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Abstract

Given a set of data points belonging to the convex hull of a set of vertices, a key problem in
data analysis and machine learning is to estimate these vertices in the presence of noise. Many
algorithms have been developed under the assumption that there is at least one nearby data point
to each vertex; two of the most widely used ones are vertex component analysis (VCA) and the
successive projection algorithm (SPA). This assumption is known as the pure-pixel assumption in
blind hyperspectral unmixing, and as the separability assumption in nonnegative matrix factoriza-
tion. More recently, Bhattacharyya and Kannan (ACM-SIAM Symposium on Discrete Algorithms,
2020) proposed an algorithm for learning a latent simplex (ALLS) that relies on the assumption
that there is more than one nearby data point for each vertex. In that scenario, ALLS is probalis-
tically more robust to noise than algorithms based on the separability assumption. In this paper,
inspired by ALLS, we propose smoothed VCA (SVCA) and smoothed SPA (SSPA) that generalize
VCA and SPA by assuming the presence of several nearby data points to each vertex. We illustrate
the effectiveness of SVCA and SSPA over VCA, SPA and ALLS on synthetic data sets, and on the
unmixing of hyperspectral images.

Keywords. blind hyperspectral unmixing, pure-pixel search algorithms, latent simplex, simplex-
structured matrix factorization, nonnegative matrix factorization, separability

1 Introduction

Given a set of data points within the convex hull of a set of vertices, estimating these vertices in the
presence of noise is a key problem in data analysis and machine learning; see below for some examples.
This problem can be formulated as follows.

Problem 1. Given X = WH +N ∈ Rm×n where H ∈ Rr×n+ is column stochastic and N is the noise,
estimate W ∈ Rm×r.

∗Email: nicolas.{nadisic, gillis}@umons.ac.be. The authors acknowledge the support by the European Research
Council (ERC starting grant no 679515), and by the Fonds de la Recherche Scientifique - FNRS and the Fonds Weten-
schappelijk Onderzoek - Vlanderen (FWO) under EOS Project no O005318F-RG47.

†Email: christophe.kervazo@telecom-paris.fr

1

ar
X

iv
:2

11
0.

05
52

8v
1 

 [
ee

ss
.S

P]
  1

1 
O

ct
 2

02
1



Note that W , H and N are unknown, only X is given. Once W is estimated, H can be estimated
for example using a nonnegative least squares (NNLS) algorithm. Problem 1 is sometimes referred to
as simplex-structured matrix factorization (SSMF), and generalizes nonnegative matrix factorization
(NMF); see [1] and the references therein.

In Problem 1, the columns of W are the vertices, while the columns of X are noisy data points
within the convex hull of the columns of W ,

conv(W ) = {x | x = Wy, y ≥ 0, e>y = 1},

where e is the vector of all ones of appropriate dimension. In fact, for all j,

X(:, j) = WH(:, j) +N(:, j),

where H(:, j) ≥ 0 and e>H(:, j) = 1 (since H is column stochastic). To be able to estimate W
in Problem 1, appropriate assumptions on W , H and N are required. In particular, the following
assumptions are necessary:

• No column of W is contained in the convex hull of the other columns of W , otherwise it is not
possible to distinguish it from a data point.

• The data points must be sufficiently spread within conv(W ), having data points on each facet
of conv(W ). This implies some degree of sparsity for H.

• The noise N must be bounded.

To obtain provable or practical algorithms, the above assumptions must be carefully and rigorously
complemented. Different assumptions on W , H, and N lead to different models for which different
algorithms can be designed; see Section 2 for a literature review. We discuss below some applications
of such algorithms.

Blind hyperspectral unmixing In this paper, we focus on Problem 1 in the context of blind
hyperspectral unmixing (HU), a key problem in remote sensing. Let us briefly describe this problem;
see the survey papers [7, 21] and the references therein for more details. A hyperspectral image (HSI)
is a picture of a scene acquired within a large number of spectral bands (usually between 100 and
200). Thus, for each pixel a precise electromagnetic spectrum is recorded, which gives an information
concerning the materials present in the pixel; specifically, about their reflectances (fraction of incoming
light they reflect) and/or their emissivity (which is due to the fact that the materials usually have
non-zero temperatures). Unfortunately, despite their high spectral resolution, hyperspectral sensors
generally have a low spatial resolution; as such, the spectrum recorded for each pixel might not
correspond to the one of a single material, but rather to a mixture of the spectra of the different
materials present within the pixel.

Given an HSI, blind HU thus aims to recover the set of materials present in the image, called
endmembers, along with the abundances of each endmember in each pixel. The standard model
used to solve blind HU is the linear mixing model. It assumes that the spectral signature of each
pixel is a linear combination of the spectral signatures of the endmembers, where the weights of
the linear combination are the abundances of the endmembers in the pixel. Typically, we represent a
hyperspectal image as a matrix X, where the jth column, X(:, j), corresponds to the spectral signature
of the jth pixel in the scene. If the spectral signatures of the endmembers are also collected as the
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columns of a matrix W , then according to the linear mixing model, the jth pixel can be written as
X(:, j) ≈

∑r
k=1W (:, k)H(k, j) +N(:, j), where H(k, j) is the abundance of the kth endmember in the

jth pixel, and N(:, j) represents the noise and model misfit. This is exactly the setup of Problem 1.
An important class of algorithms to solve blind HU are pure-pixel search algorithms. They rely on

the assumption that for each endmember, there is at least one pixel in which this endmember appears
almost alone, that is, purely, so that the endmember signature is close to the one of the corresponding
pure pixel. In the NMF literature, the pure-pixel assumption is referred to as separability, and
the corresponding algorithms are referred to as separable NMF algorithms, or near-separable NMF
algorithms. The pure-pixel assumption is reasonable for most high-resolution HSIs. Moreover, even
when it is violated, pure-pixel search algorithms can still be used to find a decent initialization to
more sophisticated algorithms which do not rely on it.

Applications in data analysis and machine learning In [6, 5], the authors describe in details
various applications of solving Problem 1; in particular topic modeling via latent Dirichlet allocation,
adversarial clustering, and community detection via the mixed membership stochastic block model.
Moreover, Problem 1 generalizes NMF and as such could be useful for all applications of NMF, such
as feature extraction in sets of images, audio source separation, or chemometrics.

Contribution and outline As far as we know, none of the existing pure-pixel search algorithms for
blind HU leverage the fact that, when the pure-pixel assumption holds, then there are typically more
than one pixel close to each endmember. In this paper, we leverage this fact, and propose smoothed
versions of VCA and SPA, namely SVCA and SSPA. SVCA is an adaption of the recent algorithm,
ALLS, proposed by Bhattacharyya and Kannan [6]. The presence of multiple pure pixels allows SVCA
to be much more tolerant to noise than VCA. The idea is to average several data points around an
endmember to obtain a better estimate of that endmember. Mathematically, SVCA is equivalent to
applying VCA on a smoothed data set containing

(
n
p

)
data points which are the averages of every

combination of p data points from the original data set. Similarly, SSPA adapts SPA in the presence
of multiple pure pixels.

The paper is organized as follows. In Section 2, we summarize the literature for solving Problem 1,
with a focus on the three algorithms VCA, SPA and ALLS. In Section 3, we propose SVCA which is
equivalent to applying VCA on a smoothed data set. SVCA is similar to ALLS, but two key differences
make it empirically more efficient than ALLS. In Section 4, we propose SSPA which adapts SPA in
the presence of multiple pure pixels. In Section 5, we show on synthetic and real-world hyperspectral
data sets that SVCA and SSPA outperform VCA, SPA and ALLS in the presence of multiple pure
pixels.

Motivation of this paper One of the goals of this paper is to try to bridge the gap between
the machine learning community and the remote sensing community. In fact, many researchers with
background in theoretical computer science and machine learning are not aware of the developments in
blind HU; see, e.g., [4, 3, 6, 5]. Conversely, many researchers from the remote sensing community have
not been using the latest developed algorithms with strong theoretical guarantees from the machine
learning community, in particular from [6, 5].

In this paper, we adapt the ideas of [6, 5] to design more effective algorithms for blind HU, which
we empirically illustrate on various data sets. Our focus in not on providing theoretical guarantees
for these new algorithms, which is left for further research.
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2 Simplex-structured matrix factorization

In this section, we describe existing models and algorithms to solve Problem 1, that is, to solve SSMF,
in order to identify the vertices of the convex hull of a set of data points, X. We focus on two key
models, upon which our contribution is built:

1. Separable NMF: it is equivalent to blind HU under the pure-pixel assumption. It assumes there
is one data point (in blind HU, one pixel) close to each vertex of conv(W ) (in blind HU, to each
endmember), and that the noise added to each pixel is bounded; see Section 2.1. Some authors
refer to this model as near-separable NMF.

2. Learning a latent simplex: it is motivated by machine learning applications. It assumes that
there is more than one data point close to each vertex of conv(W ), but it allows much larger noise
levels as it only requires the `2 norm of N to be bounded, instead of each individual column; see
Section 2.2.

Other models and algorithms exist to tackle Problem 1 relying on different assumptions. Although
detailing them is out of the scope of this article, it is worth mentioning minimum-volume NMF [9, 19],
where W is regularized such that its convex hull conv(W ) has the smallest possible volume; facet-based
identification algorithms that identify the facets of conv(W ) from which its vertices are recovered [10,
18, 20, 1]; or probabilistic simplex component analysis [26] that relies on a probabilistic model on the
data (the columns of H are sampled using the Dirichlet distribution, and the entries of N using i.i.d.
Gaussian noise).

2.1 Model 1: Separable NMF

As already mentioned, an important class of blind HU algorithm corresponds to pure-pixel search
algorithms, that build on the following formal assumption:

Assumption 1 (pure-pixel, separability). In Problem 1, there exists an index set K of cardinality r
such that H(K, :) = Ir where Ir is the r-by-r identity matrix.

Under this assumption, solving Problem 1 amounts to recover K such that

X(:,K) = W +N(:,K) ≈ W.

In the NMF literature, such algorithms are referred to as (near-)separable NMF algorithms.
Building on this assumption, the early algorithms in blind HU include pure-pixel index (PPI)

in 1995 [8], N-FINDR in 1999 [25], and vertex component analysis (VCA) in 2005 [23]. Most of
these algorithms were developed based on convex geometry concepts. These early works however did
not analyze noise robustness, and in fact they are not guaranteed to recover the endmembers in the
presence of noise.

In analytical chemistry, Problem 1 is closely related to the problem of self-modeling curve resolu-
tion [16]. As in blind HU, several algorithms were developed based on geometry concepts; in particular
the successive projection algorithm (SPA) [2].

More recently, and motivated by applications in machine learning (in particular, topic modeling
where pure data points are referred to as anchor words), Arora et al. [4] introduced the first provably
robust near-separable NMF algorithms. Their robustness is deterministic: under some conditions, their
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algorithm is guaranteed to recover an approximation of the vertices. Arora et al. were not aware of the
algorithms developed within the blind HU literature. Many provably robust algorithms have followed
this seminal paper, including algorithms that use linear programming [24, 11, 14], a generalization
of SPA [15], fast anchor words [3], and the successive nonnegative projection algorithm (SNPA) [12].
These deterministically robust algorithms guarantee that, in the presence of noise, the endmembers
are recovered, up to some error bounds that depend on the noise level and the conditioning of W ; see
Section 2.1.2 for such a result for SPA. We refer the interested reader to [13, Chapter 7] for a detailed
discussion and comparison of these algorithms.

In the following, we describe in more detail VCA and SPA that will be instrumental in proposing
our new algorithms, smoothed VCA in Section 3 and smoothed SPA in Section 4.

2.1.1 Vertex component analysis

VCA [23] is a greedy near-separable NMF algorithm, that is, it identifies the indices of the subset K
sequentially. The index set is initialized with K = ∅. At each of the r iterations of VCA, a random
direction belonging to the subspace spanned by the r top left singular vectors of X is generated
(this is equivalent to working with the best rank-r approximation of X, and hence filters the noise).
This direction is then projected onto the orthogonal complement of X(:,K), and the index of the
column of X that maximizes the absolute value of the inner product with that direction is added to
K. Algorithm 1 summarizes VCA.

Algorithm 1 Vertex Component Analysis (VCA) [23]

Input: The matrix X ∈ Rm×n, the number r of columns to extract.

Output: Index set K of cardinality r such that X ≈ X(:,K)H for some H ≥ 0.

1: Let K = ∅, P⊥ = Im, V = [ ].

2: Let Y ∈ Rm×r be the vector space spanned by the top r left singular vectors of X.

3: for k = 1 : r do

4: Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g., dk ∼ YN (0, Ir).

5: Compute uk = (dTk P
⊥)X ∈ Rn, and let jk = argmax1≤j≤n |uk(j)|.

6: Let K = K ∪ {jk}.
7: Update the projector P⊥ onto the orthogonal complement of W = X(:,K):

vk =
P⊥X(:, jk)

‖P⊥X(:, jk)‖2
, V = [V vk], P⊥ ←

(
Im − V V T

)
.

8: end for

The computational cost of VCA is O(r nnz(X)) operations, where nnz(X) is the number of non-
zero entries of X. The main cost is to compute Y which is can be done efficiently using the subspace
power iteration, in O(nnz(X)r) operations, and to compute the products (dTk P

⊥)X at each of the r
iterations.

An important drawback of VCA is that is it not guaranteed to be deterministically robust to
noise. In other words, for any noise N such that a data point goes outside conv(W ), there is a
non-zero probability that VCA extract this point. The reason is that VCA uses a linear function to
identify the vertices of conv(W ); see [13, Chapter 7.4] for a numerical example.
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2.1.2 Successive Projection Algorithm

SPA is very similar to VCA. The only difference is in the selection step, when adding an index to
K. SPA selects the column of P⊥X with maximum `2 norm; see Algorithm 2. To have an efficient
implementation of SPA, in O(r nnz(X)) operations like VCA, one should use the following formula
sequentially: for any vectors x and y with ‖y‖2 = 1,

‖(I − yy>)x‖22 = ‖x‖22 − y>x.

Algorithm 2 Successive Projection Algorithm (SPA) [2]

Input: The matrix X ∈ Rm×n, the number r of columns to extract.

Output: Index set K of cardinality r such that X ≈ X(:,K)H for some H ≥ 0.

1: Let K = ∅, P⊥ = Im, V = [ ].

2: Let u1(j) = ‖X(:, j)‖22 for all j.
3: for k = 1 : r do

4: Let jk = argmax1≤j≤n uk(j). (Break ties arbitrarily, if necessary.)
5: Let K = K ∪ {jk}.
6: Update the projector P⊥ onto the orthogonal complement of W = X(:,K):

vk =
P⊥X(:, jk)

‖P⊥X(:, jk)‖2
, V = [V vk], P⊥ ←

(
Im − V V T

)
.

7: Update the squared norms of the columns of P⊥X: for all j,

uk+1(j) = uk(j)− v>k X(:, j) = ‖P⊥X(:, j)‖22.

8: end for

It is interesting to note that VCA is equivalent to SPA if the direction uk randomly chosen at each
step is instead taken as the column of the residual P⊥X with maximum `2 norm. We will use this
observation for our proposed algorithm, smoothed SPA.

Robustness of SPA As opposed to VCA, SPA is deterministically robust to noise, provided the
following assumption on top of separability (Assumption 1):

Assumption 2 (column-wise bounded noise). In Problem 1, the noise satisfies ‖N(:, j)‖2 ≤ ε for
all j for some ε > 0 sufficiently small.

Let us state the robustness result for SPA.

Theorem 1. [15, Theorem 3] Let X = WH + N as in Problem 1, and let Assumptions 1 and 2 be
satisfied, that is, W = X(:,K∗) for some index set K∗ of cardinality r, and ‖N(:, j)‖2 ≤ ε for all j

where ε ≤ O
(

σ3
r(W )√
rK(W )2

)
. Let also the rth singular value of W be positive, that is, σr(W ) > 0, meaning

that W has rank r. Let K be the index set extracted by SPA. Then there exists a permutation π of
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{1, 2, . . . , r} such that for all k = 1, 2, . . . , r,

‖X(:,K(k))−W (:, π(k))‖2 ≤ O
(
εK(W )2

σ2r (W )

)
,

where K(k) denotes the kth index in K, and K(W ) = maxj ‖W (:, j)‖2.

Note that the bounds in Theorem 1 are relatively weak: the noise level has to be rather small to
guarantee SPA to recover W approximately.

2.2 Model 2: Learning a latent simplex

A drawback of near-separable algorithms, such as VCA and SPA, is that they assume that there is
only one data point close to each column of W . Therefore, to estimate W , the column-wise bounded
noise assumption (Assumption 2) is necessary; see Theorem 1. This is a rather strong assumption,
often not met in practical situations as typically many data points are affected by large amounts of
noise.

Bhattacharyya et al. [6] rather propose to leverage the fact that typically more than one data point
are close to each column of W . This assumption, which is stronger than the pure-pixel one (requiring
only a single pure-pixel), allows higher noise levels. It is called the proximate latent points assumption,
and is defined as follows.

Assumption 3 (proximate latent points). In Problem 1, there exists r index sets, Kk for k =
1, 2, . . . , r, of cardinality at least p = δn such that

‖WH(:, j)−W (:, k)‖2 ≤
4σ

δ
for all j ∈ Kk,

for some δ ∈
[
1
n ,

1
r

]
and σ > 0.

Under this assumption, instead of looking for one column of X to represent each vertex, like in
VCA and SPA, algorithms should look for p of them and then estimate each vertex as the average
of these p data points. We will refer to such algorithms as smoothed separable NMF algorithms. The
main contribution of this paper is to propose two new such algorithms; in Sections 3 and 4.

This assumption is often met in the machine learning applications mentioned in Section 1; see
the discussions in [6, 5]. For high-resolution HSIs that satisfy the pure-pixel assumption, there are
typically more than one pixel close to each endmember.

Spectral variability in blind HU In blind HU, an issue with separable NMF algorithms is that
they identify a single pixel to represent a material. It is however well-known that the spectral signature
of an endmember may vary across the pixels of the image, for example because of differences in light
intensity or orientation. This is known as spectral variability. By construction, most separable NMF
algorithms, such as VCA and SPA, will identify pure pixels that do not represent well the average
behaviour of a material, but rather a pure pixel located at the boundary of the convex hull of the
variations of the spectral signature of that endmember. Therefore, working on the smoothed data set,
which averages every subset of p data points, allows to better represent this average behaviour.
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2.2.1 Algorithm to learn a latent simplex

To solve Problem 1 under Assumption 3, Bhattacharyya and Kannan [6] proposed an algorithm
similar to VCA, which we will refer to as the algorithm for learning a latent simplex (ALLS). The
main difference between ALLS and VCA is the selection step. Instead of picking a single column of
X, ALLS averages over p columns for some p ∈

{
1, 2, . . . , bnr c

}
. More precisely, ALLS picks the p

columns corresponding to the indices that maximize the absolute value of uk; see Algorithm 3.
The idea behind ALLS is to apply VCA on a smoothed data set. This smoothed data set is made

of
(
n
p

)
data points which are the averages of all possible combinations of p data points, that is, p

columns of X. Of course, constructing this smoothed data set explicitly is not practical, since
(
n
p

)
grows exponentially. However, by the linearity of the selection step in VCA, this is not necessary: the
smoothed data point that maximizes a linear function is the average of the p data points that have
the p largest values for that function. Algorithm 3 summarizes ALLS.

Algorithm 3 Algorithm for Learning a Latent Simplex (ALLS) [6]

Input: The matrix X ∈ Rm×n, the number r of columns of W , the number p of columns of X to be
averaged to obtain each column of W .

Output: A matrix W ′ such that X ≈W ′H for some H ≥ 0.

1: Let W ′ = [ ], P⊥ = Im, V = [ ].

2: Let Y ∈ Rm×r be the vector space spanned by the top r left singular vectors of X.

3: for k = 1 : r do

4: Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g., dk ∼ YN (0, Ir).

5: Compute uk =
(
dTk P

⊥)X ∈ Rn.

6: Let Sk be the set of p indices corresponding to the largest coordinates of uk in absolute value.

7: Let W ′(:, k) be the average of the columns of X(:,Sk).
8: Update the projector P⊥ onto the orthogonal complement of W ′:

vk =
P⊥W ′(:, k)

‖P⊥W ′(:, k)‖2
, V = [V vk], P⊥ ←

(
Im − V V T

)
.

9: end for

Note that ALLS with p = 1 is equivalent to VCA.

Computational cost The only additional cost of ALLS compared to VCA is to average p columns
of X, which requires r times O(pm) operations, which is negligible since p� n ≤ nnz(X).

Remark 1 (ALLS in O
(

nnz(Z)
)

time). In a more recent work, Bakshi et al. [5] improved ALLS, from
a computational point of view, by providing an algorithm running in O(nnz(X)) operations. To do so,
Bakshi et al. rely on advanced low-rank matrix approximation algorithms. We will not focus on this
rather technical aspect which is out of the scope of this paper. In fact, for HSI, this is not crucial as X
is typically dense, while m is small (between 100 and 200, typically). Hence, in our implementation,
we simply use to the rank-r truncated SVD.
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2.2.2 Probabilistic robustness of ALLS

Let us describe the assumptions needed to prove the probabilistic robustness of ALLS. The condition
on W is defined as follows:

Assumption 4 (well-separatedness of W ). In Problem 1, the matrix W satisfies

α(W ) =
mink=1,2,...,r minx ‖W (:, k)−W (:, k̄)x‖2

K(W )
> 0, (1)

where k̄ = {1, 2, . . . , r}\{k}.

Assumption 4 holds if and only if rank(W ) = r, in which case conv(W ) is a simplex, that is, a
polytope of dimension r − 1 with r vertices (hence the name of the algorithm).

The condition on the noise is as follows.

Assumption 5 (Spectrally bounded perturbations). In Problem 1,

‖N‖2 = σmax(N) ≤ σ
√
n,

where there exists some constant c such that

σ ≤ α2
√
δ

c r9
min
j
‖W (:, j)‖2, (2)

where α = α(W ) is defined in Assumption 4, and δ and σ in Assumption 3 (recall, p = δn is the
number of data points close to each column of W ).

It is key to note here that the noise allowed is not column wise as in Assumption 2, but on the
spectral norm of N , which is rather different.

We can now state the robustness theorem for ALLS.

Theorem 2. Let us consider Problem 1 under Assumptions 3 (proximate latent points), 4 (well-
separatedness of W ) and 5 (spectrally bounded perturbations). Then, with probability at least 1−c/r3/2,
ALLS computes a matrix W ′ such that upon permutation of its columns, for all k = 1, 2, . . . , r,

‖W (:, k)−W ′(:, k)||2 ≤ O

(
r4σ

α
√
δ

)
. (3)

Note that substituting (2) in (3) gives

‖W (:, k)−W ′(:, k)||2 ≤ O
( α

c r5

)
min
j
‖W (:, j)‖2.

Interestingly, since ALLS for p = 1 coincide with VCA, Theorem 2 provides a probabilistic robust-
ness result for VCA which is unknown in the blind HU literature.
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2.2.3 Bounds of SPA versus ALLS

Theorem 2 might look somewhat weak because of the dependence in r9 in the bound (2) for σ. However,
it is not known whether this bound is tight, although it is believed it could be improved [6, 5]. A
similar comment applies to SPA. Moreover, these bounds assume an adversarial settings, and noise
robustness under particular generative models is also an interesting direction of research, as in [26].

In any case, Theorem 2 only requires a bound on ‖N‖2 while SPA requires each column of the
noise matrix N to be bounded, indicating that ALLS should perform better, in general, when p is
sufficiently large. Since the theory is still not fully developed and the tightness of the theoretical
bounds should be carefully studied, it is important to compare these algorithm empirically to shed
light on their differences on practical problems; this will be done in Section 5.

3 Smoothed VCA

Inspired by VCA, and ALLS, we now propose smoothed VCA (SVCA); see Algorithm 4. SVCA has
two key important differences compared to ALLS:

1. At step k, ALLS selects the p entries maximizing the absolute value of the vector of uk, obtained
as the inner product of X and a randomly generated direction d>k P

⊥; see steps 5-6 of Algorithm 3.
This is not equivalent to maximizing (or minimizing) the linear function l(x) = d>k P

⊥x over the
smoothed polytope. In fact, by using the absolute value, this approach could select data points
in opposite directions. For example, take the simple case with two vertices w1 = (−1, 0) and
w2 = (0, 1). For any direction d, we have |d>w1| = |d>w2| and hence it is very likely that data
points close to both vertices will maximize |d>x|, and their average will be a poor approximation
of both vertices.

Instead, to maximize (or minimize) l(x), one should select the p indices maximizing uk (or −uk).
In SVCA, we therefore propose to select the p indices that maximize (resp. minimize) uk if the
median of the p largest values is larger (resp. smaller) than the absolute value of the median of
the p smallest values of uk. We have observed in practical experiments that this modification
of ALLS is crucial to obtain competitive results in real-world hyperspectral images. In fact, we
will see that SVCA outperforms ALLS, and the main reason is this modified selection step.

2. Instead of averaging p columns of X at each step, we will also consider taking their median.
This allows SVCA to be much more tolerant to gross corruptions and outliers, which are often
present in HSI. (In the presence of Gaussian noise, using the average is better.)

It also allows SVCA to be more tolerant to a misspecified value of p. For example, assume a
very simplistic scenario where there are n = rp′ data points and no noise, with exactly p′ data
points close to each endmember (that is, all data points are pure). For p < p′, one does not
leverage optimally the presence of multiple pure pixels. On the other side, as soon as p is larger
than p′, ALLS will perform rather badly because it will average p′ data points close to a vertex
and p − p′ data points corresponding to another vertex. If instead one takes the median, the
algorithm remains able to extract the endmembers for any p < 2p′. In practice, as we will show
in Section 5, using the median performs significantly better on real data sets.

Note that SVCA has the same computational cost as VCA, SPA and ALLS, namely O(rnnz(X))
operations.
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Algorithm 4 Smoothed Vertex Component Analysis (SVCA)

Input: The matrix X ∈ Rm×n, the number r of columns of W ∈ Rm×r, the number p of columns of
X to be averaged to obtain each column of W , the aggregation method (median or mean).

Output: A matrix W such that X ≈WH for some H ≥ 0.

1: Let W = [ ], P⊥ = Im, V = [ ].

2: Let Y ∈ Rm×r be the vector space spanned by the top r left singular vectors of X.

3: for k = 1 : r do

4: Pick a random direction dk ∈ Rm in the subspace spanned by Y , e.g., dk ∼ YN (0, Ir).

5: Compute uk =
(
dTk P

⊥)X ∈ Rn.

6: if the median of the p largest values of uk is larger than the absolute value of the median of
the p smallest values of uk then

7: Let Sk be the set of p indices maximizing uk.

8: else
9: Let Sk be the set of p indices minimizing uk.

10: end if
11: Let W (:, k) be the median (or the mean) of the columns of X(:,Sk).
12: Update the projector P⊥ onto the orthogonal complement of W = X(:,K):

vk =
P⊥X(:, jk)

‖P⊥X(:, jk)‖2
, V = [V vk], P⊥ ←

(
Im − V V T

)
.

13: end for

Recovery Guarantees for SVCA SVCA is very similar to ALLS, and in fact the robustness
analysis of ALLS applies to SVCA, that is, Theorem 2 applies to SVCA. The reason is that we
guarantee SVCA to extract the data point in the smoothed data set that maximizes the absolute
value l(x) = d>k P

⊥x. Note that, interestingly, SVCA with p = 1 coincides with VCA, and hence
Theorem 2 also applies to VCA, although the bound is rather weak; see the discussion in section 2.2.3.

4 Smoothed SPA

Since SVCA is equivalent to VCA for p = 1, it is not guaranteed to be deterministically robust to
noise. This motivates us to propose smoothed SPA. Unfortunately, it is not practical to apply SPA
directly on the smoothed data set. Indeed, it would require to find the p columns of the smoothed data
set with the largest `2 norm. The `2 norm being a nonlinear function, it would require to explicitly
compute the

(
n
p

)
data points of the smoothed data set, which is computationally prohibitive.

Instead, we replace the random selection of uk = YN (0, 1) in SVCA by the column of the residual
P⊥X with maximum `2 norm, that is, uk = P⊥X(:, jk) for some jk so that ‖uk‖2 ≥ ‖P⊥X(:, j)‖2 for
all j. This allows us to combine the best of ’both worlds’: deterministic robustness under separability
when p = 1, and the proximate latent point assumption (Assumption 3).

Recovery Guarantees for SSPA For p = 1, SSPA coincides with SPA, and hence Theorem 1
applies to SSPA for p = 1, that is, it is deterministically robust to column-wise bounded noise.
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Algorithm 5 Smoothed Successive Projection Algorithm (SSPA)

Input: The matrix X ∈ Rm×n, the number r of columns of W ∈ Rm×r, the number p of columns of
X to be averaged to obtain each column of W , the aggregation method (median or mean).

Output: A matrix W such that X ≈WH for some H ≥ 0.

1: Let W = [ ], P⊥ = Im, V = [ ].

2: Let u1(j) = ‖X(:, j)‖22 for all j.
3: for k = 1 : r do

4: Let jk = argmax1≤j≤n uk(j). (Break ties arbitrarily, if necessary.)
5: Let dk = X(:, jk).
6: Compute uk = (dTk P

⊥)X ∈ Rn.

7: if maxi uk(i) ≥ −mini uk(i) then

8: Let Sk be the set of p indices maximizing uk.

9: else
10: Let Sk be the set of p indices minimizing uk.

11: end if
12: Let W (:, k) be the median (or the mean) of the columns of X(:,Sk).
13: Update the projector P⊥ onto the orthogonal complement of W = X(:,K):

vk =
P⊥X(:, jk)

‖P⊥X(:, jk)‖2
, V = [V vk], P⊥ ←

(
Im − V V T

)
.

14: Update the squared norms of the columns of P⊥X: for all j,

uk+1(j) = uk(j)− v>k X(:, j) = ‖P⊥X(:, j)‖22.

15: end for

However, since the selection step of SSPA is deterministic, Theorem 2 does not apply to SSPA. A
promising direction of further research would be to analyze noise robustness of SSPA for p > 1.

Should you use SVCA or SSPA? SVCA has the advantage to be a randomized algorithm, and
hence can be run multiple times and the best solution, according to some criterion, can be kept. SSPA
is deterministic and has the advantage to have stronger theoretical guarantees for p = 1. From a
practical point of view, one could run SVCA several times, and SSPA once, and then keep the best
solution. In this paper, when the ground truth W ∗ is not available, we will use the following criterion

QF (W ) =
minH≥0 ‖X −WH‖F

‖X‖F
∈ [0, 1],

to evaluate the quality of a solution W . Note that we do not use the sum-to-one constraint, H>e = e,
because, in many practical situations, including hyperspectral imaging, this constraint is not satisfied
for all columns of H, e.g., for pixels with low luminosity; see a discussion in [12].

In matrix factorization, it could be argued that in general QF (W ) is not a good measure to assess
the quality of a solution W , since any W such that conv(X) ⊂ conv(W ) implies QF (W ) = 0, even
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if W is very different from the ground truth W ∗. In our case though, QF (W ) is relevant, since all
the considered algorithms generate solutions W which columns are close to conv(X). Indeed, VCA,
SPA and ALLS generate solutions within conv(X). This is not always the case for SVCA and SSPA,
because of the use of the median (a non-linear operator) for the aggregation of the columns of X. In
practice though, they find solutions close to conv(X).

5 Numerical Experiments

In this section, we study and compare the performance of ALLS, SVCA, and SSPA. We first consider
synthetic datasets and then the unmixing of real-world hyperspectral images. The code and data are
available online1. All algorithms are implemented in Matlab and run on a computer with an i5-8350U
processor.

5.1 Synthetic Data Sets

In this section, we study the behavior of smooth separable NMF algorithms in several experimental
setups. To build synthetic data sets, we first build W ∈ R224×10

+ by selecting 10 columns from the
USGS hyperspectral library2 using SPA. The condition number of the corresponding matrix was
κ(W ) = 33.88. Then, we generate a random H ∈ R10×1000

+ such that H = [I10, H
′], meaning there

is at least one pure pixel for every endmember. The coefficients of H ′ follow a Dirichlet distribution,
which is usually a good model for the abundances in HSI [22], of parameters αe, where α controls the
proportion of pixels close to the endmembers, see Table 1. The larger α, the denser the columns of H
and the less likely the ‘proximal latent points’ assumption is to be satisfied for large p.

Table 1: Generating the columns of H ∈ R10×n using the Dirichlet distribution of parameter αe,
this table reports the expected percentage of pure pixels close to each endmember. The pixel j is
considered close to the endmember i when H(i, j) > 0.95, hence this table reports the expected value
of 1

n

∣∣{j | H(i, j) > 0.95}
∣∣ for all i. Since the Dirichlet distribution is uniform with parameters αe, this

expected value is the same for all i.
α 0.01 0.02 0.05 0.1 0.2 0.5

δ 7.7% 5.9% 2.7% 0.75% 0.06% 0%

Finally, we let X = WH + N where N is a normalized Gaussian noise: Given a noise level ε, we
first generate N(i, j) ∼ N (0, 1) for all (i, j), then set

N ← ε
‖WH‖F
‖N‖F

N,

so that ε is the norm of the noise relative to WH: ‖N‖F = ε‖WH‖F .
Given the noisy data matrix X and a parameter p, we can compute W ′ with the algorithms ALLS,

SVCA, and SSPA. We note ALLS(p), SVCA(p) and SSPA(p) these algorithms run with parameter p.
Given the computed solution W ′, we report the mean removed spectral angle (MRSA) to assess its
quality. Given two spectral signatures x, y ∈ Rm, the MRSA is defined as follows:

φ(x, y) =
1

π
arccos

(
(x− x̄)T (y − ȳ)

‖x− x̄‖2‖y − ȳ‖2

)
∈ [0, 1],

1https://gitlab.com/nnadisic/smoothed-separable-nmf
2https://www.usgs.gov
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where for a vector z ∈ Rm, z̄ = (
∑m

i=1 zi)e and e is the vector of all ones. Given two matrices, here
the groundtruth W and the estimate W ′, we define the MRSA as

MRSA(W,W ′) =

r∑
j=1

φ(W (:, j),W ′(:, j)),

after the columns of W ′ have been reordered so as to minimize the MRSA. The smaller the MRSA, the
better the solution. For ALLS and SVCA, on a given data set, we run 30 trials and keep the median
of the results. SSPA is deterministic so we only run it once. Unless stated otherwise, SVCA and SSPA
are equipped with the median aggregation. In the following, we consider several experimental setups
to highlight the property of these algorithms.

In fig. 1, we test ALLS, SVCA, and SSPA with different values of the parameter p, when the noise
ε varies. Note that SVCA(1) and SSPA(1) are equivalent to their non-smoothed version VCA and
SPA. Also note that ALLS(1) is equivalent to SVCA(1) and thus VCA. In this experiment, we observe
that smoothing improves the algorithm performances. However, for ALLS, a parameter p set too large
can in fact worsen the solution, especially when the noise level is small. Also, ALLS is outperformed
by SVCA and SSPA; this will be confirmed in experiments on hyperspectral images in section 5.2.

10−2 10−1 100

100

101

Noise ε

M
R

S
A

ALLS(1)

ALLS(20)

ALLS(50)

SVCA(20)

SVCA(50)

SSPA(1)=SPA

SSPA(20)

SSPA(50)

Figure 1: Results for ALLS, SVCA, and SSPA for different values of p, when ε varies, for fixed n = 1000
and purity α = 0.05 (δ = 2.7%). Values for ALLS and SVCA are the medians over 30 trials. Note
that ALLS(1)=SVCA(1)=VCA.

In fig. 2, we compare the stability of ALLS and SVCA when ε varies by showing the best, median,
and worst result among 30 runs. We also compare them to the MRSA of the result of SVCA that
has the smallest reconstruction error, QF (W ′), and to SSPA. We see that the best result from ALLS
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is slightly better than other results. This is due to the use of the mean as an aggregation method,
which works better with the centered Gaussian noise of the synthetic data3, see fig. 4. However, the
algorithm is less stable, as the median and worst result are worst than SVCA. With SVCA, the median
results are close to the best. Also, the best results in terms of reconstruction error generally coincides
with the best one in terms of MRSA, showing than the reconstruction error is a good proxy for the
tested algorithms, as evoked in Section 4 (this will be useful when the groundtruth is unknown and
the MRSA cannot be computed, for example in section 5.2). The deterministic SSPA is better than
the median result of SVCA, but not always better than its best result.

10−2 10−1 100

100

101

Noise ε

M
R

S
A

Best ALLS
Median ALLS
Worst ALLS
Best SVCA

Median SVCA
Worst SVCA

Best rel err SVCA
SSPA

Figure 2: Comparison of SSPA with best, median, and worst result for ALLS and SVCA among 30
runs, when ε varies, for fixed n = 1000, purity α = 0.05 (δ = 2.7%) and parameter p = 25. ”Best rel
err SVCA” represents the MRSA of the solution of SVCA that has the smallest relative reconstruction
error.

In fig. 3, we compare SVCA and SSPA with higher values of p when ε varies. Again, we observe
that the smoothing improves the algorithm performances, but an overestimated p worsens it. Interest-
ingly, when the noise is very high (above 10%), smoothed algorithms outperform their non-smoothed
counterpart even when p is overestimated. This is due to the fact that the value of p required to
obtain the best estimation of W is not only determined by the purity but also by the noise level. For
instance, consider a toy example with four data points and r = 2:

X = WH +N = W

[
1 0 0.99 0.01
0 1 0.01 0.99

]
+N.

3Using the mean, instead of the median in SVCA, its best MRSA result are always better than that of ALLS in this
experiment.
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That is, x3 and x4 are not pure-pixel but are almost pure. Let us further assume N to follow a centered
Gaussian law. If ε = 0 (noiseless mixing), the best estimation of W (:, 1) (resp. W (:, 2)) from X is to
extract X(:, 1) (resp. X(:, 2)), yielding a perfect estimation. On the other hand, if ε is large relatively
to the distance of W (:, 1) and W (:, 2), it is better to choose as an estimate of W (:, 1) (resp. W (:, 2))
the average – or median – of X(:, 1) and X(:, 3) (resp. X(:, 2) and X(:, 4)), as the noise power is then
divided by two.
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SVCA(1)

SVCA(50)

SVCA(100)

SVCA(200)

SSPA(1)

SSPA(50)

SSPA(100)

SSPA(200)

Figure 3: Results for SVCA and SSPA for different values of p, when ε varies, for fixed n = 1000 and
purity α = 0.05 (δ = 2.7%), Values for SVCA are the medians over 30 trials.

In fig. 4, we compare SVCA and SSPA equipped with either the median or the mean aggregation,
for fixed data setup and when p varies. The reverse bell curve shows that the performance of the algo-
rithms improves gradually as p grows, until it reaches an optimal value, after which the performance
gradually worsen. We observe that the algorithms equipped with the median are more robust to an
overestimation of p, but with the mean they are slightly better for smaller p. However the difference
is small; this is expected as this synthetic data is generated with centered Gaussian noise, and as such
the mean is expected to give the best estimation when p is well chosen. Note that the results would be
different with different kind of noises, and the median could for instance be better with sparse noises.
The difference is more obvious in hyperspectral images, see section 5.2 and fig. 6.

In fig. 5, we compare SVCA and SSPA when p varies in setups with different values of purity α.
As expected, we observe that the shapes of the curves are similar, and that for a fixed noise level the
value of the parameter p leading to the lowest MRSA decreases as the parameter α increases.

To summarize, our synthetic experiments highlight that the two proposed algorithms seem to
obtain better results than ALLS. They furthermore show that SVCA and SSPA outperform VCA and
SPA when p is well chosen. Although we illustrate that the choice of p is important, as a bad value
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Figure 4: Results for SVCA and SSPA using either the median or the mean to average points, when
p varies, for fixed n = 1000, purity α = 0.05 (δ = 2.7%), and noise ε = 0.05. Values for SVCA are the
medians over 30 trials.

can worsen the results compared to the non-smoothed algorithms, the use of the median instead of
the mean makes this choice easier.

5.2 Hyperspectral images

In this section, we apply ALLS, SVCA, and SSPA to the unmixing of hyperspectral images, as de-
scribed in section 1. We consider three commonly used hyperspectral images4, San Diego, Urban, and
Terrain. In hyperspectral data sets, extremely large values are commonly associated with sensor noise
or interference. To avoid overfitting the factorizations to this interference, the pixels corresponding to
the 10 largest values of any wavelength range are zeroed out. Extreme pixels generally have extreme
values in many wavelenght ranges at once, so this preprocessing results in the removal of less than
0.1% pixels. The characteristics of these images are summarized in table 2.

Table 2: Summary of the hyperspectral images studied in this work.
Dataset m n r Extreme pixels removed

San Diego 158 400× 400 = 160000 8 19
Urban 162 307× 307 = 94249 6 68
Terrain 188 500× 307 = 153500 6 107

4Downloaded from http://lesun.weebly.com/hyperspectral-data-set.html
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Figure 5: Results for SVCA and SSPA for different values of purity α, when p varies, for fixed n = 1000
and noise ε = 0.05. Values for SVCA are the medians over 30 trials.

Given a data matrix X ∈ Rm×n, we compute W ∈ Rm×r with the three algorithms. We then
compute for each algorithm H ∈ Rr×n with a standard coordinate descent algorithm, and measure
the relative reconstruction error ‖X −WH‖F /‖X‖F . The smaller the error, the better the solution.

Some works such as [27] proposed groundtruths for these hyperspectral images, but they are
computed using numerical methods and as such do not necessarily represent reality. Therefore, we
lack a reference to assess the quality of the reconstruction, for example by measuring the MRSA. This
is why we use the relative reconstruction error as the criteria for the quality of a solution. This is a
satisfying criteria, as illustrated in fig. 2.

In table 3, we report results from the experiments. We observe that, when p > 1, the result is
always improved. When p is too large, however, the solution can be worse. We observe that the best
p varies between the algorithms. For example, with Terrain, ALLS and SVCA perform best with
p = 1000 while SSPA performs best with p = 100. This difference is expected, as the algorithms
have different robustness to noise, they need to average on different numbers of data points. Also,
different endmembers generally have different numbers of nearby points, so there is no value of p that
would be always ideal for a given data set. Larger values of p seem to give more stable results, as it
produces solutions with smaller deviations. SVCA outperforms ALLS in all cases. SSPA performance
is comparable to SVCA, and generally produces a better result than the median of SVCA, but never
better than the best result obtained by SVCA.

In a few cases, SSPA produces solutions with a large error, for example in San Diego for p = 100
and Terrain for p = 1000. We believe this behavior to originate from small groups points with a very
large norm, that could correspond to a rare material or to interference.
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Table 3: Relative reconstruction errors (minH≥0 ‖X −WH‖F /‖X‖F ) resulting from the unmixing of
hyperspectral images with ALLS, SVCA, and SSPA, with different values of parameter p. SVCA(1)
and SSPA(1) are equivalent to VCA and SPA. For non-deterministic algorithms ALLS and SVCA, we
show the minimum, median, standard deviation, and maximum of the error over 30 trials.

SanDiego Urban Terrain
p Min Med ± std Max Min Med ± std Max Min Med ± std Max

ALLS 1 4.72 5.60 ± 0.67 8.25 5.39 9.14 ± 1.93 12.26 3.94 4.88 ± 0.73 7.08
100 4.27 5.35 ± 1.72 10.91 6.37 9.28 ± 3.18 19.40 3.84 4.87 ± 0.87 6.85
1000 4.64 6.14 ± 1.12 8.68 6.78 9.71 ± 2.16 14.20 3.84 4.71 ± 1.19 8.81
2000 4.87 5.91 ± 1.62 11.79 6.96 9.93 ± 1.60 12.85 3.96 4.89 ± 0.88 7.63
5000 5.51 7.42 ± 2.64 13.88 7.68 10.37 ± 1.89 14.98 4.28 5.26 ± 0.80 6.88

SVCA 1 3.95 5.42 ± 0.61 6.90 6.25 9.13 ± 1.78 12.23 4.03 5.11 ± 1.25 8.70
100 3.44 4.92 ± 0.77 6.96 5.08 6.10 ± 1.27 10.13 3.52 4.04 ± 0.67 6.52
1000 3.82 4.95 ± 0.59 6.82 5.82 6.77 ± 1.23 10.84 3.18 3.92 ± 0.38 4.70
2000 3.73 4.40 ± 0.51 5.81 5.66 6.36 ± 0.67 7.83 3.38 4.12 ± 0.45 4.95
5000 4.01 4.66 ± 0.73 7.01 5.69 6.94 ± 1.21 11.74 3.70 4.19 ± 0.30 4.82

SSPA 1 5.90 9.46 5.01
100 9.29 6.65 4.03
1000 5.82 6.22 8.05
2000 4.32 6.11 7.86
5000 4.65 5.91 5.38

In fig. 6, we compare SVCA and SSPA using either the median or the mean for the unmixing of
the hyperspectral image Urban, with a varying p. We observe that p > 1 always improves the results.
Also, the median aggregation almost always gives better results than the mean. While the curves are
not as regular as with synthetic data, we observe a similar tendency that the solution improves when p
grows, until a certain point or zone after which it worsens again. However, SSPA-med has an irregular
behaviour for p = 200. This can be explained by the fact that SSPA is a greedy algorithm, so if it
makes a bad choice in the first iterations, it will likely never compensate. Also, it is deterministic, so
the error is not averaged over several runs.

In fig. 7, we show the abundances maps corresponding to the unmixing of Urban. They indicate
the proportion of every of the 6 extracted endmembers in the pixels of the image. We see that the
smoothed algorithms perform a better separation than the non-smoothed ones. For example, the
fourth endmember extracted by SVCA and SSPA corresponds to grass, and it is well separated by
these algorithms, while VCA and SPA mix it with asphalt and dirt. The second endmember extracted
by SVCA and SSPA corresponds to metallic rooftops, and it is well separated while VCA mixes it
with other materials and SPA does not clearly identify it and produces a blurred picture.

In appendix A, we provide the results for the hyperspectral images Terrain and San Diego.

5.3 Discussion

SVCA allows to generate different solutions, among which the best solution w.r.t. reconstruction error
can be found. Therefore, in practice and when time and resources allow, we recommend running SSPA
once and SVCA several times, with different values of p, and keep the best solution.

Apart from the average and the median, other aggregation methods could perform better depending
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Figure 6: Results of the unmixing of the hyperspectral image Urban. Values for SVCA are the medians
over 30 trials. One point is out of the plot; for p = 200, SVCA-med has an error of 14.55%.

on the noise law and data set at hand; see for instance [17], in which the authors use an aggregation
on manifold in the different context of sparse matrix factorization to better take into account the
structure of the columns of W .

Choosing a value for the parameter p is crucial and not trivial; a strategy to determine it is an
interesting direction of further research. It could also be useful to consider a different value of p for
every endmember, as the number of proximal latent points typically varies between materials. Also,
the proximal latent points assumption could be used to generalize other pure-pixel search algorithms.

6 Conclusion

In this work, we introduced the smoothed separable NMF model, that strengthen the separability
assumption by assuming the presence of several near-pure data points. Inspired by the existing
algorithm ALLS, we developed smoothed variants of two separable NMF algorithms, namely VCA
and SPA. Empirically, we showed that our smoothed methods outperform both the non-smoothed
ones and ALLS, for both synthetic data sets and for the unmixing of real-world hyperspectral images.
This shows that the proximal latent points assumption is verified in hyperspectral images, and that
smoothed separable NMF algorithms are a more effective tool for hyperspectral unmixing.
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A Additional experiments

In this appendix, we provide the results from our experiments on the hyperspectral images Terrain
(figs. 8 and 10) and San Diego (figs. 9 and 11).
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(a) VCA, error= 6.24%

(b) SVCA p=200, error= 5.24%

(c) SPA, error= 9.46%

(d) SSPA p=4200, error= 5.72%

Figure 7: Abundance maps of the unmixing of the Urban hyperspectral images (that is, reshaped rows
of H) with different algorithms. Endmembers have been reordered for easier comparison. Parameters
p have been chosen as the best from fig. 6. Error corresponds to minH≥0 ‖X −WH‖F /‖X‖F . For
VCA and SVCA, we show the best solution over 30 trials.
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Figure 8: Results of the unmixing of the hyperspectral image Terrain. Values for SVCA are the
medians over 30 trials.
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Figure 9: Results of the unmixing of the hyperspectral image San Diego. Values for SVCA are the
medians over 30 trials.
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(a) VCA, error= 4.03%

(b) SVCA p=420, error= 3.25%

(c) SPA, error= 5.01%

(d) SSPA p=220, error= 3.65%

Figure 10: Abundance maps of the unmixing of the Terrain hyperspectral images (that is, reshaped
rows of H) with different algorithms. Endmembers have been reordered for easier comparison. Pa-
rameters p have been chosen as the best from fig. 8. Error corresponds to minH≥0 ‖X−WH‖F /‖X‖F .
For VCA and SVCA, we show the best solution over 30 trials.
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(a) VCA, error= 3.95%

(b) SVCA p=2600, error= 3.74%

(c) SPA, error= 5.90%

(d) SSPA p=2000, error= 4.32%

Figure 11: Abundance maps of the unmixing of the San Diego hyperspectral images (that is, reshaped
rows of H) with different algorithms. Endmembers have been reordered for easier comparison. Pa-
rameters p have been chosen as the best from fig. 9. Error corresponds to minH≥0 ‖X−WH‖F /‖X‖F .
For VCA and SVCA, we show the best solution over 30 trials.
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