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ABSTRACT 
The field of eXplainable Artificial Intelligence (XAI) aims to bring 
transparency to complex AI systems. Although it is usually 
considered an essentially technical field, effort has been made 
recently to better understand users’ human explanation methods 
and cognitive constraints. Despite these advances, the community 
lacks a general vision of what and how cognitive biases affect 
explainability systems. To address this gap, we present a heuristic 
map which matches human cognitive biases with explainability 
techniques from the XAI literature, structured around XAI-aided 
decision-making. We identify four main ways cognitive biases 
affect or are affected by XAI systems: 1) cognitive biases affect 
how XAI methods are designed, 2) they can distort how XAI 
techniques are evaluated in user studies, 3) some cognitive biases 
can be successfully mitigated by XAI techniques, and, on the 
contrary, 4) some cognitive biases can be exacerbated by XAI 
techniques. We construct this heuristic map through the 
systematic review of 37 papers—drawn from a corpus of 285—that 
reveal cognitive biases in XAI systems, including the 
explainability method and the user and task types in which they 
arise.  We use the findings from our review to structure directions 
for future XAI systems to better align with people’s cognitive 
processes. 

CCS CONCEPTS 
• Human-centered computing ~ Human computer interaction 
(HCI) ~ HCI theory, concepts and models • Computing 
methodologies ~ Artificial intelligence ~ Cognitive science 

KEYWORDS 
Explainability, explainable AI, cognitive bias, human-centered AI, 
XAI. 

ACM Reference format: 

Astrid Bertrand, Rafik Belloum, James R. Eagan and Winston Maxwell. 
2022. How Cognitive Biases Affect XAI-assisted Decision-making: A 
Systematic Review. In Proceedings of the 2022 AAAI/ACM Conference on AI, 
Ethics, and Society (AIES’22), August 1–3, 2022, Oxford, United Kingdom. 
ACM, New York, NY, USA, 14 pages. https://doi.org/ 
10.1145/3514094.3534164 

1 Introduction 
In recent years, XAI has made significant breakthroughs in 
making opaque models more transparent [1]–[4]. Although many 
studies have shown that XAI methods can improve users’ 
understanding of black-box models [5]–[7], recent empirical 
studies have drawn attention to obstacles resulting from a 
mismatch between people’s cognitive constraints and current XAI 
techniques. For example, explanations can lead to unjustified trust 
in AI recommendations. Eiband et al. [8], show that placebic 
explanations elicit a similar level of trust as real explanations. 
Other work [9]–[11] shows that explanations can cause reasoning 
errors such as backward reasoning and confirmation bias [12]. 
These results highlight the danger of deploying AI system 
explanations in high-stakes settings without ensuring that they 
align with cognitive processes of users.  

To address this gap, researchers [12]–[14] have been using 
insights about people’s cognition and behaviors such as dual-
process theory [15], which states that people rely on heuristics 
and cognitive biases to process information and make decisions. 
In the 1980s, Amos Tversky and Daniel Kahneman [16] defined 
cognitive biases as “systematic error in judgment and decision-
making common to all human beings which can be due to 
cognitive limitations, motivational factors, and/or adaptations to 
natural environments.” Leveraging Kahneman’s dual process 
theory [1],  Kliegr et al. [17] reviewed the effects of cognitive 
biases on the interpretation of AI models and provide a rich 
analysis of over 20 different biases. That work, however, focuses 
on rule-based explanations. Broader coverage of the cognitive 
biases related to XAI techniques in general is needed. In turn, 
Wang et al. [12] propose operational pathways between users’ 
reasoning needs and XAI methodologies. They describe how 
people reason when explaining and review some common 
cognitive biases along with ways they can be mitigated. This is 
one of the most actionable contributions to date to link human 
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reasonings to XAI solutions. However, this work does not 
comprehensively cover the cognitive biases that may arise in the 
presence of XAI. While there are growing efforts from researchers 
[18]–[20] to tie cognitive science literature to a mostly technical 
XAI field, more research is needed to identify what kind of 
cognitive bias and heuristics are involved in the explanation 
process, and whether and how to leverage people’s heuristics to 
improve XAI systems. 

In this paper, we analyze how the field of XAI has been dealing 
with human cognitive biases and constraints, and we provide a 
research agenda that summarizes promising mitigation strategies 
and research directions to support human critical thinking. To this 
end, we conducted a systematic review of 37 papers, guided by the 
following five research questions: RQ1: What cognitive biases 
have been studied in the XAI literature? RQ2: In which contexts 
(e.g., explainability method, human expertise, tasks type) do these 
cognitive biases arise? RQ3: How to mitigate negative biases and 
leverage appropriate biases to improve XAI systems? RQ4: What 
evaluation methods have been used to detect cognitive biases 
(specific to each bias)? RQ5: What are the stated future research 
directions and challenges identified by the scientific community?  

This systematic review contributes the following to the XAI 
community:  

• An identification of 53 cognitive biases mentioned so far 
in the XAI literature through a systematic methodology, 
providing an overview of the context in which these 
biases occur: with which XAI technique (e.g., 
counterfactual explanations), user type (domain expert, 
AI expert or lay users) and AI-assisted task (e.g., medical 
diagnosis). 

• A heuristic map based on a systematic analysis of these 
cognitive biases, revealing four main ways they affect or 
are affected by XAI systems: 1) cognitive biases affect 
how XAI methods are designed, 2) they can distort how 
XAI techniques are evaluated in user studies, 3) some 
cognitive biases can be successfully mitigated by XAI 
techniques, and, on the contrary, 4) some cognitive 
biases can be exacerbated by XAI techniques.  

• A research agenda for the XAI community to consider 
people's cognitive needs, addressing the key concerns 
and challenges we ran into during our review (e.g., 
improve perception of the user's reactions to XAI). 

To the best of our knowledge, there is not yet a comprehensive 
review of how cognitive biases have been accounted for so far in 
the XAI literature. A systematic analysis like the one we present 
appears necessary to summarize findings on how cognitive biases 
interfere with explanations, how to address them, and to highlight 
promising directions concerning the integration of cognitive 
processes in XAI systems. 

In this work, we consider cognitive biases not only in terms of 
“errors” (e.g., automation bias that leads to inappropriate trust in 
AI modes) but also as the cognitive constraints that are inherent 
in the human explanation process (e.g., homunculus bias, 

according to which people tend to attribute human traits to 
systems, and therefore expect explanations in the form of 
dialogues). 

This paper is structured in four sections. Section 2 details the 
method used for the systematic literature review. Section 3 
presents the results from the systematic review based on the 
proposed methodology and the identified research questions. 
Section 4 highlights the discussion of findings from the corpus and 
proposes several implications for future work. Section 5 concludes 
this work.  

2 Methodology 
In this section, we detail the method used for the systematic 
literature review and how we selected the papers for inclusion. 

Our aim was to give a sense of how the XAI literature has 
addressed the notion of cognitive biases so far. We therefore relied 
on a keyword-based approach, which essentially has the 
advantage of ensuring transparency, reproducibility and, also, 
leading to more comprehensive results by sampling a wide range 
of work. However, it is possible that some XAI articles have 
addressed the notion of cognitive biases in different terms, 
referring to specific types of cognitive bias; we could not include 
all possible types of cognitive biases as keywords, since there are 
over 200. We also did not want to focus the investigation on 
specific types of bias in order to provide a more representative 
view of the different cognitive biases discussed in XAI. In addition, 
because we conducted our searches on ACM, IEEE, and Scopus, 
we may have missed other relevant work from other sources. To 
address these limitations, we supplemented the keyword-search 
with selected papers addressing cognitive biases in XAI drawn 
from two authors’ knowledge of the XAI field.  

 

Figure 1: PRISMA flow diagram [21] on how the final 
corpus was curated (n = 37). 



 

To guide the development of our systematic literature review we 
used the reporting checklist of the Preferred Reporting Items 
Systematic Reviews and Meta-Analyses (PRISMA) standard [21]. 
In doing so, it is possible to reproduce the processes of searching, 
selecting, and analyzing the relevant literature. The systematic 
literature review was conducted in four main phases: 
identification, selection, eligibility, and inclusion. The flow chart 
is presented in Figure 1.  

Keyword Match. During the identification phase, we performed 
a structured keyword search using the following sources: ACM, 
IEEE, and Scopus. Since this paper focuses on cognitive biases 
related to XAI, the search query was contextualized in three 
dimensions: AI systems, Explainability, and Cognitive biases. 
Drawing on the authors’ background in XAI, we assigned 
keywords that describe each dimension. We searched for 
keywords representing AI systems and Explainability dimensions 
in the Title, Abstract, and Author Keywords fields, because we 
wanted to focus on papers whose main topic was XAI. For 
Cognitive bias keywords, we searched in the Full text of papers. 
The search result was filtered to include recent papers (2008 or 
after) since XAI is a young field of study. The search query was as 
follows, adapted to each database’s advanced search specificities 
(the wildcard * indicates where we retrieved plurals and different 
spellings):  

AI systems è Abstract: (AI, artificial intelligence, machine 
learning, algorithm*, intelligent system*, neural network*) AND  

Explainability è Abstract: (explainab*, explanation*, intelligib*, 
interpretab*, transparen*, XAI) AND  

Cognitive biases è Full Text: (cognitive bias*, decision bias*, 
explanatory bias*, explanation bias*, human bias*) AND  

Date è 2008 and after. 

Screening and Eligibility. We considered the following 
inclusion criteria:  

• Cognitive biases: The paper describes cognitive biases 
that are involved in the field of XAI. 

• Mitigation techniques: The paper describes techniques to 
mitigate cognitive biases involved in the XAI process. 

• Measurement techniques: The paper describes ways to 
measure cognitive biases related to explanations. 

• Papers that do not provide primary insights on cognitive 
bias in XAI are excluded (e.g., a paper that does not 
provide enough detail on how the heuristics manifest 
and in what context). 

Additionally, only peer-reviewed papers written in English were 
included. We excluded very few papers to which we did not have 
access. The identification phase yielded a total of 273 results: 59 
papers from ACM, 64 from IEEE, 150 from Scopus, and 12 
additional papers selected from the references of relevant papers 
or based on the authors’ knowledge. The authors’ names, article 
title, source title, and publication year of the identified records 
were exported to an Excel spreadsheet. A total of 261 results were 
obtained after eliminating 24 duplicates. In the screening stage, 

each paper’s title and abstract was reviewed by an author based 
on the inclusion and exclusion criteria, and a decision was made 
as to whether the paper should be rejected or retained for the next 
phase (eligibility). 176 papers were excluded because they did not 
discuss cognitive biases involved in the field of XAI. A total of 85 
papers were advanced to the next phase. In the eligibility stage, 
two of the authors read the remaining articles in full. Based on the 
inclusion and exclusion criteria, a decision was then made as to 
whether the article should proceed to the final phase. 48 articles 
were finally excluded at this stage because they did not 
sufficiently address the proposed research questions (cf. 
introduction). 37 articles were retained and advanced to the final 
phase.  

Coding book. In the inclusion stage, we started the coding of the 
papers by having two authors extract relevant information from 
the papers. Except for the type of article (primary study or 
survey), this information essentially relates to RQ2 (see 
introduction). To ensure coding quality, this information was 
brainstormed by the authors and the research team and was 
drawn from related surveys of empirical studies of XAI (e.g., [22]). 
As such, our code book included: Cognitive bias type; Mitigation 
strategy; Explainability technique and format (local feature 
explanation, global explanation, etc.); Paper type (primary study 
or review); Application/domain (high-risk or low risk); AI type 
(shallow, deep or wizard of oz) and algorithm used (when 
specified); Human task type (proxy or real and description); 
Human expertise (lay-user, domain expert or ML expert). The full 
code description can be found in the appendices. 

Corpus presentation. In the corpus of 37 papers we analyzed, 7 
papers are reviews of the literature, and 29 papers are primary 
studies. Figure 2 illustrates the distribution of our corpus across 
the disciplines, showing the diversity of the subject areas. As we 
can see, over half of these papers are Human Computer 
Interaction (HCI) works, published in leading conferences (e.g., 
CHI and IUI). The remaining papers have also been published in 
leading conferences and journals directly or indirectly related to 
the explainability of AI systems, in the fields of AI, computer 
science and psychology.   

 
Figure 2: The distribution of our corpus across disciplines 
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 Identification of cognitive biases. To identify by name the 
cognitive effects that were discussed in the papers we reviewed,  
we either took the wording used in the papers, or if the bias was 
not named explicitly, we relied on external taxonomies [15], [16],  
surveys (e.g., [17]), and on our own knowledge of cognitive biases.  
For a few cases we coined a phrase to be able to refer to the effect 
under study (e.g. “pre-use algorithmic optimism” [23]).  

3 Results 
This section presents the results of the analysis of the articles 
studied. First, we give an overview of the biases identified (RQ1). 
We then examine the stated mitigation strategies as well as the 
research methods used to identify them (RQ2, RQ3 and RQ4). For 
the sake of brevity, we do not systematically provide the 
definitions of the biases we examine, but the interested reader can 
refer to the lexicon provided in the appendices. 

3.1 A map of the cognitive biases in XAI 
The first contribution of this work is to answer our RQ1 and 
identify the cognitive biases encountered in our corpus, along 
with the context in which they were found, namely the 
explainability technique that was used, the domain, the task, and 

the user type. We identified a list of 53 cognitive biases (cf. 
Appendix 1). We then analyzed the way these biases were 
presented in the articles reviewed, revealing four main ways 
cognitive biases affect or are affected by XAI-aided human 
decision systems.  

The first type are cognitive biases that affect how XAI methods 
are designed. They are listed in the yellow boxes in Figure 3 (top-
left corner). They include all the explanatory heuristics that 
people use when explaining or receiving an explanation. These 
explanatory heuristics are well documented in psychological 
works on the human explanation process [13], [24]. Unlike the 
other types of cognitive biases discussed in this article, these 
explanatory heuristics are not considered to lead to errors. On the 
contrary, they were simply presented as neither good nor bad but 
merely constraints to be taken into account before designing 
explainability techniques. 

The second category we identified are cognitive biases which can 
distort how XAI techniques are evaluated in user studies. They are 
presented in the brown box in Figure 3 (middle left). Prompted by 
Doshi-Velez and Kim [25], recent attention has been focused on 
approaches to evaluating explanations, with some researchers 
arguing for the need to test explanations with users [26], and 

Figure 3: Summarization of the cognitive constraints, biases and mitigation strategies discussed in the papers included in our corpus (n=37). 
This diagram presents the different categories of explanation techniques that were seen in our corpus (in the middle). Each link represents a connection 
made in the literature between an explainability technique and a cognitive bias or between a cognitive bias and a mitigation technique. The legends in 
color underlined by arrows indicate how and in what direction the links should be read (e.g. “XAI techniques should adapt to explanatory heuristics”). The 
pale and wide links indicate that the bias or cognitive constraint applies more generally to all XAI methods. We identified more connections between biases 
and mitigation strategies but show only the most supported ones for brevity.  
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others cautioning against doing so, concerned that cognitive 
biases could skew evaluations and mislead the XAI field [27]. We 
take stock of these cognitive biases in section 3.2.2.  

The third category are cognitive biases that were successfully 
mitigated by XAI techniques. They are presented in the dark 
orange box in Figure 3 (top-right corner). In Section 3.2.3, we 
review successful examples of using an explainability technique 
to address a cognitive bias that was observed in an AI-aided 
decision-making process.  

The fourth type of cognitive biases are those caused or 
exacerbated by explainability, and which lead to erroneous 
decision-making. They are presented in the red boxes on the right 
of the diagram in Figure 3. Among these, we find cognitive biases 
that lead either to overreliance, to under reliance, or to the 
misapplying of the explanation.  

3.2 Contexts in which cognitive biases occur, 
mitigation and evidencing strategies  

Let us go through the different categories of biases identified and 
answer our research questions RQ2, RQ3 and RQ4, namely in 
which contexts—explainability technique, user type and task 
type—those biases were observed, how to mitigate and how to 
reveal them.  

3.2.1 Explanatory heuristics affecting XAI design 
In this section we summarize the cognitive biases employed by 
people to generate, evaluate and communicate explanations. As 
the term “bias” can bring to mind errors of judgment, we refer to 
“explanatory heuristics.” Unlike the cognitive bias of the other 
categories in Figure 3, in this class, the explanatory heuristics are 
inherent to the explanation process and help humans select some 
events as being relevant ‘causes’ out of a potentially infinite causal 
chain of events [28]. In our corpus, “explanatory heuristics” were 
mainly examined by reviews such as Miller’s [13] seminal effort 
to tie psychological theories on explanations to the field of XAI, 
but also by primary studies focused on explainability desiderata 
such as simplicity and completeness.  

When generating explanations, attention is drawn to 
specific causes. Based on [24], [29]–[31] and others, Miller [13] 
unwinds the cognitive process of explaining. First, people identify 
candidate causes using abductive reasoning. Second, people use 
heuristics to select the most relevant among these candidates. The 
work in our corpus mentioned several features on which people 
tend to focus when selecting causes. These are abnormality, 
intentionality and responsibility, necessity, sufficiency and 
robustness [13], [32], confidence levels [12], [13], [32], 
demographic features [33], contrast between fact and foil [13], 
[34], [35] and inherent features [13], [36]. An interesting example 
of incorporating these attentional biases into XAI techniques is 
[36], which used the inherence bias—a human tendency to focus 
on inherent features instead of extrinsic ones to explain a 
phenomenon—to select explanations for person re-identification 
systems. Bhatt  et al. [32] also stress the importance of showing 
confidence estimates of AI prediction. They argue that people 

need to assess uncertainty to make decisions, relying on prospect 
theory [37]. In social interactions, we are used to estimating the 
confidence level of a person's assertion based on their tone and 
other social cues. These cues are not applicable in human-IA 
interactions, hence the need to explicitly state the AI's confidence 
levels. 

When evaluating the quality of an explanation, humans 
look for specific properties. Existing work on XAI desiderata 
and psychology of explanations has evidenced that people look 
for specific qualities in explanations. In our corpus, we also 
observe such preferences for “broad” [13], [35], [38], “simple” [13], 
[38]–[40] and “more complete” [41] explanations. However, the 
preference for simple and complete explanations raises several 
ambiguities. While it is unchallenged that simpler explanations 
are more comprehensible and readable [9], [39]—some researchers 
even  show that interpretability is inversely related to explanation 
length [9]—they can also be received with skepticism by users [9], 
[41], [42]. In section  3.2.4.2, we discuss how users expect complex 
concepts to be explained by complex explanations. Similarly, 
Kulesza et al. [41] argue that more comprehensive explanations 
help to significantly improve participants’ mental models, but 
other work [42], [43] found complete explanations can lead to 
overreliance [35]. In [35], [38], the authors contend that coherent 
and broad explanations are preferred, with scope being even more 
important than simplicity, consistently with Lombrozo’s point of 
view in cognitive science that broader and simpler explanations 
are better [24]. Based on these findings, it can be challenging to 
gauge the right level of complexity in explanations. Some 
suggested general principles such as not providing explanations 
that are too complex to be readable [9], adjusting to the level of 
“completeness” to each user and context [35].  

Explanations are a social process (homunculus bias). Miller 
[13] argued that explanations are as much a social process as a 
cognitive one. The social process allows the explainer to identify 
the knowledge gap in the recipient's mental model that needs 
explaining, to refine explanations, use appropriate vocabulary and 
answer to follow-up questions. Weld and Bansal [34] state that 
adopting that social process would be highly beneficial to provide 
more relevant explanations. Moreover, people tend to attribute 
human traits to machines—known as the homunculus fallacy—
and therefore tend to expect that these tools use the same 
communication framework as humans [13], [34]. To that end, 
some researchers have argued for more interactive explanations. 
However, there is some concern in the articles of our corpus that 
interactive explanations may lead to over reliance. We describe 
these in section 4. 

3.2.2 Cognitive biases arising in user-based evaluations of 
explainability techniques  

Users’ stated preferences are not indicative of performance. 
Buçinca et al. [44] warned against using proxy tasks to evaluate 
explanations through user studies, i.e., tasks consisting of 
subjectively rating the explanations. They noted that people’s 
subjective preferences for explanations were not indicative of the 
performance they would exhibit in making decisions with these 



 

 

explanations. Instead, researchers should use real tasks. This 
observation was also evidenced in our corpus with local feature 
importance, rule-based, example-based, and counterfactual 
explanations [33], [43], [44]. 

More attention to false negatives than false positives. 
Focusing on saliency maps for image recognition, Mohseni et al. 
[45] showed that people pay less attention to explanations of false 
positives than explanations of false negatives. They also showed 
that people rate differently techniques that differ only in 
appearance. To address these biases, they designed a human 
attention baseline to evaluate saliency explanations without 
having to resort to user studies.  

Furthermore, Sokol and Flach [46] called for caution about the 
phenomenon of change blindness in user studies, namely the 
“inability to notice all of the changes in a presented medium,” 
especially in an image. To address it, any change should be 
highlighted or made salient. Researchers should also be wary of 
selection bias when selecting participants for user studies through 
Amazon Mechanical Turk, usually more computer literate than 
the ‘normal’ population [47].  

3.2.3 Cognitive biases in AI-aided decisions that are 
mitigated thanks to explainability 

Mitigated bias 
Explanation 

method used to 
mitigate bias 

Task/user 

Misattributed trust Uncertainty 
estimates [12] 

Medical diagnosis 
/ domain expert 

Representativeness bias Prototype cases of 
decision outcomes  
[12] 

Medical diagnosis 
/ domain expert 

Tendency to believe 
persuasive claims 
unsupported by evidence 

Natural language 
explanations [48] 

Fake news 
detection / lay 
users  

Pre-use algorithmic 
optimism 

Local feature 
importance (word 
highlighting) [23] 

Emotional 
analysis / lay 
users 

Table 1: Cognitive biases mitigated by XAI and the context 
in which they were revealed. 

As Liao et al. indicate [49],  “users also deem explanations of the 
AI’s decision as potential mitigation of their own decision biases.” 
Here, XAI researchers examine cognitive biases that arise in 
decision-making, with or without AI systems, and that can be 
mitigated by explainability. This discussion is usually centered 
around broad notions of transparency as a potential tool to 
mitigate aversion bias, see [50] for example. However, we only 
included in our corpus studies that demonstrated successful 
mitigation of such biases.  

We have found that XAI can mitigate pre-use algorithmic 
optimism [23], bias towards unsupported persuasive claims [48], 
representativeness bias through the means of example-based 
explanations [12] and misattributed trust through carefully 
designed uncertainty estimates [12]. For the sake of brevity, we 
discuss only one of these examples below. Interested readers may 
refer to the citations in Table 1 for more information on these 
examples. 

Pre-use algorithmic optimism. Springer and Whittaker [23] 
evidence how users had positive expectations of the transparent 
system before using it. To be able to refer to it later, we call this 
phenomenon “pre-use algorithmic optimism.” Springer and 
Whittaker conclude that showing explanations, in this case local 
feature importance, was important to prevent users from 
overestimating the capabilities of the system. They suggest 
presenting explanations gradually or only when requested, to 
prevent users from losing trust when their expectations about the 
system are contradicted. 

3.2.4 Cognitive biases in AI-aided decisions that are 
exacerbated by explainability  

Recently, there have been concerns that AI explanations can bias 
users and impair their decision-making process [11], [51], [52]. At 
the root of this issue, Buçinca et al. [44] argue, is the choice 
between trusting an AI recommendation or engaging in an 
effortful and time consuming cognitive analysis of its 
explanations. People thus “develop heuristics about whether and 
when to follow the AI suggestions” [44], and AI explanations can 
reinforce such heuristics. However, as pointed out by [51], current 
explanation techniques do not provide causal guarantees, which 
means they can be wrong, adding another potential source of 
error in addition to the AI system. In such a situation, it becomes 
very difficult for humans to detect errors and “intervene 
meaningfully” [53], also considering that human performance in 
deception detection is quite poor as shown in [54] in a task of 
detecting deceptive hotel reviews. Table 2 summarizes the 
different cognitive biases that were presented as caused or 
enhanced by explanations of AI recommendations in the articles 
we reviewed. We classified them in three categories based on the 
type of error they result in: misapplying explanations, 
overreliance and under reliance. For brevity, we do not discuss 
every cognitive bias, associated context, evidencing and 
mitigation strategies but the reader can refer to the lexicon in the 
Appendix 1 and Table 3 for additional details. 

3.2.4.1 Explanation-triggered cognitive biases that lead to 
misapplying the explanation  

‘Narrative’ or ‘causal’ bias. A quote from Tversy and Kahneman 
about causal bias [16] applies wonderfully to the context of XAI: 
“in the context of explanation and revision, the strength of causal 
reasoning and the weakness of diagnostic reasoning are manifest in 
the great ease with which people construct causal accounts for 
outcomes which they could not predict”. Several articles in our 
corpus emphasized that experts were particularly affected by this 
heuristic, including researchers who attribute causal learning to 
saliency maps [55], data scientists who make false narratives 
about how SHAP and GAM explanations work [52] or domain 
experts in the domain of child welfare screening using 
counterfactuals [40]. The authors mainly called for incorporating 
knowledge-based narratives in explanations and [55] encouraged 
researchers to use direct experimental evidence to back up their 
claims. 

Related to the integration of probabilities. In their review of 
biases related to rule-based explanations, Kliegr et al. [17] 



 

described several cognitive biases related to people’s difficulty to 
integrate probabilities such as base rate neglect or conjunction 
fallacy.  Fürnkranz et al. [9] further evidenced that people (lay 
users in this case) tend to ignore the statistical significance of a 
statement, a phenomenon called insensitivity to sample size. 
Miller [13] stressed that probabilities don’t matter to people – a 
claim somewhat disputed by [32] if uncertainty estimates are 
probabilities (cf. section 3.2.1.1) - and that explanations should 
focus on causal relationships. Others showed that some user’s 
individual characteristics impact the way explanations are 
received. Coba [56] used a Choice-Based Methodology [57] and 
eye-tracking measurements to reveal that people’s various 
decision making styles  impact how they perceive hotel ratings— 
shown as  “collaborative explanations”. People of the “maximizer” 
type were more prone to insensitivity to sample variance and 
choice overload. 

Related to memory: Wang et al. [12] discussed 
representativeness and availability bias in the context of medical 
diagnosis, and proposed  showing prior probability and 
prototypes of outcomes to mitigate these.  

Biases leading to misusing the explanations can also be due to 
misunderstanding some elements of the language [17] that 
is commonly used in explanations such as  the logical operator 
“and” in rules [9], Boolean logic in counterfactuals [40], or 
confidence scores when it is ambiguous what they refer to [32].  

Related to position and context [17]. For example, Nourani et 
al. [11] discuss the primacy effect, a tendency to form an opinion 
based solely on the first piece of information received. They 
suggest controlling the type of predictions users observe when 
first interacting with the system.  

3.2.4.2 Explanation-triggered cognitive biases that lead to 
overreliance 

According to the mere exposure effect [17], the sheer presence 
of an explanation increases confidence in the machine's 
prediction. This effect was evidenced by [8], [9], [54], with lay 
users, rule-based and local feature importance explanations, by 
demonstrating that random or placebic explanations increase 
trust. Several papers examined user’s bias for completeness [9], 
[41]–[43], [54]. For example, Fürnkranz et al. [9] showed that 
users found longer explanations more plausible than shorter ones. 
This is consistent with [42] which showed that giving a fuller 
explanation in the context of  a medical diagnosis led to over-
reliance issues, with [54], which demonstrated that additional 
details including irrelevant ones improved user’s trust in AI 
predictions, and with [43] which contends that the additional 
details contained in visual explanations compared to textual ones 
increase users’ misattributed trust. Szymanski et al. [43] showed 
that lay users were more exposed to confirmation and 
completeness bias than machine learning experts when faced with 
visual explanations of a reading time prediction algorithm. These 
articles provide several avenues for addressing this problem, 
including by combining the use of textual and visual explanations 
[43] or by providing arguments against the machine’s suggestion 

[42]. Some mentioned the possibility that more complete 
explanations are more likely to contain elements that the user 
recognizes, thus contributing to the persuasive effect through the 
recognition bias [17]. Another bias studied in the corpus is the 
phenomenon called “illusion of explanatory depth,” coined by 
Koehler [58] and evidenced in the XAI literature by Chromik et al. 
[10] using local feature importance (SHAP [1]) explanations. They 
prompted users to self-explain so that they would realize that they 
knew less about the concept being explained than they had 
originally imagined. We can also perceive this effect in [52], [59] 
which mention “superficial” and “rush” understanding.  

3.2.4.3 Explanation-triggered cognitive biases that lead to under 
reliance 

Our corpus also contains articles discussing under reliance issues. 
These were manifested through various effects, such as “the 
escalation of commitment” [60], the “illusion of validity” 
[61] or  “perceived goal impediment” [59], which concerned 
mainly domain experts, and “negativity bias” [11], [17], [38], 
[40], [62]. Several works have highlighted the role of user 
expertise in under reliance problems. Domain experts have 
developed cognitive routes that enable them to make quick and 
accurate decisions in environments that are “regular” enough to 
be predictable [63]. Their intuition is therefore more sophisticated 
than a lay user’s “System 1”[15]. Simkute et al. [61] highlight 
Klein’s [64] results, indicating that experts make decisions 
intuitively, with little uncertainty, and rarely consider more than 
one option. While useful heuristics, these reasonings also make 
them more prone to belief perseverance [58] or algorithmic 
aversion [65], especially when faced with contradictions from the 
machine’s predictions [61]. In addition, user studies involving 
domain experts reproduce decision-making conditions that are 
representative of real-world situations—sometimes high-stakes 
and time-limited, therefore more stressful —which may explain 
the reluctance of experts to engage in explanations. Negativity 
bias, a tendency to pay more attention to negative features of the 
AI or AI explanations, was found to affect everyone including 
non-expert users. Nourani et al. [11] suggest controlling what 
types of predictions users see when first interacting with the 
system. For example, showing the weaknesses of the system early 
on will have a major influence on trust, as will showing negative 
outcomes early on, such as a malignant diagnosis.  

4 Discussion: A research agenda to address 
cognitive biases in XAI 

Based on the findings of the articles we reviewed, the methods 
they used to expose cognitive biases, and the mitigation strategies 
they outlined, we present below a discussion of research 
directions we believe should be pursued in future work to address 
cognitive biases in XAI.   

Clarify the “normal” vs. “problematic” cognitive biases. 
Which cognitive biases need to be mitigated? In this paper, we 
identified some cognitive biases as being neutral heuristics, i.e.  



 

 

“normal” ones, inherent to the process of explanations. Instead of 
mitigating those biases, some [13], [34] argue that they should be 
taken into account in the design of explanations, for example by 
providing explanations as social processes or by adopting 
contrastive explanations. However, there is a blurred line between 
biases XAI needs to adapt to and those that need to be mitigated. 
It goes back to the important question posed by Weld and Bansal 
[34]: “Should an explanation system exploit human limitations or 
seek to protect us from them?”. Lakkaraju et al. [66] argue that by 
exploiting certain human cognitive biases, such as preferences for  
relevant or familiar features, trust could be manipulated. 
Conversely, Miller argues explanations should be contrastive, 
simple and when applicable delivered in the form of a dialogue, 
i.e. interactive [13]. Clarifying which biases are normal and which 

are undesirable appears to be important for moving the XAI field 
forward. To that end, more empirical work on the benefits and 
drawbacks of incorporating cognitive constraints into explanation 
is needed. Specifically, future work could investigate on some 
currently puzzling results [23]. For instance, there has been a 
surge of interest in interactive explanations recently, responding 
to the call to design explanations that fit the social process of 
explanation [34]. However, concerns were expressed in [33] as 
interactive explanations were found to reinforce user's over 
reliance on AI suggestions. A possibility is that interactive 
explanations were more complex to interpret in [33]’s study, 
leading to information overload. More work is still needed on the 
correct calibration of such interactive explanations. We also found 
contradictory results between Zytek et al. [40] which found that 

Cognitive biases 
Examples of evidencing strategies (in 

user studies) Examples of mitigating strategies 
Ref. in 
corpus 

Caused, triggered, or enhanced by XAI leading to misapplying the explanation 
Related to causality: Narrative bias, 
Over-generalization, Causation vs. 
correlation, attention to 
demographic features 

Ask participants to describe explanations, 
analyze free text answers and verbalizations 
[52]. 

Incorporate human expertise into 
explanations [67]. 

[40], [52], 
[55], [67] 

Related to the integration of 
probabilities: Averaging bias, Base-
rate neglect, Conjunction fallacy, 
Disjunction fallacy, Insensitivity to 
sample size, Unit bias 

Measure the correlation between the user’s 
confidence and supporting evidence [9], [56]. 

Reminder of probability theory. 
Use frequencies instead of percentages. 
Show support as an absolute number [17]. 

[9], [17], [56] 

Related to memory: 
Representativeness, Availability 
bias 

Analyze reasoning process through free text 
questions and think-aloud protocols [12], [40]. 

Show prior probabilities of outcome and 
examples of decision outcome [12]. 

[9], [12], [17], 
[40], [52] 

Triggered by misunderstanding of 
language: Misunderstanding of the 
inverse, of 'and', Boolean logic, 
confidence scores 

Analyze free text responses [40], Clarify the 
meaning of language elements to only one 
group of participants [9]. 

Clearly communicate what the presented 
information means [42]. State only true 
statements for the presentation of Boolean 
elements, including by negating false ones 
[40] 

[9], [17], [40], 
[42] 

Triggered by position and context: 
Framing bias, Primacy effect, 
Anchoring bias 

Measure the perceived reasonableness of 
explanations and the performance of users at a 
task under different explanation framing 
conditions [11], [68]. 

Describe the uncertainty of both positive and 
negative outcomes [32].  
Control the kind of predictions users observe 
in the training phase [11].  

[11], [12], 
[17], [32], 
[34], [59], 
[68] 

Related to information overload 
Choice overload 

Measure the user's cognitive load using the 
NASA Task Load Index (NASA-TLX) [23], [52],  
Eye-tracking measurements (for choice 
overload) [56] 

Do not use too many explainability types 
[40]. 
Use user-centric approaches [59]. 

[40], [59], 
[61], [69] 

Caused, triggered, or enhanced by XAI leading to overreliance 
Completeness bias, Cognitive 
dissonance, Confirmation bias, 
Default bias, Illusion of explanatory 
depth, Mere exposure effect, Other 
automation bias, Recognition bias 

Observe user's degree of agreement with the AI 
and user's comments with vs. without 
explanations [48]. Study the correlation 
between explanation length and perceived 
plausibility [9]. 

Give arguments for non-predicted outcomes 
[12], [34], [42]. Delay showing the AI’s 
prediction and/or explanations [12], [23], 
[44], [54]. Use cognitive forcing functions 
and friction [44], [61], [69]. Include 
uncertainty estimates [12], [32], [42]. 

[8]–[10], [12], 
[17], [33], 
[35], [41]–
[43], [48], 
[52], [54], 
[56], [59], 
[60], [69] 

Caused, triggered, or enhanced by XAI leading to under reliance 
Escalation of commitment, Illusion 
of validity, Negativity bias, 
Familiarity bias, Perceived goal 
impediment, Redundancy aversion, 
Weak evidence effect 

Observe the relation between subjective 
confidence, subjective comprehension, and 
positive and negative AI outcomes [11].  
Ask participants to think aloud while they 
make decisions [12].  

Enable to actively explore the data [12], [61]. 
Use gamification and personalization [61]. 
Keep track of what has already been 
explained [13], [69]. Control the predictions 
users observe in the training phase [11]. 

[9], [11], [17], 
[38], [40], 
[44], [59]–
[62], [69] 

Table 2: Cognitive biases triggered or exacerbated by XAI and the context in which they were evidenced. 



 

example-based explanations for child welfare screening led to 
representativeness bias and Wang et al. [12] which presented 
prototypes of decision outcomes as a mitigation for the same bias. 
In addition, Lai and Tan [54] warned to be cautious about the 
“backfire effect” according to which “corrections of 
misperceptions may enhance people’s false beliefs” [70]. Kliegr et 
al. [17] also mentioned the possibility that different cognitive 
biases could have opposing effects, such as information bias 
(leading to overreliance) and ambiguity aversion (leading to under 
reliance), thus emphasizing the need to consider biases in their 
context and to put them in relation to the user’s knowledge.  
 
More normative work on assessments of XAI systems. As 
the foregoing discussion highlights, there needs to be not only 
more empirical research on bias, but also more theoretical and 
normative work to distinguish between processes that are truly 
biased, i.e., distorted and in need of modification, and those that 
are "normal." Such a distinction seems difficult to make without 
normative evaluations referring to the correctness of decisions 
and the inherent quality of the decision process for the users, 
including his or her level of participation. Work to identify the 
normative seriousness of various biases could help researchers 
and XAI designers decide whether, how and in which priority 
different biases need to be addressed, as well as make relevant 
tradeoffs more explicit. 
 
Complete frameworks of stakeholders in XAI. To meet the 
cognitive needs of the user, the idea of tailoring explanations to 
the task at hand, to the user's goals, knowledge [33], [35], [43], 
[56] and her specific needs (such as exploring the raw data for 
experts [12], [61]) currently fails to take biases into account. 
Future work could address how to complete the detailed 
taxonomies of users’ expertise and their role in XAI [71]–[73] by 
considering the cognitive biases they may be prone to. 
  
Improve the perception of the user's reactions to XAI. 
Several authors have advocated that we need a better perception 
of social and emotional behavior of users to be able to correct 
errors in their reasoning and their mental models of the system 
[10], [35], [74]. As a first step towards this, we highlighted some 
methods to evidence biases in Table 2. Notably, what seems to be 
a good practice for controlling for the mere exposure effect is 
using placebic explanations or randomly generated explanations 
as a baseline [8], [11]. Then, cognitive load can be measured 
through the means of the TLX workload assessment method [23], 
[52], eye-tracking measurements [56] or through the number of 
cognitive chunks and a subjective measure encompassing the 
reading time, the self-reported load and memory performance 
(how well the user remembers the explanation) [39]. In addition, 
we frequently encountered the use of qualitative analyses in our 
review, such as think-aloud protocols [12], [23], [43], [59], useful 
as pre-studies but not generalizable (they involved from 12 to 20 
participants in our corpus), or the analysis of free text comments, 
which can be implemented more easily on a larger scale [40], [43], 
[69]. Further, the ability of XAI systems to capture users’ mental 

states could be complemented by a memory of these states and a 
memory of what has already been explained [13], [59].  
 
Evaluate XAI techniques with human attention, without 
human biases. We have outlined in section 3.2.4 a few cognitive 
biases that can skew evaluations of explainability approaches. 
However, solely relying on quantitative metrics for the evaluation 
of explanations could lead to overlooking essential considerations 
regarding the human user. To address this, Mohseni et al. [45] 
presented a promising evaluation methodology, without humans, 
but taking into account human attention. Leveraging human 
annotators, they developed human attention masks which can be 
used to evaluate model saliency explanations for image and text 
domains. Future research could continue in that line of work. 
Meanwhile, quantitative based experiments such as the sanity 
checks for saliency maps performed in [75] are equally important 
to criticize existing techniques [76].  
  
Work around explanations. Various work in our corpus 
mentioned the need to pay more attention to other interaction 
design choices [44], [77] beyond the choice of an explanation 
method. These include contextual information, training, timing, 
framing, and other specific strategies to mitigate cognitive biases. 
For example, Simkute et al. [61] suggested the use of gamification 
strategies in low-stakes environments to address the lack of 
motivation of some users, and the use of feedback and controls in 
high-stakes environments. Others stressed the need to clarify 
specific elements in the explanations. Bussone et al. [42] proposed 
presenting how the explanations were derived, which Dazelay 
[78] calls ‘meta-explanations’. [12], [44], [54] suggested to delay 
showing the AI’s prediction and/or explanations to decrease 
overreliance issues. Nourani et al. [11] recommended to control 
the type of predictions that users observe when learning to use 
the system, during the initial instructions and training phase. 
Finally, [44], [59] proposed cognitive forcing functions and 
friction-based strategies to address users’ lack of curiosity. 
Cognitive forcing functions consisted in making users wait for the 
explanations, updating them or asking for them. The friction 
function designed by Naiseh consisted in asking the user to 
confirm they did not want to review the explanation. All these 
strategies proved to be useful in decreasing user’s unjustified 
trust, though it decreased their satisfaction in the system.  
 
Give arguments against the prediction. The idea of explaining 
not only the AI's prediction but also alternative possibilities 
appeared in several papers [12], [34], [42] as a way to counter 
automation bias. Wang et al. recommended to support 
“premortem of decision outcomes”, a reasoning consisting in 
trying to disprove a hypothesis. Bussone et al. [42] highlighted 
comments from participants saying they wanted to see both 
positive and negative evidence for the suggested medical 
diagnosis. Finally, Bansal et al. [79] envisioned an AI that would 
play “a devil’s advocate role, explaining its doubts, even when it 
agrees with the human.” They proposed a prototype of such an 
explanation and found that while it was effective in informing the 
human that the AI might be wrong, it was not sufficient to reduce 



 

 

significantly errors related to overreliance. One of the main 
challenges is getting users to come up with their own solution 
when they are informed that the AI may be wrong. Additional 
work is still needed to find the right kind of interaction that could 
help users detect that the AI is wrong [79], but the direction seems 
promising, notably for two reasons. First, it reminds us of the 
adversarial structure of a judicial system where two parties (a 
defense attorney and a prosecutor) present opposing arguments. 
Implementing such “adversarial explanations” could increase 
societal trust in the AI-aided decision process. Second, a necessary 
condition for free will is the availability of alternative possibilities, 
or the ability to "choose otherwise” [80]. Therefore, showing 
alternative explanations to the decision-maker helps with 
sustaining her autonomy and accountability. 

Limitations 
Since our goal was to provide insight into how the XAI field has 
considered cognitive biases to date, we used a systematic search 
methodology. This allowed us to cover a broad sample of articles 
on XAI. However, it is possible that some articles did not use our 
general search terms on cognitive biases and focused on specific 
types of cognitive biases in XAI. Our paper augmentation is 
limited by potential biases in the authors' view of the XAI field. 
To continue this line of research on cognitive biases, future review 
work could focus on specific biases, such as “automation bias”. 
Evidently, our list of 53 cognitive biases cannot be considered as 
the finite list of biases affecting XAI systems, there are numerous 
others in the cognitive science literature which may be worth 
studying in the context of XAI. Moreover, it was quite difficult to 
assess the generalizability of the results presented in our corpus. 
To address this limitation, we tried to preserve the context in 
which these results were obtained—explainability technique, user 
type, and task type. However, it is possible that these results 
depend on more granular details. Finally, we leave it for future 
work to produce more interactive versions of a heuristic map such 
as the one we present, in a similar fashion as Suresh et al. [73]. 
This could facilitate the tracking of cognitive biases that have been 
highlighted in the XAI literature and the contexts in which they 
have been highlighted. 

Conclusion 
In this paper, we presented a systematic review of 37 papers—
drawn from a corpus of 285 papers—to investigate what kind of 
cognitive biases were identified in the presence of XAI systems. 
In addition, we carried out a qualitative analysis of these papers, 
providing a map of the different cognitive biases and revealing in 
which context they occur, for example with which XAI 
techniques, which type of users and AI-assisted task. Furthermore, 
our mapping reveals the different ways these biases affect XAI-
aided decisions: 1) cognitive biases affect how XAI methods are 
designed, 2) they can distort how XAI techniques are evaluated in 
user studies, 3) some cognitive biases can be successfully 
mitigated by XAI techniques, and, on the contrary, 4) some 
cognitive biases can be exacerbated by XAI techniques. Finally, we 

provide several directions for future work that pave the way for 
meeting users' cognitive needs, which is an important 
development towards a human-centered XAI. 
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Cognitive bias denomination Definition Ref. in the corpus 

Ambiguity aversion “The tendency to prefer known risks over unknown risks” [17] [17] 

Attention to abnormality “People mostly ask for explanations of events that they find unusual or abnormal” [13] [13], [34] 

Attention to confidence levels People need confidence levels to make better use of ML-assisted decision-making systems.  “Prospect Theory suggests that uncertainty (or risk) is 
not considered independently but together with the expected outcome” [32] 

[13], [32] 

Attention to demographic features Tendency to fixate on demographic features in explanations such as age and race.  [33] 

Attention to foil “Explanations are sought in response to particular counterfactual cases, which are termed foils. That is, people do not ask why event P happened, 
but rather why event P happened instead of some event Q.” [13] 

[13], [34], [35] 

Attention to intentionality and responsibility  People tend to focus on intentional actions rather than non-intentional ones to select an  event as a cause in a causal chain. Similarly, “an event 
considered more responsible for an outcome is likely to be judged as a better explanation than other causes.” [13], [34] 

Attention to necessity, sufficiency and 
robustness 

Events that are necessary, sufficient and robust to some changes are more likely to be selected as a cause. [13] 

Automation bias / overreliance The tendency to over rely on machine’s predictions.  [33], [42], [48], [54], 
[59], [79] 

Availability bias  The tendency to believe that examples and events that easily come to mind are more representative than is actually the case. [12], [17], [40] 

Averaging bias "Using the average of probabilities of two events for the estimation of the probability of a conjunction of the two events." [17] [17] 

Backfire effect “Corrections of misperceptions may enhance people’s false beliefs” [70] [54] 

Base-rate neglect "The tendency to underweight evidence provided by base rates."[17] [17] 

Change blindness “Humans inability to notice all of the changes in a presented medium.” [46], [81] [46] 

Choice overload The difficulty to make a choice when facing many choices for people of the type "mazimizer". As a consequence, they are less committed to their 
choices, display lower satisfaction with their choices. 

[56] 

Cognitive dissonance The tendency to agree with the AI's suggestions, while being aware to have a different opinion. [48] 

Completeness bias Longer explanations tend to lead more to overreliance than shorter ones. [9], [41]–[43], [54] 

Confirmation bias / hindsight bias "The tendency to seek supporting evidence for one’s current hypothesis." [17] [12], [17], [42], [43], 
[59], [60] 

Confusion of the inverse "The mistake of confusing the confidence of an implication A → B with its inverse B → A. "[17] [17] 

Conjunction fallacy Estimating the conjunction of two statements to be more probable than one of the two statements. [9], [17], [34] 

Default bias / Status quo bias "The tendency to favor the default option and thus the proposed suggestion" [60] [60] 

Disjunction fallacy "Judging the probability of an event as higher than the probability of a union of the event with another event."[17] [17] 

Escalation of commitment  "People stick to a choice they made despite understanding the logical implication that doing so might lead to undesirable consequences" [60] [60] 

Familiarity bias “Unfamiliar information might induce a reinforcement effect that causes users to avoid interacting with various content” [43] [43] 

Framing bias People decide on options based on whether they are presented with positive or negative connotations or whether they are presented after or before 
the AI recommendation. 

[17], [32], [68], [79] 

Homunculus bias People tend to attribute human traits to machines and therefore expect AI explanations to use the same conceptual framework used to explain 
human behaviors.  

[13], [34] 

Humans pay more attention to False Negatives 
to than to False Positives 

“Users pay less attention to FP explanation errors and in turn, are more critical for FN explanation errors.”[45] [45] 

Humans rate different-looking saliency 
techniques differently 

Human judgment ratings of explanations are biased toward visual appearance. [45] 

Illusion of Explanatory Depth People think they know how complex concepts work in much more depth than they actually do. [10], [52], [59] 

Illusion of validity "Unjustified sense of confidence and hence failure when evaluating different possibilities" [61] [61] 

Inherence bias “Humans tend to construct explanations based on accessible information about the inherent properties of a particular phenomenon instead of 
inaccessible information about extrinsic factors.” [36] 

[13], [36] 

Information overload “Providing too much information at once can result in reduced accuracy” [61] [39], [40], [59], [61] 

Insensitivity to sample size When both confidence and support are stated, confidence scores positively affects plausibility and support is largely ignored. [9], [17] 

Insensitivity to sample variance  “Users are primarily guided by the mean and the number of ratings, and to lesser degree by the variance and origin of a rating” [56] [56] 

Mere exposure effect The increase of trust in an AI suggestion following the mere exposure of an explanation.  [8], [17], [54] 

Misunderstanding of “and” “People interpret “and” differently than logical conjunction” [17] [9], [17] 

Misunderstanding of Boolean logic The ‘true’ and ‘false’ conditions are perceived as hard to interpret and non-intuitive. [40] 

Misunderstanding of confidence scores Not understanding what the confidence scores refer to. [42] 

Narration bias / Correlation vs. causation / 
Over-generalization 

People tend to make causal narratives about everything [40], [52], [55], [67]  

Negativity bias Users pay more attention to negative features in the AI or the AI explanations which may lead to eroding trust and pay more attention to negative 
outcomes. 

[11], [17], [38], [40], 
[62] 

Perceived goal impediment "People in highly critical decision-making environments are likely to be in a serious-minded state, where additional information might be prone 
to being perceived as a goal impediment." [59] 

[59] 

Pre-use algorithmic optimism Before using the XAI system, users had positive inferences about algorithmic capability, which disappeared after using it. [23] 

Preference for "broad" explanations People prefer broad explanations, that explain more observations. [13] 

Preference for more complete explanations People tend to prefer complete explanations over sound ones. Complete explanations help them form better mental models. [41] 

Preference for "simple" explanations People prefer simple explanations to complex ones. [13], [38]–[40] 

Preference for usability vs. performance User performance and preference on proxy tasks may not accurately predict their performance and preference on the actual decision-making tasks 
where their cognitive focus is elsewhere, and they can choose whether and how much to attend to the AI. 

[33], [43], [82] 

Primacy effect / Anchoring bias People quickly form opinions about something based on the first information we receive about it [11], [12], [17], [59] 

Recognition bias Recognizing information makes the user more likely to trust the explanation. [9], [17], [35], [43] 

Redundancy aversion Redundant information is another cause of skipping explanations, making users lose trust in the explanations [59] 

Reinforcement effect / Reiteration effect The increase of trust following repetition. [17] 

Representativeness bias the similarity of objects or events confuses people's thinking regarding the probability of an outcome [9], [12], [17], [40], [52] 

Tendency to believe persuasive claims 
unsupported by evidence 

Tendency to believe persuasive claims unsupported by evidence. [48] 

Unit bias “The tendency to give a similar weight to each unit rather than weigh it according to its size.” [17] [17] 

Weak evidence effect “Weak argument in favor of a statement can lead to decreased believability of the statement.” [17] [17], [9] 

Appendix 1: Lexicon of cognitive biases 



 

 

AI types 

Deep 
learning 
models  

Deep reinforcement learning [55]; RoBERTa [79]; Re-ID 
networks [36] ; BERT [54]; CNN VGG-19 [45]; deep 
neural network based on GoogleNet and cutset network 
[11] 

Shallow 
models 

LASSO regression [40]; GAM / sLM [39]; Decision trees, 
logistic regression, shallow (1- to 2-layer) neural 
network [62]; Random forest classifier [10], [48]; GAM 
and gradient boosted decision trees (LightGBM) [52]; 
SVM [33], [54] ; linear regression [23] ;Multi-label 
gradient boosted tree [12]; k-nearest neighbor and baged 
decision tree [41];  

Wizard 
of Oz 

[42], [44], [69] 

 

Explanation types  
Local feature 
importance 

Saliency map [55], [72]; word highlighting [23], 
[33], [54]; Other input-based interface [8], [11], 
[35], [83]; roBERTa+LIME [79]; sensitivity analysis 
MOEA/D [12] ; SHAP [10], [12], [52]; COGAM: 
"simplified" GAMs and sparse LM [39];  not 
specified [43]; list of contributing features  [40], 
[41], [69], [82]; GAM[52]; comprehensive and 
selective input list [42] 

Rule-based  not specified [17]; Apriori algorithm and top-down 
greedy hill-climbing algorithm [9]; manual 
deductive  explanation [82] 

Example-based social proof [35]; collaborative explanation[56]; 
manual inductive explanation [82]; not specified 
[40], [59]; MMD-critic [54]; nearest neighbours 
[41] 

Counterfactuals LORE [12]; interactive counterfactual [33], [40] ; 
not specified [35], [59] 

Natural 
language 
explanations 

expert-generated explanations [79]; automatic 
text-based justifications [36], [48], [60] 

Confidence 
estimates 

global [54], [68]; local [41], [42], [44], [79]; not 
specified [59] 

Global 
explanations 

distribution of values [40]; decision tree [41], [62]; 
output visualization [62] 

 

User types 
Domain expert [12], [40], [42], [59]–[61] 

Machine Learning 
Expert 

[43], [52] 

Lay user [9]–[11], [23], [33], [35], [35], [39], 
[41], [43], [45], [48], [54], [56], [61], 
[68], [69], [79], [82], [83] 

Researcher [55] 

 

 

 

 

Tasks and domains 
Artificial Sentiment analysis of book and beer reviews 

[79]; Prediction of fat content in a food image 
[44], [82]; Prediction of traffic accidents in a 
country, Prediction of quality of living in a 
city, Movie rating, Mushroom 
poisonous/edible prediction [9]; The Desert 
Survival Problem [68]; The Diner’s Dilemma 
game [83] 

Law & 
Regulation 

child welfare screening [40]; Identity 
recognition [36]; recidivism prediction [33] 

Business & 
Finance 

House price estimate [39]; credit scoring [10], 
[52] 

Education LSAT question answering [79] 

Leisure  chess playing [60]; Hotel rating [56]; Reading 
time prediction [43], music recommender 
[41] 

Healthcare Medical diagnosis  [12], [62]; Prediction of 
balance disorders [42]; Recommendation of a 
medical prescription [59], [69]; Symptom 
checkers [35] 

Others fake news detection [48]; Application to lose 
weight [8]; Deception detection in hotel 
reviews [54]; profession prediction [33]; 
Image recognition [45]; activity recognition 
in video (in cooking videos) [11]; emotional 
analysis [23] 
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