every self-join-free hierarchical CQ Q. Yet, if Q is not
hierarchical, it does not necessarily mean that Q is intractable already in this uniform setting.
Indeed, it was not known whether enforcing uniformity makes query evaluation on TIDs
easier, and the complexity of uniform reliability was already open for the simplest case of
a non-hierarchical CQ: Q1 :- R(x), S(x, y), T(y). The proofs of #P-hardness of Dalvi and
Suciu [6] require TIDs with deterministic facts (probability 1), in addition to 1

2 , already in
the case of Q1. Here, we address this problem and show that the dichotomy is also true for
the uniform reliability problem. In particular, uniform reliability is #P-complete for every
non-hierarchical CQ without self-joins (and solvable in polynomial time for every hierarchical
CQ without self-joins).

The uniform reliability problem that we study is a basic combinatorial problem on CQs,
and a natural restricted case of query answering on TIDs, but it also has a direct application
for quantifying the impact (or responsibility) of a fact f on the result of a CQ Q over ordinary
(non-probabilistic) databases. One notion of tuple impact is the aforementioned causal effect,
defined as the difference between two quantities: the probability of Q conditioning on the
existence of f , minus the probability of Q conditioning on the absence of f [21]. This causal
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effect was recently shown [3] to be the same as the Banzhaf power index, studied in the
context of wealth distribution in cooperative game theory [9] and applied, for instance,
to voting in the New York State Courts [12]. One notion of causal effect (with so-called
endogenous facts) is defined by viewing the ordinary database as a TID where the probability
of every fact is 1

2 . Therefore, computing the causal effect amounts to solving two variations
of uniform reliability, corresponding to the two quantities. In fact, it is easy to see that all of
our results apply to each of these two variations.

Uniform reliability also relates to the aforementioned computation of a tuple’s Shapley
value, a measure of wealth distribution in cooperative game theory that has been applied to
many use cases [20,22]. Livshits et al. [15] showed that computing a tuple’s Shapley value can
be reduced to a generalized variant of uniform reliability. Specifically, for CQs, computing the
Shapley value (again for endogenous facts) amounts to calculating the number of subinstances
that satisfy Q and have precisely m tuples (for a given number m). This generalization
of uniform reliability is tractable for every hierarchical CQ without self-joins [15]. Clearly,
our results here imply that this generalization is intractable for every non-hierarchical CQ
without self-joins, allowing us to conclude that the complexity dichotomy also applies to this
generalization.

Our investigation can be viewed as a first step towards the study of problems that lie in
between uniform reliability and probabilistic query answering over TIDs. For instance, a
natural variant is the one where the probability of each tuple of the database is the same,
but not necessarily 1

2 . This problem can arise, for example, in scenarios of network reliability,
where all connections are equally important and have the same independent probability of
failure. A more general case is the one where the probabilities for every relation are the
same, but different relations may be associated with different probabilities. This corresponds
to data integration scenarios where every relation is a resource with a different level of trust
(e.g., enterprise data vs. Web data vs. noisy sensor data). In this paper, we formalize this
generalization and ask which combinations of CQs and probability assignments make the
problem intractable. We do not completely answer this question, but propose preliminary
results for the query Q1 mentioned earlier: we show that some combinations of probabilities
can be easily proved hard using our main result, while others can be proved hard with other
techniques.

Related work. As explained earlier, our work is closely related to existing literature on
query evaluation over probabilistic databases. The dichotomy of Dalvi and Suciu [6] for CQs
without self-joins requires tuples with probabilities 1

2 and 1. This is also the case for their
generalized dichotomy on CQs without self-joins where some relations can be required to
be deterministic (i.e., all tuples have probability 1) while tuples in the remaining relations
can have arbitrary probabilities (including 1). The later generalization of the dichotomy
by Dalvi and Suciu [7] to CQs with self-joins and to UCQs required an unbounded class of
probabilities, not just 1

2 and 1. In very recent work, Kenig and Suciu [14] have strengthened
the generalized dichotomy and showed that probabilities 1

2 and 1 suffice for UCQs as well.1
In that work, they also investigate uniform reliability (that we study here, i.e., where 1

2 is
the only nonzero probability allowed) and prove #P-hardness for the so-called unsafe “final
type-I” queries. As they explain in their discussion on the work of this paper (which was
posted as a preprint before theirs), their result on uniform reliability complements ours, and
it is not clear if any of these two results can be used to prove the other.

1 Kenig and Suciu refer to this case as TID with probabilities from {0, 1
2 , 1}; we mean the same thing, as

in this paper we assume that tuples with probability zero are simply ignored.
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The work of this paper also relates to rewriting techniques used in the case of DNF
formulas to reduce weighted model counting to unweighted model counting [5]. Nevertheless,
the results and techniques for this problem are not directly applicable to ours, since model
counting for CQs translates to DNFs of a very specific shape (namely, those that can be
obtained as the lineage of the query).

Another superficially related problem is that of symmetric model counting [2]. This is
a variant of uniform reliability where each relation consists of all possible tuples over the
corresponding domain, and so each fact carries the same weight: these assumptions are
often helpful to make model counting tractable. The assumption that we make is much
weaker: we do not deal with symmetric databases, but rather with arbitrary databases where
all facts of the database (but not necessarily all possible facts over the domain) have the
same uniform probability of 1

2 . For this reason, the tractability results of Beame et al. [2]
do not carry over to our setting. In terms of hardness results, [2, Theorem 3.1] shows the
#P1-hardness of symmetric model counting (hence of uniform reliability) for a specific FO3

sentence, and [2, Corollary 3.2] shows a #P1-hardness result for weighted symmetric model
counting for a specific CQ (without assuming self-join-freeness). Hence, these results do not
determine the complexity of uniform reliability for self-join-free CQs as we do here.

There is a closer connection to existing dichotomy results on counting database repairs [16,
17]. In this setting, the input database may violate the primary key constraints of the
relations, and a repair is obtained by selecting one fact from every collection of conflicting
facts (i.e., distinct facts that agree on the key): the repair counting problem asks how many
such repairs satisfy a given CQ. In particular, it can easily be shown that for a CQ Q, there
is a reduction from the uniform reliability of Q to repair counting of another CQ Q′. Yet,
this reduction can only explain cases of tractability (namely, where Q is hierarchical) which,
as explained earlier, are already known. We do not see how to design a reduction in the other
direction, from repair counting to uniform reliability, in order to show our hardness result.

Finally, our work relates to the study of the Constraint Satisfaction Problem (CSP).
However, there are two key differences. First, we study query evaluation in terms of homo-
morphisms from a fixed CQ, whereas the standard CSP phrasing talks about homomorphisms
to a given template. Second, the standard counting variant of CSP (namely, #CSP), for
which Bulatov has proved a dichotomy [4], is about counting the number of homomorphisms,
whereas we count the number of subinstances for which a homomorphism exists. For these
reasons, it is not clear how results on CSP and #CSP can be helpful towards our main result.

Organization. We give preliminaries in Section 2. In Section 3, we formally state the studied
problem and main result, that is, the dichotomy on the complexity of uniform reliability for
CQs without self-joins. We prove this result in Sections 4–6. We discuss a generalization to
arbitrary uniform probabilities in Section 7, and conclude in Section 8. Missing proofs can
be found in the full version of this paper [1].

2 Preliminaries

We begin with some preliminary definitions and notation that we use throughout the paper.
We first define databases and conjunctive queries, before introducing the task of probabilistic
query evaluation, and the uniform reliability problem that we study.

Databases. A (relational) schema S is a collection of relation symbols with each relation
symbol ρ in S having an associated arity. We assume a countably infinite set Const of
constants that are used as database values. A fact over S is an expression of the form
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ρ(c1, . . . , ck) where ρ is a relation symbol of S, where k is the arity of ρ, and where c1, . . . , ck

are values of Const. An instance I over S is a finite set of facts. In particular, we say that
an instance J is a subinstance of an instance I if we have J ⊆ I.

Conjunctive queries. This paper focuses on queries in the form of a Boolean Conjunctive
Query, which we refer to simply as a CQ. Intuitively, a CQ Q over the schema S is a relational
query definable as an existentially quantified conjunction of atoms. Formally, a CQ is a
first-order formula of the form Q :- ρ1(τ⃗1), . . . , ρn(τ⃗m) where each ρi(τ⃗i) is an atom of Q,
formed of a relation symbol of S and of a tuple τ⃗i of constants and (existentially quantified)
variables, with the same arity as ρi. In the context of a CQ Q, we omit the schema S and
implicitly assume that S consists of the relation symbols that occur in Q (with the arities
that they have in Q); in that case, we may also refer to an instance I over S as an instance
over Q. We write I |= Q to state that the instance I satisfies Q. We denote by the set of all
subinstances J of I that satisfy Q by:

Mod(Q, I) ··= {J ⊆ I | J |= Q}.

A self-join in a CQ Q is a pair of distinct atoms over the same relation symbol. For
example, in Q :- R(x, y), S(x), R(y, z), the first and third atoms constitute a self-join. Our
analysis in this paper is restricted to CQs without self-joins, that we also call self-join-free.

Let Q be a CQ. For each variable x of Q, we denote by atoms(x) the set of atoms
ρi(τ⃗i) of Q where x occurs. We say that Q is hierarchical [6] if for all variables x and x′

one of the following three relations hold: atoms(x) ⊆ atoms(x′), atoms(x′) ⊆ atoms(x), or
atoms(x) ∩ atoms(x′) = ∅. The simplest non-hierarchical self-join-free CQ is Q1, which we
already mentioned in the introduction:

Q1 :- R(x), S(x, y), T(y) (1)

Probabilistic query evaluation. The problem of probabilistic query evaluation over tuple-
independent databases [23] is defined as follows.

▶ Definition 2.1. The problem of probabilistic query evaluation (or PQE) for a CQ Q,
denoted PQE(Q), is that of computing, given an instance I over Q and an assignment
π : I → [0, 1] of a probability π(f) to every fact f , the probability that Q is true, namely:

Pr(Q, I, π) ··=
∑

J∈Mod(Q,I)

∏
f∈J

π(f) ×
∏

f∈I\J

(1 − π(f)) .

We again study the data complexity of this problem, and we assume that the probabilities
attached to the instance I are rational numbers represented by their integer numerator and
denominator.

PQE was first studied by Grädel, Gurevich and Hirsch [10] as query reliability (which they
also generalize beyond Boolean queries). They identified a Boolean CQ Q with self-joins such
that the reliability of Q is #P-hard to compute. Dalvi and Suciu [6,7] then studied the PQE
problem, culminating in their dichotomy for the complexity of PQE on unions of conjunctive
queries with self-joins [7]. In this paper, we only consider their earlier study of CQs without
self-joins [6]. They characterize, under conventional complexity assumptions, the self-join-free
CQs where PQE is solvable in PTIME. They state the result in terms of safe query plans
(“safe CQs”), but the term “hierarchical” was adopted in later publications [8, 23]:

▶ Theorem 2.2. [6] Let Q be a CQ without self-joins. If Q is hierarchical, then PQE(Q) is
solvable in polynomial time. Otherwise, PQE(Q) is #P-hard.

ICDT 2021
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Recall that #P is the complexity class of problems that count witnesses of an NP-relation
(e.g., satisfying assignments of a logical formula, vertex covers of a graph, etc.). A function
F is #P-hard if every function in #P has a polynomial-time Turing reduction (or Cook
reduction) to F .

We stress that Theorem 2.2 applies to CQs without self-joins. In the presence of self-joins,
being hierarchical is still necessary for tractability, but no longer sufficient [23, Theorem 4.23,
Proposition 4.25].

Uniform reliability. We study the query reliability problem (which we equivalently refer to
as PQE), and focus on the uniform variant of this problem, where the probability of every
fact is 1

2 . Equivalently, the task is to count the subinstances that satisfy the query (up to
division/multiplication by 2n where n is the number of facts in the instance). Formally:

▶ Definition 2.3. The problem of uniform reliability for a CQ Q, denoted UR(Q), is that of
determining, given an instance I over Q, how many subinstances of I satisfy Q. In other
words, UR(Q) is the problem of computing |Mod(Q, I)| given I. We study the data complexity
of this problem, i.e., Q is fixed and the complexity is a function of the input I.

3 Problem Statement and Main Result

Let Q be a CQ without self-joins. It follows from Theorem 2.2 that, if Q is hierarchical,
then UR(Q) is solvable in polynomial time. Indeed, there is a straightforward reduction from
UR(Q) to PQE(Q): given an instance I for Q, let π : I → [0, 1] be the function that assigns
to every fact of I the probability π(f) = 1

2 . Then we have:

|Mod(Q, I)| = 2|I| × Pr(Q, I, π)

because every subset of Q has the same probability, namely 2−|I|.
However, the other direction is not evident. If Q is non-hierarchical, we know that

PQE(Q) is #P-hard, but we do not know whether the same is true of UR(Q). Indeed, this
does not follow from Theorem 2.2 (as uniform reliability is a restriction of PQE), and it does
not follow from the proof of the theorem either. Specifically, the reduction that Dalvi and
Suciu [6] used to show hardness consists of two steps.
1. Proving that PQE(Q1) is #P-hard (where Q1 is defined in (1)).
2. Constructing a polynomial-time Turing reduction from PQE(Q1) to PQE(Q) for every

non-hierarchical CQ Q without self-joins.
In both steps, the constructed instances I consist of facts with two probabilities: 1

2 and 1
(i.e., deterministic facts). If all facts had probability 1

2 , then we would get a reduction to our
UR(Q) problem. However, the proof crucially relies on deterministic facts, and we do not
see how to modify it to give the probability 1

2 to all facts. This is true for both steps. Even
for the first step, the complexity of UR(Q1) has been unknown so far. For the second step,
it is not at all clear how to reduce from UR(Q1) to UR(Q), even if UR(Q1) is proved to be
#P-hard.

In this paper, we resolve the question and prove that UR(Q) is #P-complete whenever
Q is a non-hierarchical CQ without self-joins. Hence, we establish that the dichotomy of
Theorem 2.2 also holds for uniform reliability. Our main result is:

▶ Theorem 3.1. Let Q be a CQ without self-joins. If Q is hierarchical, then UR(Q) is
solvable in polynomial time. Otherwise, UR(Q) is #P-complete.
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As explained earlier, the tractability of UR(Q) for hierarchical queries follows from
Theorem 2.2. (Note that the theorem assumes the self-join freeness of the query.) Membership
of UR(Q) in #P is straightforward. Thus, our technical contribution is the following:

▶ Theorem 3.2. Let Q be a non-hierarchical CQ without self-joins. Then UR(Q) is #P-hard.

A preliminary observation is that this claim follows from the hardness of a specific family
of non-hierarchical self-join-free CQs. We call them the Qr,s,t-queries, and they have the
following form for some natural numbers r, s, t > 0:

Qr,s,t :- R1(x), . . . , Rr(x), S1(x, y), . . . , Ss(x, y), T1(y), . . . , Tt(y) (2)

These queries always have two variables and no constants, and relations of arity 1 or 2.
Note that Q1,1,1 is the same as Q1 (introduced as Equation (1) on page 5). We can show
that, for any non-hierarchical self-join-free CQ Q, there is a reduction to the UR(Q) problem
from the problem UR(Qr,s,t) for some r, s, t > 0. Formally:

▶ Proposition 3.3. Let Q be a non-hierarchical CQ without self-joins. We can compute
natural numbers r, s, t > 0 such that there is a polynomial-time Turing reduction from
UR(Qr,s,t) to UR(Q).

Proof sketch. We only sketch the case where Q has no constants, as the general case is
similar. As Q is non-hierarchical, we can find two variables x and y such that the sets
atoms(x) and atoms(y) intersect and are incomparable. We take r := |atoms(x) \ atoms(y)|,
s := |atoms(x) ∩ atoms(y)|, and t := |atoms(y) \ atoms(x)|. We then reduce from an instance
of UR(Qr,s,t) to an instance of UR(Q).

To do so, given an input instance I, we rewrite the Si-facts Si(a, b) for 1 ≤ i ≤ s by
facts of the i-th relation of atoms(x) ∩ atoms(y), by reusing a and b at the positions where
x and y are respectively used in Q for that relation, and filling the other positions with
some fixed constant c. We rewrite the Ri-facts and the Ti-facts in the same manner to facts
corresponding to the relations of atoms(x) \ atoms(y) and to relations of atoms(y) \ atoms(x)
respectively, using the same fixed constant c for positions of the new facts where neither x

nor y was used in Q. Last, for every relation of Q which is not used in atoms(x) ∪ atoms(y),
we create one fact in the instance where all positions are filled with the fixed constant c.
This rewriting is in polynomial time.

We can then show that UR for Qr,s,t on I reduces to UR for Q on the rewritten instance,
which establishes the result. Note that the correctness of this process relies on the self-join-
freeness of Q. ◀

From Proposition 3.3 we conclude that it suffices to prove hardness for the Qr,s,t-queries:

▶ Theorem 3.4. For all r, s, t > 0, the problem UR(Qr,s,t) is #P-hard.

This implies in particular that UR(Q1) is #P-hard. We prove this theorem in Sections 4–6,
and then investigate a generalization in Section 7.

4 Defining the Main Reduction

In this section and the two next ones, we show the #P-hardness of UR(Qr,s,t) (Theorem 3.4).
Fix the arbitrary values r, s, t > 0 from the theorem statement. We reduce from the #P-hard
problem of counting the number of independent sets of a bipartite graph. The input to this
problem is a bipartite graph G = (R ∪ T, S) where S ⊆ R × T , and the goal is to calculate

ICDT 2021



17:8 Uniform Reliability of Self-Join-Free Conjunctive Queries

the number P of independent-set pairs (R′, T ′) with R′ ⊆ R and T ′ ⊆ T , that is, pairs such
that R′ × T ′ is disjoint from S. This problem is the same as computing the number of
falsifying assignments of a so-called monotone partitioned 2-DNF formula, i.e., a monotone
Boolean formula in disjunctive normal form over variables from two disjoint sets X and Y
where every clause is the conjunction of one variable of X and one variable of Y. Counting
the satisfying assignments of such formulas is #P-hard [19], so it is also #P-hard to count
falsifying assignments, and thus to count independent-set pairs.

Let us fix G = (R ∪ T, S) as the input to the problem. Our proof consists of three parts.
First, in the present section, we introduce several gadgets and use them to build the various
instances of UR(Qr,s,t) to which we reduce. Second, in Section 5, we explain how to obtain
a linear equation system that connects the number P of independent-set pairs of G to the
results of UR(Qr,s,t) on our instances. Last, in Section 6, we argue that the matrix of this
system is invertible, so we can recover P and conclude the reduction, showing Theorem 3.4.

Defining the Gadgets. We define the gadgets that we will use in the reduction as building
blocks for our instances of UR(Qr,s,t). Recall that Ri, Si, and Ti are the relations that occur
in Qr,s,t (see Equation (2)). For all i, we collectively refer to a fact over Ri, Si and Ti as an
R∗-fact, an S∗-fact, and a T∗-fact, respectively. In our reduction, we will use multiple copies
of the gadgets, instantiated with specific elements that will intuitively serve as endpoints to
the gadgets. There are two types of gadgets:

The (a, b)-gadget is an instance with two elements a and b (which are intuitively the
endpoints), and the following facts (noting that they satisfy the query):

R1(a), . . . , Rr(a), S1(a, b), . . . , Ss(a, b), T1(b), . . . , Tt(b)

We will need to count the possible worlds of this gadget and of subsequent gadgets, because
these quantities will be important in the reduction to understand the link between the
independent-set pairs of G and the subinstances of our instances of UR(Qr,s,t) that satisfy the
query. To this end, we denote by λR the number of possible worlds of the (a, b)-gadget that
violate Qr,s,t when we fix the R∗-facts on a to be present. We easily compute: λR = 2s+t − 1.
Similarly, we denote by λT the number of possible worlds that violate Qr,s,t when we fix the
T∗-facts on b to be present. We have: λT = 2s+r − 1. Last, we denote by λ̄T = 2s+r the
number of possible worlds when we fix the T∗-facts to be absent (all these possible worlds
violate Qr,s,t), and denote by λ̄R = 2s+t the number of possible worlds when we fix the
R∗-facts to be absent (again, all violate Qr,s,t).

The (a, b, c, d)-gadget is an instance with elements a, b, c, and d, and the following facts:

R1(a), . . . , Rr(a), S1(a, b), . . . , Ss(a, b), T1(b), . . . , Tt(b), S1(c, b), . . . , Ss(c, b),
R1(c), . . . , Rr(c), S1(c, d), . . . , Ss(c, d), T1(d), . . . , Tt(d).

We illustrate the gadget below, where every vertex represents a domain element, every
edge represents a pair of elements occurring in a fact, and unary and binary facts are
simply written as relation names, respectively above their element and above their edge:

a b c d
S1, . . . , Ss S1, . . . , Ss S1, . . . , Ss

R1, . . . , Rr T1, . . . , Tt R1, . . . , Rr T1, . . . , Tt

We denote by γ its number of possible worlds that violate Qr,s,t where we fix the R∗-facts
on a and the T∗-facts on d to be present. We denote by δR its number of possible worlds that
violate Qr,s,t when we fix the R∗-facts on a to be present and the T∗-facts on d to be absent,
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T

T ′

R′

R u w

S

Figure 1 Example of the bipartite graph G = (R ∪ T, S) and an independent set (R′, T ′).

and symmetrically denote by δT its number of possible worlds that violate Qr,s,t when fixing
the R∗-facts on a to be absent and the T∗-facts on d to be present. Last, we denote by δ⊥ its
number of possible worlds that violate Qr,s,t when we fix the R∗-facts on a and the T∗-facts
on d to be absent. We will study the quantities γ, δR, δT, δ⊥ in two lemmas in Section 6.

Defining the Reduction. Having defined the various gadgets that we will use, let us describe
the instances that we construct from our input bipartite graph G = (R ∪ T, S) (see Figure 1
for an illustration of the graph). The vertices of G are the elements of R and T , and its
edges are the pairs in S.

Let us now write m := |S|, and define the following large (but polynomial) values. We
will use them as parameters when building the various UR instances to which we will reduce.

M1 := 4ms + 1
M2 := M1 + 2m(t + s)M1 + 1
M3 := M1 + M2 + |R| (t + s)M2 + 1

Fix M := (|R| + 1) × (|T | + 1) × (m + 1)3, the number of instances to which we will reduce.
Now, for each 0 ≤ p < M , we construct the instance Dp on the schema Qr,s,t, featuring:

One element u for each vertex u ∈ R of G, with all the facts R1(u), . . . , Rr(u)
One element w for each vertex w ∈ T of G, with all the facts T1(w), . . . , Tt(w)
For every edge (u, w) ∈ S of G, create:

p copies of the (u, ∗, ∗, w)-gadget connecting u and w (using fresh elements for b and c

in each copy, as denoted by the ∗’s).
M1 × p copies of the (u, ∗)-gadget (using a fresh element for b in each copy).

For each element u ∈ R, create M2 × p copies of the (u, ∗)-gadget.
For each element w ∈ T , create M3 × p copies of the (∗, w)-gadget.

It is clear that this construction is in polynomial time in the input G for each 0 ≤ p < M ,
because the values M1, M2, M3 are polynomial, so the construction is in polynomial-time
overall because M is polynomial. Observe that the construction of Dp is designed to ensure
that any match of the query Qr,s,t on a possible world of Dp will always be contained in the
facts of one of the gadgets (plus the facts on the elements u and w of the first two bullet
points). This means that we can determine if the query is true in the possible worlds simply
by looking separately at the facts of each gadget (and at the facts on the u and w).

Now, coming back to our reduction, for each 0 ≤ p < M we denote by Np the number of
subinstances of Dp that violate Qr,s,t. Each of these values can be computed in polynomial
time using our oracle for UR(Qr,s,t): for 0 ≤ p < M , we build Dp, call the oracle to
obtain the number |Mod(Qr,s,t, Dp)| of subinstances that satisfy Qr,s,t, and compute: Np :=
2|Dp| − |Mod(Qr,s,t, Dp)|.
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17:10 Uniform Reliability of Self-Join-Free Conjunctive Queries

Hence, in our reduction, given the input bipartite graph G, we have constructed the
instances Dp and used our oracle to compute the number Np of subinstances of each Dp that
violate Qr,s,t, for each 0 ≤ p < M , and this process is in PTIME. In the next section, we
explain how we can use a linear equation system to recover from the numbers Np the answer
to our original problem on G = (R ∪ T, S), i.e., the number P of independent-set pairs of G.

5 Obtaining the Equation System

To define the linear equation system, it will be helpful to introduce some parameters about
subsets of vertices of the bipartite graph. For any R′ ⊆ R and T ′ ⊆ T , we write the following:

c(R′, T ′) to denote the number of edges of S that are contained in R′ × T ′, that is, they
have both endpoints in R′ ∪ T ′. Formally,

c(R′, T ′) := |(R′ × T ′) ∩ S| .

d(R′, T ′) to denote the number of edges of S that are dangling from R′, that is, they have
one endpoint in R′ and the other in T \ T ′. Formally,

d(R′, T ′) := |(R′ × (T \ T ′)) ∩ S| .

d′(R′, T ′) to denote the number of edges of S that are dangling from T ′, that is, they
have one endpoint in R \ R′ and the other in T ′. Formally,

d′(R′, T ′) := |((R \ R′) × T ′) ∩ S| .

e(R′, T ′) to denote the number of edges of S that are excluded from R′ ∪ T ′, that is, they
have no endpoint in R′ ∪ T ′. Formally,

e(R′, T ′) := |S \ (R′ × T ′)| .

It is immediate by definition that, for any R′ and T ′, every edge of S is either contained in
R′ × T ′, dangling from R′, dangling from T ′, or excluded from R′ ∪ T ′. Hence, we clearly
have

c(R′, T ′) + d(R′, T ′) + d′(R′, T ′) + e(R′, T ′) = m.

Observe that a pair (R′, T ′) is an independent-set pair of G iff c(R′, T ′) = 0. Thus, given
the input G to the reduction, our goal is to compute the following quantity:

P = |{(R′, T ′) | R′ ⊆ R, T ′ ⊆ T, c(R′, T ′) = 0}| =
∑

R′⊆R, T ′⊆T, c(R′,T ′)=0

1 (3)

Let us define the variables on the input graph G that we will use to express P , and that
we will recover from the values Np.

Picking Variables. Our goal is to construct a linear equation system relating the quantity
that we wish to compute, namely P , and the quantities provided by our oracle, namely Np

for 0 ≤ p < M . Instead of using P directly, we will construct a system connecting Np to
quantities on G that we now define, from which we will be able to recover P . We call these
quantities variables because they are unknown and our goal in the reduction is to compute
them from the Np to recover P .
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Let us introduce, for each 0 ≤ i ≤ |R|, for each 0 ≤ j ≤ |T |, for each 0 ≤ c, d, d′ ≤ m, the
variable Xi,j,c,d,d′ , that stands for the number of pairs (R′, T ′) with |R′| = i, with |T ′| = j,
and with c- and d- and d′-values exactly as indicated. (We do not need e as a parameter
here because it is determined from c, d, d′.) Formally:

Xi,j,c,d,d′ := |{(R′, T ′) |R′ ⊆ R , T ′ ⊆ T , |R′| = i , |T ′| = j,

c(R′, T ′) = c , d(R′, T ′) = d , d′(R′, T ′) = d′}|

For technical reasons, let us define, for all i, j, c, d, d′, other variables, which are the ones that
we will actually use in the equation system:

Yi,j,c,d,d′ := (2r − 1)|R|−i × (2t − 1)|T |−j × Xi,j,c,d,d′

Getting our Answer from the Variables. Let us now explain why we can compute our
desired value P (the number of independent-set pairs of G) from the variables Yi,j,c,d,d′ . Refer
back to Equation (3), and let us split this sum according to the values of the parameters
i = |R′|, j = |T ′|, and d(R′, T ′), d′(R′, T ′). Using our variables Xi,j,c,d,d′ , this gives:

P =
∑

0≤i≤|R|

∑
0≤j≤|T |

∑
0≤d,d′≤m

Xi,j,0,d,d′

We can insert the variables Yi,j,c,d,d′ instead of Xi,j,c,d,d′ in the above, obtaining:

P =
∑

0≤i≤|R|

∑
0≤j≤|T |

∑
0≤d,d′≤m

Yi,j,0,d,d′

(2r − 1)|R|−i × (2t − 1)|T |−j
(4)

This equation justifies that, to compute the quantity P that we are interested in, it suffices to
compute the value of the variables Yi,j,0,d,d′ for all 0 ≤ i ≤ |R|, 0 ≤ j ≤ |T |, and 0 ≤ d, d′ ≤ m.
If we can compute all these quantities in polynomial time, then we can use the equation
above to compute P in polynomial time, completing the reduction.

Designing the Equation System. We will now design a linear equation system that connects
the quantities Np for 0 ≤ p < M computed by our oracle to the quantities Yi,j,c,d,d′ for
all 0 ≤ i ≤ |R|, 0 ≤ j ≤ |T |, 0 ≤ c, d, d′ ≤ m that we wish to compute. To do so, write
the vector N⃗ = (N0, . . . , NM−1), and the vector Y⃗ = (Y0,0,0,0,0, . . . , Y|R|,|T |,m,m,m). We will
describe an M -by-M matrix A so that we have the equation N⃗ = AY⃗ . We will later justify
that the matrix A is invertible, so that we can compute Y⃗ from N⃗ and conclude the proof.

To define the matrix A, let us consider arbitrary subsets R′ ⊆ R and T ′ ⊆ T , and an
arbitrary 0 ≤ p < M , and let us denote by Dp(R′, T ′) the set of subinstances of Dp where
the set of vertices of R on which we have kept all R∗-facts is precisely R′, and where the set
of vertices on which we have kept all T∗-facts is precisely T ′. In other words, an instance
I ′ ⊆ Dp is in Dp(R′, T ′) if (a) I ′ contains all R∗-facts on elements of R′ and all T∗-facts on
elements of T ′, and (b) for each vertex in R \ R′, there is at least one R∗-fact missing from I ′,
and for each vertex in T \ T ′, there is at least one T∗-fact missing from I ′. It is clear that
the Dp(R′, T ′) form a partition of the subinstances of Dp, so that:

Np =
∑

R′⊆R,T ′⊆T

|{I ′ ∈ Dp(R′, T ′) | I ′ ̸|= Qr,s,t}| (5)

Let us now study the number in the above sum for each R′ and T ′, that is, the number
of instances in Dp(R′, T ′) that violate the query. We can show the following by performing
some accounting over all gadgets in the construction.
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17:12 Uniform Reliability of Self-Join-Free Conjunctive Queries

▷ Claim 5.1. For any 0 ≤ p < M , for any choice of R′ and T ′, writing i := |R′|, j := |T ′|,
c := c(R′, T ′), d := d(R′, T ′), d′ := d′(R′, T ′), e := e(R′, T ′) = m − c − d − d′, we have:

|{I ′ ∈ Dp(R′, T ′) | I ′ ̸|= Qr,s,t}| = (2r − 1)|R|−i × (2t − 1)|T |−j × α(i, j, c, d, d′)p

Where α(i, j, c, d, d′) is defined as the following quantity:

γc × δd
R × δd′

T × δe
⊥ × λ

M1(c+d)+M2i
R × λM3j

T × λ̄
M1(d′+e)+M2(|R|−i)
R × λ̄

M3(|T |−j)
T .

Let us substitute this value in Equation (5). Note that this value only depends on the
cardinalities of R′ and T ′ and the values of c, d, d′, e, but not on the specific choice of R′

and T ′. Thus, splitting the sum accordingly, we can obtain the following:

▷ Claim 5.2. For any 0 ≤ p < M , we have that:

Np =
∑

0≤i≤|R|

∑
0≤j≤|T |

∑
0≤c,d,d′≤m

Yi,j,c,d,d′ × α(i, j, c, d, d′)p

This equation can be expressed as a matrix equation N⃗ = AY⃗ , with A the matrix whose
cells contain α(i, j, c, d, d′)p. Note that A is indeed an M -by-M matrix, where each row
corresponds to a value of p with 0 ≤ p < M , and every column corresponds to a tuple
(i, j, c, d, d′), for which there are M choices by definition of M . The matrix A relates the
vector N⃗ computed from our oracle calls and the variables Y⃗ that we wish to determine to
solve our problem on the graph G. It only remains to show that A is an invertible matrix,
so that we can compute its inverse A−1 in polynomial time, use it to recover Y⃗ from N⃗ ,
and from there recover P via Equation 4, concluding the reduction. Now, A is clearly a
Vandermonde matrix, so we need just argue that its coefficients α(i, j, c, d, d′) are different.
We do this in the next section.

6 Showing that the Matrix is Invertible

In this section, we conclude our proof of Theorem 3.4 by showing the following:

▷ Claim 6.1. For all (i, j, c, d, d′) ̸= (i2, j2, c2, d2, d′
2) with 0 ≤ i, i2 ≤ |R|, 0 ≤ j, j2 ≤ |T |,

0 ≤ c, c2, d, d2, d′, d′
2 ≤ m, we have α(i, j, c, d, d′) ̸= α(i2, j2, c2, d2, d′

2).

This implies that the Vandermonde matrix A is invertible, and concludes the definition of
the reduction and the proof of Theorem 3.4.

A Closer Look at γ, δR, δT and δ⊥. To show our claim, we will need to look deeper in
the definition of α, which involves γ, δR, δT and δ⊥. Remember that these are the number
of possible worlds of the (∗, ∗, ∗, ∗)-gadgets defined in Section 4. To show the invertibility
of the matrix, we will first need to understand what is the exponent of the number 2 in
the decomposition of these numbers as a product of primes. This is abstracted away in the
following lemma, which we prove by computing explicitly the numbers of possible worlds.

▶ Lemma 6.2. The number γ is odd, and we have, for some odd quantities δ′
R, δ′

T, δ′
⊥:

δR = 2s × δ′
R

δT = 2s × δ′
T

δ⊥ = (2s)2 × δ′
⊥
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Second, we will need the following lemma on these quantities:

▶ Lemma 6.3. For all r, s, t ≥ 1, we have: δR × δT ̸= γ × δ⊥.

Proof sketch. We do a case distinction on the possible worlds accounted for in δR × δT and
those accounted for in γ × δ⊥, picking an order on the nodes that simplifies the comparison
between the two case distinctions. By focusing on the cases where the number of possible
worlds is different, we can explicitly compute the difference between these two quantities and
show that it is non-zero, specifically it is (2s)3 × (2r − 1) × (2t − 1). (We suspect that there
may be a more elegant proof avoiding the need for this case distinction.) ◀

We can now use the previous lemmas to show Claim 6.1. Fix i, j, c, d, d′ and i2, j2, c2, d2, d′
2.

As usual, we denote e = m − c − d − d′ and e2 = m − c2 − d2 − d′
2. By contraposition, we

show that if α(i, j, c, d, d′) = α(i2, j2, c2, d2, d′
2) then the parameters are equal.

Equality on i and j, and Two Equations for c, d, d′. Let us rewrite the definition of α

(given in Claim 5.1), using Lemma 6.2 and substituting the definition of λ̄R and λ̄T from
Section 4:

α(i, j, c, d, d′) = γc × (2s)d(δ′
R)d × (2s)d′

(δ′
T)d′

× (22s)eδ′
⊥

e

× λ
M1(c+d)+M2i
R × λM3j

T × (2t+s)M1(d′+e)+M2(|R|−i) × (2r+s)M3(|T |−j)

Recall that, by Lemma 6.2, the quantities γ, δ′
R, δ′

T and δ′
⊥ are odd, and the quantities λR

and λT as defined in Section 4 are odd. We get a similar equation for α(i2, j2, c2, d2, d′
2).

From the integer equality α(i, j, c, d, d′) = α(i2, j2, c2, d2, d′
2), the coefficients of two in the

prime number decompositions of these numbers must also be equal. This yields:

s(d + d′ + 2e ) + (t + s) × (M1(d′ + e )) + (t + s) × M2(|R| − i ) + (r + s) × M3(|T | − j )
= s(d2 + d′

2 + 2e2) + (t + s) × (M1(d′
2 + e2)) + (t + s) × M2(|R| − i2) + (r + s) × M3(|T | − j2)

We now use the fact that, as d, d′, e ≤ m, we have s(d + d′ + 2e) ≤ 4ms. By definition
of M1, we have s(d + d′ + 2e) < M1. We also have d′ + e ≤ 2m, so that (using the
previous inequality) we have s(d + d′ + 2e) + (t + s) × (M1(d′ + e)) < M2 by definition
of M2. Last, we have |R| − i ≤ |R|, so that (using the two previous inequalities) we have
s(d + d′ + 2e) + (t + s) × (M1(d′ + e)) + (t + s) × M2 × (|R| − i) < M3 by the definition
of M3. Similar inequalities hold for the right-hand-side of the above equation. Thus, we
can reason about the quotient of the equation by M3, about the quotient by M2 of its
remainder modulo M3, about the quotient by M1 of the remainder modulo M2 of the
remainder modulo M3, and about the remainder modulo M1 of the remainder modulo M2
of the remainder modulo M3. This gives us four equations (where we also simplify by the
constant factors s, t + s, r + s):

d + d′ + 2e = d2 + d′
2 + 2e2

d′ + e = d′
2 + e2

|R| − i = |R| − i2

|T | − j = |T | − j2

The last two equations imply that i = i2 and j = j2, so we have shown that two quantities
are equal, out of the five that define α. The two first equations imply d′ + e = d′

2 + e2 (second
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17:14 Uniform Reliability of Self-Join-Free Conjunctive Queries

equation), and d + e = d2 + e2 (subtracting the second equation from the first equation).
Rewriting e = m − c − d − d′, rewriting e2 likewise, and simplifying, we get:

c + d = c2 + d2

c + d′ = c2 + d′
2

These two equations do not suffice to justify that (c, d, d′) = (c2, d2, d′
2), so more reasoning is

needed to get one additional equation and argue that these quantities must be equal.

Getting the Last Equation. Let us write the equality α(i, j, c, d, d′) = α(i2, j2, c2, d2, d′
2)

and simplify all the (non-zero) values now known to be equal thanks to i = i2, j = j2:

γc ·(δR)d ·(δT)d′
·(δ⊥)e ·λM1(c+d)

R ·λ̄M1(d′+e)
R = γc2 ·(δR)d2 ·(δT)d′

2 ·(δ⊥)e2 ·λM1(c2+d2)
R ·λ̄M1(d′

2+e2)
R

The previously shown equations also imply that the λR and λ̄R factors simplify, so we get:

γc−c2 × (δR)d−d2 × (δT)d′−d′
2 × (δ⊥)e−e2 = 1

The equation c + d = c2 + d2 (shown above) implies that c − c2 = d2 − d, and subtracting that
equation from c + d′ = c2 + d′

2 (shown above) gives d′ − d = d′
2 − d2, so that d′ − d′

2 = d − d2.
As we know d + e = d2 + e2 (above), we have e − e2 = d2 − d. So using c − c2 = d2 − d,
d′ − d′

2 = d − d2, and e − e2 = d2 − d, we have:

(γ × δ⊥)d2−d = (δR × δT)d2−d

Now, by Lemma 6.3, we have γ × δ⊥ ̸= δR × δT. Thus, this equation implies that d = d2.
In combination with the equations that we showed above, this completely specifies the system:
from c + d = c2 + d2 we get c = c2, and from c + d′ = c2 + d′

2 we get d′ = d′
2. Thus, we have

(c, d, d′, i, j) = (c2, d2, d′
2, i2, j2). This establishes Claim 6.1 and shows that all coefficients

α(c, d, d′, i, j) of the Vandermonde matrix A are different, so it is invertible. This concludes
the proof of Theorem 3.4, and hence of our main result (Theorems 3.1 and 3.2).

7 Extending to Uniform Probabilities

Having proved our main result (Theorem 3.1), we now turn to a natural variant of the
probabilistic query evaluation problem: what if, instead of imposing that all probabilities are
1
2 (which amounts to uniform reliability), we impose that all tuples of the same relation have
the same probability? Let us formally define this variant:

▶ Definition 7.1. Let Q be a CQ without self-joins, and let φ be a function mapping each
relation symbol ρ of Q to a rational number 0 < φ(ρ) ≤ 1. The problem PQEφ(Q) is the
problem PQE(Q) on input instances I over Q whose probability function π : I → [0, 1] is
defined by φ, i.e., for every fact f ∈ I, we have π(f) = φ(ρ) where ρ is the relation symbol
used in f .

In this section, we will focus on this problem for the hard query Q1 : R(x), S(x, y), T(y)
from Equation 1, and write the problem directly as PQEr,s,t(Q1) where 0 < r, s, t ≤ 1 are the
respective images of R, S and T under φ. In this language, the uniform reliability problem
for Q1 is (up to renormalization) the problem PQE 1

2 , 1
2 , 1

2
(Q1), which we have shown to be

#P-hard in Theorem 3.1 because Q1 is non-hierarchical. The usual #P-hardness proof for
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PQE(Q1) [6], where we reduce from the problem of counting the satisfying assignment of a
monotone partitioned DNF formula [19], is actually a hardness proof for PQE 1

2 ,1, 1
2
(Q1). The

natural question is whether hardness can be shown for other values of r, s, and t.
Let us first observe that we can use our main hardness result on uniform reliability

(Theorem 3.2) to show hardness in a specific case via an easy reduction. While we do not
hope that the technique can generalize, it still classifies some of the cases:

▶ Corollary 7.2. PQE2−r,2−s,2−t(Q1) is #P-hard for all natural numbers r, s, t > 0.

Proof. Consider the query Qi,j,k, following Equation 2. We have shown in Theorem 3.4 that
uniform reliability for Qi,j,k is #P-hard. We reduce this problem to the PQE variant that
we consider. To do this, consider an input instance I to UR(Qi,j,k). We call an element
a of I useless for R∗ if some R∗-fact does not hold on a, we define a being useless for T∗
analogously, and we call a pair (a, b) of I useless for S∗ if some S∗-fact does not hold about
the pair. We call an R∗-fact useless if it holds about an element that is useless for R∗, and
extend this definition to T∗-facts and to S∗-facts (for element pairs). It is clear that no match
of Qi,j,k on I can involve a useless fact. Indeed, when a match of the query involves a fact f

of the form R∗(a), then the match witnesses that all other R∗-facts hold on a, so that a is
not useless for R∗, and f is not useless. The same reasoning applies to S∗-facts and T∗-facts.

Hence, let us compute in linear time the subinstance I ′ of I where we only keep the facts
that are not useless: this is doable in polynomial time. Now, any subset of I is defined by
picking a subset J ′ of I ′ and a subset J ′′ of I \ I ′. Further, as I \ I ′ only consists of useless
facts, it is clear that if some subset J ′ does not satisfy Qi,j,k then J := J ′ ∪ (I \ I ′) still does
not, because the facts added in I \ I ′ cannot be part of a query match in I, hence in J . All
this reasoning shows that the answer to UR(Qi,j,k) on I is the answer to the same problem
on I ′, multiplied by the number of possible choices for J ′′, that is, 2|I\I′|. Hence, to show
hardness, it suffices to reduce the uniform reliability problem on I ′ to our PQE problem.

Now, we can rewrite I ′ in linear time to I ′′ by replacing the set of R∗-facts on every
element a where they exist by a single R-fact, and doing the same for T∗-facts and for S∗-facts
(on element pairs). As we have removed useless facts, all facts of I ′ are thus taken into
account in the rewriting. Now, define the probability assignment π on I ′′ by mapping the R,
S, and T-facts to 2−i, 2−j , and 2−k respectively. This means that (I ′′, π) is an instance to the
PQE2−i,2−j ,2−k (Q1) problem that we are reducing to. Now, there is a clear correspondence
from the subsets of I ′ to the possible worlds of I ′′, which is defined by rewriting to the
signature R, S, T as we did in the reduction; and the number of preimages of each possible
world of I ′′ is exactly equal to its probability according to π, up to renormalization by a
constant factor of 2−|I′|. Thus, the answer to UR(Qi,j,k) on I ′ is exactly the answer to
PQE2−i,2−j ,2−k (Q1) on I ′′ up to renormalization. This concludes the proof. ◀

Note that this does not classify the complexity of PQEr,s,t(Q1) for arbitrary values of r,
s, t. Conversely, PQEr,s,1(Q1) and PQE1,s,t(Q1) are clearly solvable in polynomial time:

▶ Proposition 7.3. PQEr,s,1(Q1) and PQE1,s,t(Q1) are in PTIME for all 0 < r, s, t ≤ 1.

Proof sketch. When the R-facts have probability 1, we can rewrite Q1 to S(x, y), T(y) which
is hierarchical, hence safe (Theorem 2.2). The other case is symmetric. ◀

We conjecture that these are the only tractable cases. Specifically, we conjecture the
following generalization of the #P-hardness of UR(Q1):

▶ Conjecture 7.4. PQEr,s,t(Q1) is #P-hard for all 0 < r, s, t ≤ 1 with r < 1 and t < 1.
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We leave this for future work, but can prove Conjecture 7.4 in the case of s = 1. Formally:

▶ Theorem 7.5. PQEr,1,t(Q1) is #P-hard for every 0 < r < 1 and 0 < t < 1.

Proof sketch. Like in the previous section, we reduce from the problem of counting the
independent sets of a bipartite graph. We do a simpler coding using simpler gadgets, and
we show like before that the number of independent sets (parameterized by their number
of vertices to the left and right) can be connected to the answer to the uniform reliability
problem on a family of instances with different gadget instantiations. To argue that the
matrix of the equation system is invertible, we notice that it is the Kronecker product of two
invertible Vandermonde matrices. ◀

8 Conclusion

While query evaluation over TIDs has been studied for over a decade, the basic case of a
uniform distribution, namely uniform reliability, had been left open. We have settled this open
question for the class of CQs without self-joins, and shown a dichotomy on computational
complexity of counting satisfying database subsets: this task is tractable for hierarchical
queries, and #P-hard otherwise. We have also embarked on the investigation of the more
general variant of CQ evaluation over TIDs with uniform probabilities. We have shown
tractability for some combinations of probabilities by a straightforward reduction from
uniform reliability, and shown hardness for others using different proof techniques.

In future work, we plan to investigate whether and how the proof of our main result can
be simplified, with the goal of showing hardness for all combinations of uniform probabilities
not known to be tractable, at least for the query Q1 (Conjecture 7.4). An interesting special
case is when these probabilities are 1/2 and 1, that is, some relations are deterministic while
the others define a uniform distribution over all their subsets; note that hardness in this
setting is a stronger statement than hardness in the model of Dalvi and Suciu [7], as in this
model the tuples of the probabilistic relations can have arbitrary probabilities.

Another question is whether our results could extend to more general query classes. A
natural question would be to study the question for CQs with self-joins. More generally, we
could study the case of UCQs with self-joins, and try to match the known dichotomy for
non-uniform probabilities [7]. Following our work, considerable progress in this direction
has been done recently by Kenig and Suciu [14], which addresses the case of PQE with
probabilities of 1/2 and 1, and leaves open the case of uniform reliability for arbitrary UCQs.
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