FVTД simulation of the acoustics of the Phonocamptic Cave in Noyon
Hugo Duval, Antoine Thomas, Aidan Meacham, Roland Badeau,
Jean-Christophe Valière, Jean-Dominique Polack

To cite this version:
Hugo Duval, Antoine Thomas, Aidan Meacham, Roland Badeau, Jean-Christophe Valière, et al.. FVTД simulation of the acoustics of the Phonocamptic Cave in Noyon. The Acoustics of Ancient Theatres, Jul 2022, Verona, Italy. hal-03670586

HAL Id: hal-03670586
https://telecom-paris.hal.science/hal-03670586
Submitted on 17 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
FVTDb simulation of the acoustics of the Phonocamptic Cave in Noyon

Hugo Duval1; Antoine Thomas2; Aidan Meacham3; Roland Badeau4; Jean-Christophe Valière5; Jean-Dominique Polack6

1AIDA Acoustique, France, hugo.duval@aida-acoustique.com
2CINEA, France, a.thomas@cinea.fr
3Sorbonne Université, Institut d’Alembert, CNRS UMR 7190, France, aidan@lam.jussieu.fr
4LTCI, Télécom Paris, Institut Polytechnique de Paris, France, roland.badeau@telecom-paris.fr
5Université de Poitiers, Institut PPRIME, CNRS UPR3346, France, jean.christophe.valiere@univ-poitiers.fr
6Sorbonne Université, Institut d’Alembert, CNRS UMR 7190, France, jean-dominique.polack@sorbonne-universite.fr

ABSTRACT

Starting from new measurements of the acoustical pots and room geometry in the phonocamptic cave at the Cathedral of Noyon, a numerical study was undertaken to understand the acoustical effects at the boundaries, and to provide an auralization of the space. An implementation of the finite volume time domain (FVTD) method was used to model the cave, including fitting the impedance presented by the acoustical pots on certain boundaries. The individual impedances of the pots were estimated from impulse responses collected pot-by-pot and parameterized in terms of a Helmholtz resonator model. Then, using the electroacoustic analogy, the sum effect of the pots was modeled as an equivalent spatial distribution in the FVTD boundary conditions. Additionally, the space was discretized with an unstructured mesh in order to capture the complex geometry, minimize dispersion error, and to check the accuracy of the FVTD implementation.

1. INTRODUCTION

The phonocamptic cave (or caveau phonocamptique) at the Cathedral of Noyon is a unique acoustic location, studied for its use of acoustical pots. While acoustical pots have been found in many ancient churches, the phonocamptic cave in Noyon has unique characteristics, as 64 pots are embedded in a room below the ground floor, under the cathedral’s chorus, as opposed to being placed in the high parts of the church’s walls, which is the case for most churches.

In many cases, it is believed that the introduction of pots into existing churches was an acoustical intervention intended to amplify the voices of singers, either for aesthetic or economic reasons \cite{1}. This belief may have been based on the common observation that singing into a pot at a particular pitch, thus exciting its resonant frequency, can result in the pot “singing back” at the user. While we understand now that passive terminations cannot amplify sound in large spaces, the practical effect of these resonators in the phonocamptic cave is to increase resonant frequencies, so that the pots have a meaningful effect on the perceived acoustics of a space \cite{2}.

In this paper, we expand upon previous acoustical analyses of this space with new characterizations of individual pots and their collective boundary impedance, and integrate these findings into a numerical acoustical model intended to provide a basis for future studies of the space.

2. BACKGROUND

2.1 Previous acoustical studies

Setting aside historical analysis in the larger context of acoustical pot installations, the cave has been the subject of previous studies that have aimed to characterize the space acoustically as well as ascertain the practical effect the pots induce on a group of singers \cite{3}.

This study collected measurements of the frequency-dependent reverberation time within the space, with pots open and closed, and at a variety of locations, serving as a ground truth for the overall acoustic behavior. This confirmed the impact of the pots within the cave itself,
especially within the regions nearest particular groups of pots.

The study concluded with a performance within the space and a perceptual questionnaire whose results suggested an improvement in the acoustics when transitioning from closed to open pots, ultimately validating the cave’s designers’ choices.

Figure 2: An example of an accurate mapping of one of the phonocamptic cave walls with the acoustical pots’ positions.

2.2 Numerical models

In this study, we utilize two numerical models, the first being a characterization of the impedance of the acoustical pots (and other boundary surfaces of the cave), and the second a finite volume time domain (FVTD) model of acoustical wave motion within the space. Each of these individual models was the subject of a Master’s internship undertaken by the primary authors at the Institut Jean le Rond d’Alembert, Sorbonne Université, in collaboration with the Institut PPRIME, Université de Poitiers [4, 5]. The goal of the study in combination was to enable virtual auralization of the space and confirmation of the modal effects detected in the previous analysis of the space. In each case, the models utilized are well-known, but the nature of the space as well as the challenge of matching specific geometry and materials introduce new views onto the typical usage of each technique.

3. ACOUSTICAL POT MODEL

In this study, the first investigation was modeling the acoustical effects of the pots in the cave. In [1], the approximate resonant frequency of the pots was determined by clapping a hand over the mouth of each resonator and then singing into the pot to confirm the pitch. More recent measurements, both acoustic and physical, have enabled a more precise characterization of the individual pots in order to better model their combined effect [2, 3].

3.1 Measurements

Impulse responses of example pots on the North face of the cave were collected in order to understand the relationship of pot size to acoustical impedance using white noise as an excitation source. Additionally, the pot dimensions were measured with a laser rangefinder. In each case, the spectrum of the impulse response was used to find the width and peak of the resonant frequency, and the decay of the response was used to estimate the absorption of the pot [2, 3].

3.2 Acoustical Model

From these measurements, the impedance of a given pot could be calculated using the example of a Helmholtz resonator as the model to fit. For each measured pot, an RLC circuit describing the damped oscillation of the air in and out of the opening could be defined using an electroacoustic analogy.

For a given RLC circuit, the characteristic differential equation is

$$L\ddot{u} + R\dot{u} + \frac{1}{C}u = 0,$$

for a given inductance L, resistance R, and capacitance C. Similarly, the pots’ resistance can be found using the system’s damping ratio ζ, stiffness k and mass m. The equivalent electrical inductance of a resonator is equal to the mass of air oscillating in its neck, and its equivalent capacitance is the compliance of the spring-mass system.

Thus, with

$$R = 2\zeta\sqrt{km},$$

$$L = m,$$

$$C = \frac{1}{k},$$

we can write the characteristic damped oscillator differential equation

$$\ddot{x} + 2\zeta\omega_0\dot{x} + \omega_0^2x = 0.$$

Calculating the coefficients for a given pot was performed by matching the response of this idealized model to the aforementioned resonant frequencies and decays. Then, in aggregate, the impedance boundary conditions for various surfaces within the cave could be estimated by creating an equivalent spatial distribution of the averaged impedances of the pots. Additionally, from this data, the relationship between the opening diameter of the pots and their absorption as well as their resonant frequency and absorption could be estimated and compared with the theoretical model.

4. FVTD SIMULATION

A second investigation was undertaken to integrate the previously calculated impedance boundary conditions into a FVTD simulation of the space. The model for the approach is detailed in [6], but we give a brief overview here to explain the method, the main goal of which is to produce an energy-stable simulation with arbitrary impedances on the boundaries.
Beginning from a common model of 3-dimensional wave motion in room acoustics, the linearized Navier Stokes equations, which we notate as

\[\frac{1}{c^2} \partial_t \psi - \Delta \psi = 0, \]

where \(\psi \), the velocity potential of the field, is defined in terms of the particle velocity vector \(\mathbf{v} \) and the sound pressure \(p = \rho \partial_t \psi \), where \(\nabla \) is the gradient operator, \(\Delta \) the Laplacian operator, \(\rho \) the air density, \(c \) the speed of sound, and the first and second partial derivatives according to coordinate \(\iota \) are notated as \(\partial_{\iota} \) and \(\partial_{\iota j} \), respectively, application of Gauss’ theorem demonstrates that any change in the energy stored in the acoustic field (that is, in the wave motion of the air as expressed by its particle velocity and pressure) must be balanced with an equivalent change in energy at the domain boundaries.

More specifically, at the boundary, we expect the energy stored and dissipated to depend on the pressure and normal velocity incident on a particular element of the surface. Bilbao et al. utilize a parallel structure of one-port circuits to characterize the impedance relationship between the pressure and incident velocity, which is given as

\[\hat{v}_{\text{inc}}(\mathbf{x}, s) = Y \hat{p}(\mathbf{x}, s), \]
in the Laplace domain (with \(s \) as the transform variable) and where the impedance \(Y \) is given by

\[Y(\mathbf{x}, s) = \sum_{m=1}^{M} \frac{s}{L^m(\mathbf{x}) s^2 + R^m(\mathbf{x}) s + \frac{1}{C^m(\mathbf{x})}}. \]

This is a convenient representation as it applies to the acoustical pots, as the coefficients representing the pots in the Helmholtz resonator formalism may be directly translated into terms in the circuit model by means of electromechanical analogy.

While we do not cover the specifics of the temporal and spatial discretization here for brevity, the FVTD approach results in a two-step update equation for the velocity potential \(\psi \) given by

\[\delta_+ \delta_- \psi_j + \frac{c^2}{v_t} \sum_{k=1}^{N} \frac{\beta_{jk}s}{h_{jk}} (\psi_j - \psi_k) \]
\[+ \frac{c^2}{v_t} \sum_{l=1}^{N_k} \gamma_{jl} s \psi_l = 0, \]

for a collection of \(N \) cells, each of which with volume \(V \), intercellular distances to each of its neighbors \(h \), and intercellular or cell-boundary surface areas \(S \); where \(\delta_+ \) and \(\delta_- \) are forward and backward temporal difference operators, respectively, \(\beta \) and \(\gamma \) are indicator functions selecting only neighboring cells or boundaries (as would be the case with a typical finite difference stencil), and \(v_t \) is the velocity incident upon a given boundary, which must be computed according to the local reactivity impedance boundary conditions for that face. Our implementation of this scheme is available online under a permissive license [7].

\[\text{PROCEEDINGS of the 2nd Symposium: The Acoustics of Ancient Theatres} \]
\[6-8 July 2022 Verona, Italy \]
4.2 Simulation parameters

For this study, the highest frequency simulated was 397 Hz. The mesh was ensured to only contain elements that satisfied the stability criteria for the FVTD scheme,

\[
\frac{1}{V_j} \sum_{k=1}^{N} \beta_{jk} c^2 T_k^2 S_{jk} \leq 1. \tag{8}
\]

A spatial and temporal Gaussian was used as initial conditions to excite the system. Its position is defined using the loudspeaker position in figure 3.

For boundary conditions, all walls were defined as either purely resistive, or using the model of acoustical pots. The resistive model was based on Sabine’s formula, and the coefficients were computed according to the reverberation times with blocked pots given in [3]. The computed \(T_{60}\) was 0.58 seconds, the room volume was 28m\(^3\), and the total surface area was 65m\(^2\). The resulting absorption was applied to all of the non-pot surfaces.

As the highest frequency simulated was quite low, the mesh used in this study has been kept coarse. The mesh size, as defined in \textit{gmsh}, was approximately 40cm. Thus, each zone of 12 pots were simplified into on square zone whose each side is 36.47cm. As a result, instead of 64 pots of 8.4cm of average diameter, the model has 6 square zones keeping the same total area, but with the equivalent impedance of the given group of pots.

Figure 4: Wireframe of the cave geometry.

Figure 5: Resulting nonuniform tetrahedral mesh.

5. RESULTS

5.1 Acoustical Pots

After computing the RLC coefficients for each pot, they were compared with the physical dimensions and measured resonances to confirm the validity of the model.

![Correlation - Diameter vs Damping](image)

![Correlation - Resonant Frequency vs Damping](image)
Figure 7: Demonstration of measured pots’ exponential relationship between resonant frequency and damping ratio.

As can be seen, though there was some difference in the shape of the pots compared to the idealized cylindrical case, in both comparisons the expected exponential relationships were observed. This suggests that the model is well suited to modeling the pots and the computed coefficients could be used in the acoustic simulation.

5.2 FVTD Simulation

Simulations were performed with the above parameters to compare with the known acoustical parameters of the space as well as better understand the impact of the tetrahedral meshing. The temporal evolution of a Gaussian impulse from the default loudspeaker position is shown in Figure 8.

Figure 8: Time evolution of simulated pressure field from initial impulse to diffuse field, view from above the cave. Top: after 1ms; middle: after 8ms; bottom: after 1.5s.

One important observation with respect to the FVTD approach is that all of the energy stored in the internal acoustic fields as well as in the boundary impedances (in this case, specifically the capacitance of the pots) may be computed and shown to be conservative. We observed this to be the case with the unstructured mesh simulation, to machine precision, confirming that the stability criteria was fulfilled and accounting for all acoustic energy within the space.

While the initial analysis of the simulations suggests that the overall room characteristics (at least for the simulated frequency bands) are matched, further work is required to confirm whether the equivalent spatial distribution of pot impedances reproduces the modal behavior described in [3]. Additionally, due to the low frequency simulated, it is difficult to auralize the results, making it challenging to assess the similarity by ear. Though currently limited to models of a particular memory footprint due to design decisions made for pedagogical reasons in the current simulation code, in the future, finer meshes and higher sample rates should make simulation of the wideband acoustics of the space possible.

6. CONCLUSIONS

In this paper, we have described an approach to modeling an acoustically and architecturally unique space with a combination of acoustic models for boundary conditions and acoustic wave motion. By using the model of a Helmholtz resonator to match physical pots embedded in the walls of the phonocamptic cave at the Cathedral of Noyon and computing the equivalent electroacoustic analogy impedance, the effect of these unique absorbers could be implemented in a wave-based acoustic simulation, well-suited for the expected modal effects in the range of frequencies under study.

References