
The absorptive nature of the scattering coefficient in the stress-energy tensor
formalism for room acoustics

Jean-Dominique POLACK(1), Aidan MEACHAM(2), Roland BADEAU(3)

(1)Institut D’Alembert, Sorbonne Université, France, jean-dominique.polack@sorbonne-universite.fr
(2)Institut D’Alembert, Sorbonne Université, France, aidan@lam.jussieu.fr

(3)LTCI, TelecomParis, France, roland.badeau@telecom-paris.fr

ABSTRACT
In the stress-energy tensor formalism, the symmetry between absorption and scattering coefficients, as proven
by measurements combined with simulations, is counter-intuitive. By introducing the wall admittance, we
show that the scattering coefficient is partly created by the real part of the wall admittance combined with the
active intensity, that is, is partly due to absorption. However, it also depends on the imaginary part of the wall
admittance in combination with the reactive intensity, which confers it genuine scattering properties. In the case
of plane waves impinging on planar boundary, the admittance formalism shows that reactive intensity vanishes
in directions parallel to the wall; when the source is at finite distance from the wall, a residual reactive intensity
subsists. However, for curved boundaries, the velocity in directions parallel to the wall is no longer proportional
to the pressure, and scattering occurs.
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1 INTRODUCTION
The stress-energy tensor formalism, introduced into Acoustics by Morse and Ingard [1], was further developed
by Dujourdy et al. [2, 3] to generalize the diffusion equation formalism of Ollendorf and Picaut [4, 5]: instead
of a gradient type relationship between sound intensity and total energy, it introduces instead the conservation
equation for intensity. After integration on the cross-section, it yields both absorption and scattering on the
boundaries. Dujourdy et al. stressed the symmetrical role played by absorption and scattering coefficients, which
was confirmed by Meacham et al. [6]. The present papers aims at proving this symmetry and the absorbing
nature of the scattering coefficient.

2 THE BASIC EQUATIONS
Dujourdy et al. [2, 3], following [1], have shown that the wave equation can be extended by a set of conserva-
tion equations that reduces to the conservation of the stress-energy tensor T :

~∇ ·T = 0 (1)

with

T =


Ett Etx Ety Etz

Etx Exx Exy Exz

Ety Exy Eyy Eyz

Etz Exz Eyz Ezz

 (2)
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Figure 1. Relevant combinations of absorption and scattering coefficients leading to measured reverberation
times and spatial decays in a hallway (from [6]).

In terms of the velocity potential ψ , the elements of the stress-energy tensor are given by:

Ett = ρ

2 (
1
c2 |∂tψ|2 + |∂xψ|2 + |∂yψ|2 + |∂zψ|2)

Exx = ρ

2 (
1
c2 |∂tψ|2 + |∂xψ|2−|∂yψ|2−|∂zψ|2)

Eyy = ρ

2 (
1
c2 |∂tψ|2−|∂xψ|2 + |∂yψ|2−|∂zψ|2)

Ezz = ρ

2 (
1
c2 |∂tψ|2−|∂xψ|2−|∂yψ|2 + |∂zψ|2)

Etx = −ρ

c ℜ(∂tψ∂xψ∗) Exy = ρ ℜ(∂xψ∂yψ∗)

Ety = −ρ

c ℜ(∂tψ∂yψ∗) Exz = ρ ℜ(∂xψ∂zψ
∗)

Etz = −ρ

c ℜ(∂tψ∂zψ
∗) Eyz = ρ ℜ(∂yψ∂zψ

∗)

(3)

where ρ is the density of air and c the speed of sound.
For long enclosures, Dujourdy et al. [2] reduced the conservation of the stress-energy tensor (eq. 1) to the

telegraphers equation:
1
c2 ∂ttE−∂xxE +

A+D
λc

∂tE +
AD
λ 2 E = 0 (4)

where E is the total energy, λ is the mean free path of the enclosure, and A and D are respectively modified
absorption and scattering coefficients at the boundaries. A similar equation exists for flat spaces [3].

Eq. (4) is symmetrical with respect to the absorption and scattering coefficients, as was confirmed by
Meacham et al. [6] in Fig. 1, where the measured reverberation times and spatial decays correspond to narrow
stripes of values for A and D, which do not always overlap. Note the symmetry of the figure with respect to
absorption and diffraction coefficients.

3 WALL ADMITTANCE
Wall admittance introduces a relation between the normal derivative and the time derivative of the velocity
potential on the wall:

−∂nψ =
β

c
∂tψ =

1
cζ

∂tψ (5)

with ~n the exterior normal to the wall, ζ the reduced impedance of the wall, and β = 1
ζ

the reduced admittance.
Let us then consider a flat enclosure with vertical coordinate z. We can express the elements E·z of the stress-



Figure 2. Plane wave reflecting on flat boundary.

energy tensor, where · takes the values t, x, or y. We thus obtain on the "ceiling":

Etz = ρ

c2 ℜ(∂tψβ ∗∂tψ
∗) = ρ

c2 ℜ(β )|∂tψ|2

Exz = −ρ

c ℜ(∂xψβ ∗∂tψ
∗) = ℜ(β )Etx +ℑ(β )ℑ(ρ

c ∂xψ∂tψ
∗)

Eyz = −ρ

c ℜ(∂yψβ ∗∂tψ
∗) = ℜ(β )Ety +ℑ(β )ℑ(ρ

c ∂yψ∂tψ
∗)

(6)

and the same equations with opposite sign on the "floor".
Now, Etx and Ety are the components of the sound intensity in the x and y directions. The boundary

conditions for Exz and Eyz therefore involve not only the active intensity, but also the reactive intensity, which
corresponds to local recirculation of energy. For monochromatic waves, we can further consider the phase
angles φx and φy between the space derivatives of the velocity potential with respect to x and y respectively,
and its time derivative. The last two equations (6) then reduce to:

Exz = [ℜ(β )+ℑ(β ) tanφx]Etx

Eyz = [ℜ(β )+ℑ(β ) tanφy]Ety

(7)

and Ett to:

Ett = ρ

2 (
1
c2 [1+ |β |2] |∂tψ|2 + |∂xψ|2 + |∂yψ|2)

= [ ρ

2c2 (1+ sin2
θ + |β |2) |∂tψ|2

(8)

after introducing the angle of incidence θ of the wave
The absorption coefficient then takes the following expression:

α(θ) =
Etz

Ett
=

2ℜ(β )

1+ sin2
θ + |β |2

(9)

and the scattering coefficients Dx and Dy:

Dx = Exz
Etx

= [ℜ(β )+ℑ(β ) tanφx]

Dy =
Eyz
Ety

= [ℜ(β )+ℑ(β ) tanφy]
(10)

4 BOUNDARY CONDITIONS
4.1 Plane wave on flat boundary
For a plane wave impinging on a flat boundary z = 0 (Fig. 2), the velocity potential takes the following form:

ψ(t,r) = exp−i(ωt− kxx− kyy− kzz)+Rexp−i(ωt− kxx− kyy+ kzz) (11)



Figure 3. Source at finite distance from flat boundary; S is real source, and S’ virtual image source.

where R is the complex reflection coefficient on the boundary. Its derivatives in the neighbourhood of the
boundary are given by:

∂tψ =−iωψ =−iω exp−i(ωt− kxx− kyy) [exp ikzz+Rexp−ikzz]

∂xψ = ikxψ = ikx exp−i(ωt− kxx− kyy) [exp ikzz+Rexp−ikzz] =− kx
ω

∂tψ

∂yψ = ikyψ = iky exp−i(ωt− kxx− kyy) [exp ikzz+Rexp−ikzz] =−
ky
ω

∂tψ

∂zψ = ikz exp−i(ωt− kxx− kyy) [exp ikzz−Rexp−ikzz] =−β

c ∂tψ

(12)

As a consequence, on the boundary z = 0, the phase angles φx and φy are both equal to 0, and eqs. (10) reduce
to:

Dx = Dy = ℜ(β ) (13)

that is, the diffraction coefficient is purely created by absorption.

4.2 Source at finite distance from flat boundary
For a spherical wave impinging on a flat boundary (Fig. 3), the velocity potential takes a different form:

ψ(t,r) =
exp−i(ωt− kr)

4πr
+R

exp−i(ωt− kr′)
4πr′

(14)

where R still is the complex reflection coefficient on the boundary, r the distance to the real source S, and r′

the distance to the virtual image source S′ (see Fig. 3). The derivatives in the neighbourhood of the boundary
are now given by:

∂tψ =−iωψ =−iω exp−iωt
4π

[
exp ikr

r +R exp ikr′
r′

]
∂xψ = i exp−iωt

4π

[
kx

exp ikr
r

(
1+ i

kr

)
+Rk′x

exp ikr′
r′

(
1+ i

kr′
)]

∂yψ = i exp−iωt
4π

[
ky

exp ikr
r

(
1+ i

kr

)
+Rk′y

exp ikr′
r′

(
1+ i

kr′
)]

∂zψ = i exp−iωt
4π

[
kz

exp ikr
r

(
1+ i

kr

)
+Rk′z

exp ikr′
r′

(
1+ i

kr′
)]

(15)

where kx, ky and kz are the components of the incident wave number k along the three coordinates, and k′x, k′y,
and k′z those of the reflected wave number k′. At the boundary, r = r′, kx = k′x, ky = k′y, but k′z = −kz; and the



Figure 4. Reflection on curved boundary. Left: plane wave impinging; right: source at finite distance. S is real
source, and S’ virtual image source.

derivatives further reduce to:

∂tψ =−iω exp−i(ωt−kr)
4πr (1+R)

∂xψ = ikx
exp−i(ωt−kr)

4πr (1+R)
(
1+ i

kr

)
=− kx

ω

(
1+ i

kr

)
∂tψ

∂yψ = iky
exp−i(ωt−kr)

4πr (1+R)
(
1+ i

kr

)
=− ky

ω

(
1+ i

kr

)
∂tψ

∂zψ = ikz
exp−i(ωt−kr)

4πr (1−R)
(
1+ i

kr

)
=−β

c ∂tψ

(16)

As a consequence, on the boundary, the phase angles φx and φy are both equal to arctan 1
kr , and eqs. (10) reduce

to:

Dx = Dy = ℜ(β )+
ℑ(β )

kr
(17)

The imaginary part of the admittance contributes to the diffraction coefficient.

4.3 Curved boundary
In the case of a curved boundary, the real and virtual sources are not located at the same distance from the
boundary (Fig. 4). As a consequence, eqs. (15) are still valid in the vicinity of the boundary, provided that x, y
and z are now considered as local coordinates at the boundary, the two first ones being parallel to the boundary
and the last one perpendicular to it. However, they do not simplify into eq. (16) at the boundary, even though
kx = k′x, ky = k′y, and k′z =−kz, because r′ 6= r.

On the boundary, we now obtain from eqs. (15):

∂xψ =− kx
ω

(
1+ i

exp ikr
kr2 +R exp ikr′

kr′2
exp ikr

r +R exp ikr′
r′

)
∂tψ

∂yψ =− ky
ω

(
1+ i

exp ikr
kr2 +R exp ikr′

kr′2
exp ikr

r +R exp ikr′
r′

)
∂tψ

∂zψ =− kz
ω

( [
exp ikr

r −R exp ikr′
r′

]
+i
[

exp ikr
kr2 −R exp ikr′

kr′2

]
exp ikr

r +R exp ikr′
r′

)
∂tψ =−β

c ∂tψ

(18)

where [
exp ikr

kr2 +R exp ikr′

kr′2

]
[

exp ikr
r +R exp ikr′

r′

] =
[

1
kr2 +

R′
kr′2

]
[

1
r +

R′
r′

] (19)



with R′ = Rexp ik(r′− r). We then obtain:

tanφx = tanφy =
1
k

1
r3 +

( 1
r +

1
r′
)

ℜ(R′)
rr′ + |R

′|2
r′3

1
r2 +

2ℜ(R′)
rr′ + |R

′|2
r′2 +

( 1
r −

1
r′
)

ℑ(R′)
krr′

(20)

As a consequence, the phase angles φx and φy are position dependent through the modified reflection coefficient
R′. No simple equation subsists for eqs. (10) to reduce to.

Note that, in the case of a plane wave incident on a curved boundary (left pane of Fig. 4), eq. (20) reduce
to:

tanφx = tanφy =
1

kr′2
ℜ(R′)+ |R

′|2
r′

1+ 2ℜ(R′)
r′ + |R

′|2
r′2 −

ℑ(R′)
kr′2

(21)

5 DISCUSSION
5.1 Absorption coefficient
The form for the absorption coefficient given by eq. (9) does not reduces to the form given by Morse and
Ingard [1] and introduced in acoustics by Paris [7]. But it is similar to an expression given by Bosquet [8],
who further explains that absorption coefficient strongly depends on the weighting function, that is, the statistics
one chooses for computing the mean absorption coefficient. In the present case, the obvious choice is the so-
called star-type statistics introduced by London [9], that is, taking the mean value of the equation Etz = αEtt :∫ π

2

0
Etz sinθdθ = α

∗
∫ π

2

0
Ett sinθdθ (22)

One simply obtains:

α
∗ =

2ℜ(β )

1+ 2
3 + |β |2

(23)

which is the value of α(θ) taken for θ = 55o, an angle that has repeatedly appeared since 1953 as the incidence
angle that represents the mean absorption [8, 10, 11]. Indeed, sin2 55o = 0.67≈ 2

3 .
Simple calculation shows that the absorption coefficients given by eq. (9) and (23) take values between 0

and a maximum which always is smaller than 1, except at normal incidence (θ = 0) for eq. (9).

5.2 Scattering coefficients
The scattering coefficients given by eq. (10) are independent of the incidence angle θ , except through the
reflection coefficient in the expression of tanφx and tanφy for curved boundaries. However, the real part of
the wall admittance contributes to the scattering coefficients. In other words, absorption on the wall induces
scattering. This is a novel result.

Also novel is the observation that scattering coefficients are not bounded: they can take any value between
−∞ and +∞, as is easily seen from eq. (10).

Traditionally, scattering is considered as the result of two mechanisms [12]: finite dimensions of reflecting
surfaces; and roughness of the reflecting surfaces. There is no doubt from Sect. 4.3 that the second term of eq.
(10) corresponds to scattering by surface roughness, since it is driven by the finite distance from the surface
to the image source. However, this term subsists for sources located at finite distances from a flat reflecting
surface (see Sect. 4.2), as long as its admittance admits an imaginary part. But roughness is usually associated
with locally varying imaginary parts of the admittance, which is not necessary here to induce scattering.

We therefore suspect that the mechanism described in Sects. 4 does not correspond to traditional scattering,
but to a different effect, because there is no redirection of the acoustical intensity at the boundaries, just a
reduction of it by friction on the walls. In other words, total energy and acoustical intensity can be considered
as two coupled systems that each follow its own conservation equation with some exchange between the two
systems. As is well known from such coupled systems, the less damped system drives the reverberation, as
shown in Fig. 1.



As a consequence, the scattering coefficient D is ill-named. A better designation would be friction coeffi-
cient. But we stick to usage and keep the designation "scattering coefficient".

6 CONCLUSIONS
Starting with the precedent papers of Dujourdy et al. [2, 3] that have shown that integrating the stress-energy
tensor in a disproportionate enclosure and taking into account the boundary conditions leads to "loss terms" that
correspond to absorption and scattering, we expressed the elements of the stress-energy tensor with the help of
the wall admittance relation between normal derivative and time derivative of the velocity potential on the wall.

As expected, the absorption coefficients are proportional to the real part of the wall admittance. However,
they also depend on the angle of incidence of the wave, leading to an expression of the absorption coefficient
eq. (23) which has been signaled in the literature, for example by Bosquet [8], yet is not very usual; and to
scattering coefficients additively involving the real and imaginary parts of the wall admittance, as seen in eq.
(10), proving the absorptive nature of the scattering coefficient in the stress-energy tensor formalism.
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