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ABSTRACT

This paper describes a blind source separation method for multichan-
nel audio signals, called NF-FastMNMF, based on the integration of
the normalizing flow (NF) into the multichannel nonnegative matrix
factorization with jointly-diagonalizable spatial covariance matrices,
a.k.a. FastMNMF. Whereas the NF of flow-based independent vector
analysis, called NF-IVA, acts as the demixing matrices to transform
an M -channel mixture into M independent sources, the NF of NF-
FastMNMF acts as the diagonalization matrices to transform an M -
channel mixture into a spatially-independent M -channel mixture rep-
resented as a weighted sum ofN source images. This diagonalization
enables the NF, which has been used only for determined separation
because of its bijective nature, to be applicable to non-determined
separation. NF-FastMNMF has time-varying diagonalization matri-
ces that are potentially better at handling dynamical data variation
than the time-invariant ones in FastMNMF. To have an NF with richer
expression capability, the dimension-wise scalings using diagonal ma-
trices originally used in NF-IVA are replaced with linear transforma-
tions using upper triangular matrices; in both cases, the diagonal and
upper triangular matrices are estimated by neural networks. The eval-
uation shows that NF-FastMNMF performs well for both determined
and non-determined separations of multiple speech utterances by sta-
tionary or non-stationary speakers from a noisy reverberant mixture.

Index Terms— Blind source separation, normalizing flow, joint
diagonalization, multichannel nonnegative matrix factorization

1. INTRODUCTION

Real recordings are always noisy to some extent because they capture
not only the sounds of target sources, but also that of interference
sources. In addition, multichannel recordings also pick up spatial
information, which is useful for separating the target sources from the
noisy mixtures for downstream applications, e.g., automatic speech
recognition and human listening [1,2]. Besides supervised separation
methods based on deep neural networks (DNNs) [3–5] that have been
shown to work well, there is an increasing interest in DNN-based
methods for semi-supervised separation and unsupervised separation,
a.k.a. blind source separation (BSS), because of their potential in
handling unseen sources in unknown environments [6–10].

Source separation techniques typically work in the short-time
Fourier transform (STFT) domain [11]. Independent vector analysis
(IVA) [12, 13] is a classical BSS technique for determined separation
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case that decomposes M mixture STFT spectra (obtained from an
M -channel recording) into spectra of N sources (N =M ) using
time-invariant demixing matrices. By contrast, NF-IVA [8] uses time-
varying demixing matrices represented by a normalizing flow (NF)
[14]. It includes multilayer perceptrons (MLPs) that are optimized
from scratch at run-time with backpropagation (BP) [15] given only
the observed mixture. Akin to other determined separation methods,
NF-IVA is not applicable to an underdetermined case (N>M ), but
applicable to an overdetermined case (N<M ) by selectingN among
M estimated sources based on, e.g., the highest average power [16].

Conversely, separation methods based on the multichannel Gaus-
sian model [17] are applicable to both determined and non-determined
cases. The model assumes that an M -channel mixture is composed
ofM -channel source images. Each image follows a multivariate com-
plex-valued circularly-symmetric Gaussian distribution, whose co-
variance matrix is decomposed into power spectral density (PSD) and
spatial covariance matrix (SCM). Multichannel NMF (MNMF) [18]
uses nonnegative matrix factorization (NMF) to model the PSD [19]
and full-rank unconstrained SCMs, which are prone to converge to
bad local optima. FastMNMF [20, 21] effectively handles this issue
by using jointly-diagonalizable full-rank or rank-constrained SCMs.

This paper proposes NF-FastMNMF, a flow-based BSS method
that integrates an NF into FastMNMF. The time-varying demixing
in NF-IVA made possible by NF has been shown to outperform the
time-invariant one [8]. We expect that time-varying transform by NF
would also benefit other separation methods, but the NF has been
limited to determined separation due to its bijective nature. This
paper demonstrates that the joint-diagonalization technique in Fast-
MNMF [21] enables the NF to be applicable to non-determined sepa-
ration by using the NF to represent the so-called diagonalization ma-
trices for transforming an M -dimensional observation vector into an
M -dimensional latent vector, representing the decorrelated mixture.
The NF allows us to have time-varying diagonalization transforms, in-
stead of time-invariant ones as in FastMNMF [21], that are expected
to better cope with possible data variation in a mixture even for sta-
tionary sources, e.g., due to the dynamic source activities and inten-
sity changes among different target and interference sources, as sug-
gested in [8]. To increase the model’s expressiveness, we also include
neural networks estimating upper triangular transformation matrices,
rather than diagonal ones as in the original NF-IVA. Our evaluation
shows that NF-FastMNMF performs comparatively well for both de-
termined and non-determined separation of 3 speech utterances by sta-
tionary or non-stationary speakers from a noisy reverberant mixture.

The rest of this paper is organized as follows. Section II describes
NF, NF-IVA, and FastMNMF. Section III introduces NF-FastMNMF.
Section IV presents the evaluation. Section V concludes this paper.



2. BACKGROUND

Let xmft ∈ C be the STFT coefficient of the observed mixture
and xnmft ∈ C be that of the source image n ∈ [1, N ] at channel
m ∈ [1,M ], frequency f ∈ [1, F ], and time t ∈ [1, T ], where F
is the number of frequency bins and T is that of time frames. We
assume that the source images ∀n,xnft , [xn1ft, . . . , xnMft]

T ∈
CM sum to the observed mixture xft , [x1ft, . . . , xMft]

T ∈ CM :
xft=

∑N
n=1 xnft, where T is the transposition. Given the observed

mixture X , {xft|∀f,∀t}, we aim to estimate the source images
∀n,Xn,{xnft|∀f,∀t}. Additionally, let yft be a transformation
of the mixture xft in general. Its interpretations are varied across dif-
ferent methods, as described in the following sections.

2.1. Normalizing Flow and Determined BSS

NF-IVA [8] is a determined BSS method based on the normalizing
flow (NF) [14]. NF is a technique that can represent a random vec-
tor xft∈CM having a complex probability distribution in terms of
another vector yft∈CM having a simple distribution using parame-
terized bijective functions (referred to as flow steps) Fk, k∈ [1,K]:

xft

F1−←−−−−−−−−→−
F−1

1

h1,ft

F2−←−−−−−−−−→−
F−1

2

· · ·
FK−1
−←−−−−−−−−−−→−
F−1

K−1

hK−1,ft

FK−←−−−−−−−−→−
F−1

K

yft.

A flow step Fk, which may include nonlinear functions, computes
an intermediate vector hk,ft=Fk(hk−1,ft), where h0,ft,xft and
hK,ft,yft are the NF’s input and output vectors, respectively. The
parameters of all Fk can be optimized by maximizing the mixture
log-likelihood (LL) function ln p(X).

NF-IVA obtains the source vector yft from a mixture vector xft

using L flow blocks composed of K=2L+1 flow steps:
yft = WK,f WK−1,ftWK−2,f︸ ︷︷ ︸

theL-th flow block

. . .W2,ftW1,f︸ ︷︷ ︸
the first flow block

xft. (1)

Let k′ ∈ Kod be the odd indices and k′′ ∈ Kev be the even ones.
Wk′,f ∈ CM×M is a time-invariant projection matrix. Wk′′,ft ,
Diag(sk′′,ft) is a time-varying diagonal matrix whose diagonal vec-
tor sk′′,ft is given by a couple of MLPs Ωupper

k′′,f ,Ω
lower
k′′,f (see Section

3.1). This coupling mechanism allows NF to be invertible [22]. When
no flow block is used, NF-IVA reduces to IVA: yft=WK,fxft [8].
The estimated source image x̂nft can be obtained by the projection-
back [23] given {yft}m, where {·}m is the m-th element of a vector.

In this paper, we consider an NF-IVA variant with a volume-
preserving (VP) constraint, that has been shown to outperform the
vanilla NF-IVA [8]. This variant orthogonalizes all Wk′,f before
performing Eq. (1) by J iterations of

W
(j+1)

k′,f = Wj
k′,f

(
I +

1

2

(
I−

(
Wj

k′,f

)H
Wj

k′,f

))
, (2)

where j is the iteration index, I is the identity matrix, H is the con-
jugate transposition, and Wj=0

k′,f , Wk′,f‖WH
k′,fWk′,f‖−1

1 with
‖ · ‖1 is the 1-norm to ensure convergence [24–26]. Assuming that
each source follows a circularly-symmetric Gaussian distribution
ynt ∼ NC(0, σ

2
ntI), the parameters Ψ , {Wk′,f ,Ω

upper
k′′,f ,Ω

lower
k′′,f |

∀k′, ∀k′′, ∀f} are optimized to maximize

ln p(X) = ln p(Y) + T
∑

k′∈Kod

F∑
f=1

ln |Wk′,f |2

+
∑

k′′∈Kev

M,F,T∑
m,f,t=1

ln
∣∣{Wk′′,ft}mm

∣∣2 +∑
k′′∈Kev

F,T∑
f,t=1

LVP-reg
k′′,ft, (3)

ln p(Y) = −
N,T∑
n,t=1

(
‖ynt‖2F
σ2
nt

+ F lnσ2
nt

)
+ const., (4)

where {·}mn is the (m,n)-th element of a matrix, LVP-reg
k′′,ft ,(∑M

m=1 ln |{Wk′′,ft}mm|
)2 is the VP-oriented regularization term,

| · | is the determinant of a matrix or the absolute value of a scalar,
‖ · ‖F returns the Frobenius norm, and the variance is computed as
σ2
nt = ‖ynt‖2F/F [27]. This optimization is performed by gradient

descent minimizing LNF-IVA ,− ln p(X).

2.2. FastMNMF

One high-performing general BSS method that is not limited to the
determined case is FastMNMF [21]. It assumes that each source im-
age xnft follows an M -variate complex-valued circularly-symmetric
Gaussian distribution, whose covariance matrix is diagonalizable by
a time-invariant diagonalization matrix shared among all sources
Qf ∈CM×M :

xnft ∼ NM
C

(
0, λnftQ

−1
f Diag(g̃n)Q

−H
f

)
, (5)

where λnft ,
∑C

c=1 uncfvnct ∈ R+ is the power spectral density
(PSD) represented by nonnegative matrix factorization (NMF) that is
parameterized by uncf ∈R+ and vnct∈R+ with c∈ [1, C] and C is
the number of NMF components, and Diag(g̃n) is a time-invariant
diagonal matrix whose diagonal vector is g̃n , [g̃1n, . . . , g̃Mn]

T ∈
RM

+ . This joint-diagonalization leads to the mixture decorrelation:

yft , Qfxft ∼ NM
C

(
0,

N∑
n=1

λnftDiag(g̃n)

)
, (6)

so {yft}m ∼ NC
(
0, σ2

mft,
∑N

n=1 λnftg̃mn

)
is independent of

each other. We optimize the parameters Φ,{Qf , uncf , vnct, g̃mn|
∀m, ∀n,∀f,∀t,∀c} by maximizing

ln p(X) = ln p(Y) + T

F∑
f=1

ln |Qf |2 , (7)

ln p(Y) = −
M,F,T∑
m,f,t=1

(
|{yft}m|2

σ2
mft

+ lnσ2
mft

)
+ const. (8)

The estimated source image x̂nft can then be computed given xft

and Φ by Wiener filtering:

x̂nft = Q−1
f Diag

(
λnftg̃n∑N

n′=1 λn′ftg̃n′

)
Qfxft. (9)

3. PROPOSED METHOD

3.1. Model

The mixture decorrelation in FastMNMF shown in Eq. (6) can be seen
as an NF with one flow step, i.e., transformation by time-invariant
diagonalization matrices Qf , ∀f . In this paper, we represent those
matrices using flow blocks as Qf,t,WK,f . . .W2,ftW1,f so the
decorrelation is now similar to Eq. (1), and call the resulting method
as NF-FastMNMF. Note that, {yft}m in (NF-)IVA corresponds to
one independent source, while {yft}m in (NF-)FastMNMF is inter-
preted as one dimension of the decorrelated mixture. Having a latent
space with those M variables is the key to make an NF, whose bijec-
tivity originally only allows determined separation, to be also appli-
cable to non-determined separation.

To be more expressive, we propose an upper triangular Wk′′,ft,
such that {hk′′,ft}m = {Wk′′,fthk′,ft}m is not simply scaling
{hk′,ft}m as when a diagonal Wk′′,ft is used [8]. The determinants
of both upper triangular and diagonal matrices are simply the products
of the diagonal elements. We consider Wk′′,ft,Wlower

k′′,ftW
upper
k′′,ft,

where Wlower
k′′,ft and Wupper

k′′,ft are given by the MLPs Ωlower
k′′,f and



Algorithm 1 Mixture decorrelation in NF-FastMNMF using an NF
composed of L flow blocks (K = 2L+ 1). lowerSplit(·) and
upperSplit(·) split a vector into two equal parts as possible and take
the lower part and the upper part, respectively.
Inputs:
h0,ft , xft, ∀f,∀t . the observed mixture
Wk′,f ,Ω

upper
k′′,f , Ωlower

k′′,f , ∀k
′ ∈ Kod, ∀k′′ ∈ Kev

1: if volume-preserving constraint is applied then
2: orthogonalize all Wk′,f by Eq. (2)
3: for each time-frequency bin ft do
4: for each flow block l ∈ [1, L] do
5: h2l−1,ft = W2l−1,fh2l−2,ft

6: Wupper
2l,ft←Ωupper

2l,f

(
lowerSplit(h2l−1,ft)

)
7: Wlower

2l,ft←Ωlower
2l,f

(
upperSplit(Wupper

2l,fth2l−1,ft)
)

8: h2l,ft = W2l,fth2l−1,ft = Wlower
2l,ftW

upper
2l,fth2l−1,ft

9: yft , hK,ft = WK,fh2L,ft

Outputs:
yft=[y1ft, . . . , yMft]

T, ∀f,∀t . the decorrelated mixture

︸︷︷︸
hk′,ft

}
upperSplit}
lowerSplit

(a) Vector splitting

0
0 0
0 0 0︸ ︷︷ ︸
Wk′′,ft

=

1 0 0 0
0 1 0 0
0 0
0 0 0︸ ︷︷ ︸
Wlower

k′′,ft

0
0 0 1 0
0 0 0 1︸ ︷︷ ︸
W

upper
k′′,ft

(b) Composition of Wk′′,ft

Fig. 1. Illustrations of the lowerSplit and upperSplit operations and
how Wk′′,ft is obtained. The empty colored cells in Wlower

k′′,ft and
Wupper

k′′,ft are given by Ωlower
k′′,f and Ωupper

k′′,f , respectively.

Ωupper
k′′,f , respectively (see Algorithm 1 and Fig. 1). Each MLP takes

the modulus of vector split elements, applies the layer normaliza-
tion [28] whose parameters are shared over all frequency bins, and
passes them through one hidden layer with rectified linear units. Us-
ing a scaled hyperbolic tangent function for the output layer, we then
obtain the off-diagonal elements (the light-colored cells in Fig. 1(b)),
whose values are in [−2, 2], and apply exponentiation such that the
main diagonal elements (the dark-colored cells in Fig. 1(b)) are in
[exp(−2), exp(2)]. A diagonal Wk′′,ft can be estimated in a similar
fashion with a narrower output layer for the diagonal elements only.

The parameters Υ , {Wk′,f ,Ω
upper
k′′,f ,Ω

lower
k′′,f , uncf , vnct, g̃mn|

∀k′, ∀k′′, ∀m, ∀n,∀f,∀t,∀c} are optimized to maximize the LL
function ln p(X) given by Eq. (3), but with ln p(Y) given by Eq. (8).

3.2. Parameter Estimation: Initialization and Updates

As in NF-IVA [8], we set the parameters such that Qf,t initially
performs the identity function. To do so, Wk′,f is initialized to the
identity matrix, and the output layer parameters of Ωupper

k′′,f , Ωlower
k′′,f

are set to zero, while the hidden ones are uniformly distributed [29].
The NMF parameters uncf , vnct are initialized randomly, and the
circulant initialization is used for g̃n [21].

Algorithm 2 summarizes the parameter update procedure, where
all parameters are updated for I iterations given all frames of a
test mixture. Parameters Wk′,f , Ωupper

k′′,f , Ωlower
k′′,f are mainly op-

timized by gradient descent with backpropagation to minimize
LNF-FastMNMF ,− ln p(X) using Adam [30]. To alleviate the opti-
mization issue due to the random parameter initialization, we intro-
duce a warm-up phase, in which those parameters are optimized to

Algorithm 2 BSS by NF-FastMNMF using an NF composed of L
flow blocks (K=2L+1).
Inputs:
xft, ∀f,∀t . the observed mixture
Winit

k′,f Ωupper,init
k′′,f , Ωlower,init

k′′,f , ∀k′ ∈ Kod,∀k′′ ∈ Kev

uinit
ncf , v

init
nct, g̃

init
mn, ∀m, ∀n,∀f,∀t, ∀c

1: for each update iteration i ∈ [1, I] do
2: yft ← decorr(xft,Wk′,f ,Ω

upper
k′′,f , Ωlower

k′′,f ) . Algorithm 1
3: update all uncf , vnct, g̃mn by Eqs. (10)–(12)
4: if warm-up iteration then
5: compute LNF-IVA and do backpropagation
6: else
7: compute LNF-FastMNMF and do backpropagation
8: update all Wk′,f , Ωupper

k′′,f , Ωlower
k′′,f by gradient descent

9: yft ← decorr(xft,Wk′,f ,Ω
upper
k′′,f , Ωlower

k′′,f ) . Algorithm 1
10: compute all x̂nft by Wiener filtering as in Eq. (9), but

with Qf,t,WK,f . . .W2,fW1,f instead of Qf

Outputs:
x̂nft=[xn1ft, . . . , xnMft]

T, ∀n,∀f,∀t . the source estimates

minimize LNF-IVA. Parameters uncf , vnct, g̃mn are optimized to max-
imize a lowerbound of the LL function ln p(X). The parameter up-
dates are done using multiplicative update rules (MU) [21] given by

uncf ← uncf

√√√√∑M,T
m,t=1 vnctg̃mnσ

−4
mft |{yft}m|2∑M,T

m,t=1 vnctg̃mnσ
−2
mft

, (10)

vnct ← vnct

√√√√∑M,F
m,f=1 uncf g̃mnσ

−4
mft |{yft}m|2∑M,F

m,f=1 uncf g̃mnσ
−2
mft

, (11)

g̃mn ← g̃mn

√√√√∑C,F,T
c,f,t=1 uncfvnctσ

−4
mft |{yft}m|2∑C,F,T

c,f,t=1 uncfvnctσ
−2
mft

. (12)

Normalization is done after updating all uncf , vnct, g̃mn such that∑F
f=1uncf =1 and

∑M
m=1g̃mn=1.

4. EVALUATION

4.1. Experimental Settings

4.1.1. Tasks and Performance Metrics

We consider the separations of 3 speech signals from a 3-, 4-, or 7-
channel mixture containing background noise (N=4,M ∈{3, 4, 7}),
corresponding to underdetermined, determined, and overdetermined
separation cases, respectively. We assess the performance in terms of
the signal-to-distortion ratio (SDR), the signal-to-interference ratio
(SIR), the signal-to-artifacts ratio (SAR), the wideband extension of
the perceptual evaluation of speech quality (PESQ), and the short-
time objective intelligibility (STOI) [31–33]. We use the source
permutation solver of BSS-Eval to decide the best source ordering.

4.1.2. Data

We use two simulated datasets, i.e., stationary and non-stationary,
that are derived from the WSJ0 dataset’s si_et_05 subset [34] (the
utterance length average is 8.9±1.6 s). Each mixture consists of 3
utterances by 3 different speakers started at different time instances.
The speaker heights are sampled from U [1.6m, 1.8m], where U [a, b]
is a uniform distribution whose values are between a and b. The
speakers with a cardioid directivity pattern are randomly positioned



Table 1. The median performance scores of the different separation methods on the stationary and non-stationary datasets. Wk′′,ft is either a
diagonal (diag) or an upper triangular (triu) matrix. A higher value is better for all performance metrics. Boldface numbers show the top
performances taking into account the 95% confidence interval over the best performances that are indicated by the star symbol ?.

Method Wk′′,ft
Blocks

(L)
3 mics (underdetermined case) 4 mics (determined case) 7 mics (overdetermined case)

SDR SIR SAR PESQ STOI SDR SIR SAR PESQ STOI SDR SIR SAR PESQ STOI
Stationary dataset

IVA-BP n/a 0 n/a n/a n/a n/a n/a 5.7 7.8 15.2 1.50 0.81 7.0 10.7 ?17.5 1.80 0.87
NF-IVA diag 1 n/a n/a n/a n/a n/a 5.8 7.6 ?15.6 1.52 0.83 6.9 10.5 16.7 1.73 0.88
NF-IVA diag 2 n/a n/a n/a n/a n/a 5.9 7.7 15.4 1.58 0.84 6.9 10.6 16.3 1.71 0.88
NF-IVA triu 1 n/a n/a n/a n/a n/a 5.9 7.8 15.4 1.57 0.83 7.1 10.8 16.9 1.74 0.88
NF-IVA triu 2 n/a n/a n/a n/a n/a 5.8 7.7 15.3 1.56 0.83 7.2 11.2 17.1 1.82 0.89
FastMNMF-BP n/a 0 4.7 9.0 9.2 1.34 0.75 6.6 9.8 13.2 1.57 0.80 7.0 11.2 15.7 1.86 0.82
NF-FastMNMF diag 1 4.2 7.5 8.6 1.36 0.70 6.8 10.0 13.2 1.57 ?0.85 8.5 11.8 16.1 1.79 0.90
NF-FastMNMF diag 2 4.6 9.2 8.6 1.38 0.71 7.3 10.3 13.5 1.68 0.84 8.3 12.0 16.2 1.85 0.90
NF-FastMNMF triu 1 ?5.6 ?10.3 ?9.3 1.44 0.76 ?7.5 10.3 13.6 ?1.70 0.84 8.7 12.6 16.2 1.81 0.90
NF-FastMNMF triu 2 5.3 10.1 9.1 ?1.46 ?0.76 6.9 ?10.5 13.2 1.65 0.84 ?9.2 ?13.2 16.3 ?2.07 ?0.91

Non-stationary dataset
IVA-BP n/a 0 n/a n/a n/a n/a n/a 5.5 7.2 ?14.2 1.46 0.79 6.1 9.7 ?15.7 1.69 0.84
NF-IVA diag 1 n/a n/a n/a n/a n/a 4.9 6.7 13.6 1.46 0.80 5.8 9.6 14.8 1.59 0.84
NF-IVA diag 2 n/a n/a n/a n/a n/a 5.4 7.1 13.8 1.49 0.80 6.0 9.7 14.7 1.62 0.85
NF-IVA triu 1 n/a n/a n/a n/a n/a 5.3 7.2 13.8 1.49 0.79 5.7 9.4 14.8 1.64 0.84
NF-IVA triu 2 n/a n/a n/a n/a n/a 5.3 7.1 14.0 1.50 0.80 6.2 10.0 15.0 1.69 0.84
FastMNMF-BP n/a 0 4.6 8.7 8.4 1.33 0.72 6.0 9.6 11.2 1.45 0.78 6.3 10.2 13.2 1.67 0.82
NF-FastMNMF diag 1 4.0 7.9 7.7 1.31 0.71 6.2 9.3 11.3 1.50 0.83 7.3 10.9 14.6 1.71 ?0.88
NF-FastMNMF diag 2 4.3 8.8 7.7 1.32 0.71 ?6.7 ?10.4 11.8 ?1.55 ?0.83 7.6 ?11.7 14.9 1.77 0.86
NF-FastMNMF triu 1 4.6 8.7 ?8.5 1.34 0.72 6.5 10.1 11.7 1.55 0.82 7.1 11.1 14.3 1.68 0.85
NF-FastMNMF triu 2 ?5.0 ?9.9 8.3 ?1.35 ?0.75 5.7 8.9 10.9 1.54 0.81 ?7.8 11.4 14.1 ?1.84 0.86

on the perimeter of a circle, whose radius is in U [1m, 2m], facing the
center and at least, 1 m away from each other. The circle is randomly
located in a room with dimensions 6×6×3 m (length×width×height)
with reverberation time in U [0.2 s, 0.6 s]. At the circle center at the
height of 1.5 m, we use 7 omnidirectional microphones arranged into
a hexagonal array, whose diameter is 5 cm. We then add background
noise to the speech mixture such that the average power ratio of
speech mixture and noise is either 6, 12, or 18 dB. The noise is taken
from the DEMAND dataset [35] recorded in a living room, a small
office, and an office cafeteria. While the speakers in the stationary
set do not move, those in the non-stationary set move at 2 random
time instances along the body frontal axis such that the position is
inN (0, 0.15m) w.r.t. the body longitudinal axis. It tries to simulate
the movement when someone shifts the body weight sideways. Each
subset contains 90 mixtures (10 mixtures×3 noises×3 power ratios).

The overdetermined separation uses all of the available 7 chan-
nels, while the determined and underdetermined ones use a fixed set
of 4 channels and that of 3 channels, respectively. All data are sam-
pled at 16 kHz. The STFT coefficients are extracted using a 1024-
point Hann window with 75% overlap (F =513).

4.1.3. Compared Methods

For the evaluation, we consider IVA-BP, NF-IVA, FastMNMF-BP,
and NF-FastMNMF. IVA-BP is an NF-IVA without any flow block
[8]. Similarly, FastMNMF-BP is an NF-FastMNMF without any flow
block. IVA-BP and FastMNMF-BP perform time-invariant trans-
forms. FastMNMF-BP can be regarded as a proxy for the original
FastMNMF [21]. The baseline methods include IVA-BP, NF-IVA,
and FastMNMF-BP, although the last one is newly introduced here.
The VP constraint is applied to all NF-IVA and NF-FastMNMF vari-
ants (see Sec. 2.1) with J=8. The number of update iterations is set
to I =2048 for all methods. The initial learning rate of the Adam
optimizer is 0.1 and it is decayed with a factor of 0.98 for every 32

epochs. The gradient is normalized with a threshold of 1 [36]. For the
FastMNMF-BP and NF-FastMNMF variants, the number of warm-
up iterations is 512 and the number of NMF components is C=8.

4.2. Experimental Results and Discussion

Table 1 shows the median performance scores computed over the
speech estimates. In general, NF-FastMNMF provides the best separa-
tion results according to most performance metrics, while FastMNMF-
BP outperforms NF-IVA and IVA-BP that have similar performance
in these datasets. The SAR scores indicate that the IVA-based meth-
ods produce fewer artifacts, but the PESQ and STOI scores suggest
that the FastMNMF-based methods have better perceptual quality.
Furthermore, the SIR and SDR scores indicate that NF-FastMNMF
using either a diagonal or an upper triangular Wk′′,ft performs the
best separation and yields the best signal quality on both datasets.
Although the upper triangular Wk′′,ft seems to improve the perfor-
mance of NF-IVA slightly, it provides significant improvement to NF-
FastMNMF in some cases. On the stationary dataset, 1 flow block
seems to be optimal for the underdetermined and determined cases,
and more blocks seem to be useful for the overdetermined case. On
the non-stationary dataset, more blocks are shown to be useful, ex-
cept for the determined case. It may indicate that there is a challeng-
ing issue in optimizing more parameters.

5. CONCLUSION

This paper proposes NF-FastMNMF, a flow-based BSS method that
utilizes an NF to represent the diagonalization matrices for performing
mixture decorrelation. By doing so, we demonstrate that NF can
be also used for non-determined separation. The evaluation shows
that NF-FastMNMF generally outperforms FastMNMF-BP, NF-IVA,
and IVA-BP. Future works include performing exhaustive ablation
studies, utilizing DNN-based source models [6,37], and incorporating
a heavy-tailed distribution [38].
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