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Abstract

Images acquired by Synthetic Aperture Radar (SAR) are affected by speckle, making their interpretation difficult. Most
recently, the rise of deep learning algorithms has led to groundbreaking results. The training of a neural network typi-
cally requires matched pairs of speckled / speckle-free images. To account for the speckle present in actual images and
simplify the generation of training sets, self-supervision approaches directly train the network on speckled SAR data.
Self-supervision exploits a form of diversity, either temporal, spatial, or based on the real/imaginary parts. We compare
the requirements in terms of data preprocessing and the performance of three self-supervised strategies.

1 Introduction

The coherent summation of several echoes produced by
elementary scatterers located within the radar resolution
cell leads to strong fluctuations: the speckle phenomenon.
These fluctuations are detrimental to the visual or auto-
mated analysis of SAR images. In homogeneous areas with
rough surfaces or scattering volumes, the speckle is well
described by Goodman’s model [1]. Numerous approaches
have been developed to reduce speckle fluctuations, from
selection filters to wavelets and variational techniques [2],
patch-based methods [3], and, more recently, deep neural
networks [4, 5, 6].

The advent of deep learning techniques has led to results
of unprecedented quality in the field of image restoration,
in particular in the case of images corrupted by an ad-
ditive white Gaussian noise. Convolutional neural net-
works (CNNs) can be trained to learn mapping noisy im-
ages to their noise-free counterparts [7]. While pairs of
high-quality / low-quality images can easily be obtained for
natural images, for example by varying the exposure time,
it is much harder in remote sensing and in particular in
SAR imaging. Almost speckle-free images can be obtained
by averaging long time series of SAR images or by us-
ing optical images. The speckled versions of these ground
truth images can then be obtained by generating synthetic
speckle according to Goodman’s model [8]. These sim-
ulations generally do not account for the spatial correla-
tions of speckle observed in actual SAR images: this leads
to a domain-shift between network training and the appli-
cation to SAR images and requires an additional image
preprocessing to reduce the correlations. Without an ade-
quate preprocessing, networks trained on white noise lead
to strong artefacts when applied to correlated speckle [9].

Training despeckling networks directly on SAR images,
without ground truth, offers several advantages: (i) build-
ing the training set is much easier, it can thus include large
amounts of images; (ii) there is no domain-shift between
network training and network application since the net-
work is trained directly on actual speckle, provided that
images with a similar content are present in the training
set. Self-supervised despeckling methods are based on a
common principle: if a signal contains a deterministic and
a stochastic component, only the deterministic component
can be predicted given an independent realization of the
signal. Self-supervised training then starts by splitting the
data into subsets between which speckle is statistically in-
dependent. A network is then trained to predict, from a
first subset of the data, the observations of the second sub-
set. As described in more details in Section 3, the split-
ting of the data can exploit different kinds of information
diversity: temporal [10], spatial [11], or even real / imagi-
nary parts of single-look complex (SLC) images [12]. Each
splitting approach has different advantages and limitations.
The goal of this work is to analyze these differences, com-
pare the performance of three neural networks trained in
a self-supervised way on some TerraSAR-X Stripmap im-
ages, and draw some conclusions.

2  Goodman’s speckle model

Goodman’s fully developed speckle model considers rough
and homogeneous areas, so that it can be assumed that, for
each elementary scatterer within a resolution cell,

* the phase and amplitude are both independent and
identically distributed (i.i.d.),

* phase and amplitude are independent from one an-
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Figure 1 Three approaches for self-supervised training strategies are possible: @ using temporal diversity (pairs of
images captured at different dates); @ using spatial diversity (by masking part of the spatial information); and @ using
the real / imaginary part diversity (by feeding only the real or imaginary part to the network and supervising the training
with the other component). Each strategy requires a different preprocessing of the data to ensure that the statistical

guarantees for self-supervised training are fulfilled.

other,
* phases are uniformly distributed between —7 and 7 ,

* the number of elementary scatterers within a resolu-
tion cell is large.

By application of the central limit theorem, the real and
imaginary parts of the complex amplitude z = a + jb
that results from the coherent summation of all elemen-
tary complex phasors follow independent Gaussian distri-
butions:

1 2 1 b?
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where r represents the reflectivity of the resolution cell.
The intensity i = |z|?> = a? + b? thus follows an exponen-
tial distribution:

r r

p1(i) = S exp () @

and the mean intensity over a homogeneous area is E[I] =
r while the variance is Var[I] = r2. In the case of multi-

looked intensities, the distribution becomes a gamma law:
Lrit—t i
) = ——— —L- 3
p1<z> F(L)TL exp ( T> ? ( )

with L the number of looks and I'(.) the gamma function.

Goodman’s speckle model provides the ground for deriv-
ing the self-supervised training loss functions described
next.

3  Self-supervised training strategies

3.1 Principle

Deep neural networks map an input y (the speckled im-
age) to an output Z (the image of estimated reflectivi-
ties) through a non-linear function fg(-) parameterized by
a vector of weights @ (the network coefficients). During
training, weights 6 are optimized with respect to a crite-
rion: the training loss function L.

In a supervised training setting, the vector of weights is



obtained by solving a minimization problem of the form:

K

k=1

where the set of all pairs {(y;,, }) }xr=1..x forms the train-
ing set and £ measures the proximity between the estimate
Z, = fo(y;), computed based on the noisy image y,,, and
the corresponding ground truth x3. The loss functions £
typically chosen are the squared L2 norm, the L1 norm, or
perceptual distances (e.g., SSIM or L2 distances computed
between low-level features of a pretrained network [13]).
Self-supervised training approaches do not require access
to the ground truth images xj. Instead, each noisy sample
y,, of the training set is split into two parts: y}? and y}c"‘l.
Only the first part ! is fed to the network and the other
part ¥} is used to evaluate the loss function:

K
arggmin Z L [fe (yll?)v y?l] : )
k=1

In contrast to the supervised case (4), the loss function now
evaluates the proximity between the estimated image Ty, =
fo(y") and the other part of the noisy data y}*. For the
training to work, images y" and y}* must correspond to a
common (yet unknown) ground truth image «;, and also be
statistically independent (the speckle component of each
image is independent). Under these conditions, a natural
choice for the loss function L is the neg-log-likelihood:

L[fo(yl), yx"] = —logpy (yi|zk = fo(yl)) . (6)

3.2 Variants of self-supervised training for
despeckling

The way each training sample is split into yi" and y}* leads
to quite different self-supervision methods. We cover in
the following three approaches exploiting successively the
temporal, spatial, or real /imaginary part diversities. These
approaches are summarized in figure 1.

© Temporal diversity:

A natural way to obtain two speckle realizations of the
same radar scene consists of collecting two images at
two dates with a temporal separation sufficient to ensure
the temporal decorrelation of the speckle. With increas-
ing temporal separations, more changes might also occur
within the scene. We postpone the discussion on how to
handle those changes and consider for now that the radar
scene remains basically unchanged except for the small
changes that cause the speckle decorrelation. A train-
ing sample then corresponds to a pair of noisy intensities
(i?,if) of speckled images corresponding to the same
(unavailable) ground truth reflectivity r;. The splitting of
a training sample can either be yi" = i’,il and y}! = i',if“
or the converse. The unsupervised loss function can be de-
rived from equations (6) and (3), under the approximation

of spatially uncorrelated speckle:
La [foliy),i2] = —logp; (327} = fo(if))

A )
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N

where cst. represents a term that does not change when the
network parameters @ vary and the notation [-], represents
the ¢-th pixel of an image.

Note that, given the high dynamic range of SAR images,
it is beneficial to provide log-transformed intensities to the
network and to apply an exponential transform to the out-
puts of the network to compress the dynamic range.

In practice, it is necessary to handle the changes in the
radar scene that occurred between times ¢; and t5. Two
approaches are possible: if these changes are of limited
spatial expansion, they can be detected (using a change-
detection method) and the pixels in the changed area dis-
carded from the computation of the loss function [8]. A
more refined way to account for changes is to apply a
change compensation operation to image iff. This way,
all changes, even the smallest, are accounted for. Since
change compensation requires a method to estimate the re-
flectivities 7°* and 7'2, the algorithm SAR2SAR [10] per-
forms several training steps to progressively refine the de-
speckling network to benefit from improved change com-
pensations.

O Spatial diversity:

In the absence of additional images of the same scene at
other dates, data splitting can be spatial. The idea is to
mask some observed values and to train the network to
predict the values that are masked by computing the unsu-
pervised loss on those masked values. Several techniques
can be used to perform the masking: masked values can
be replaced by a local average, a purely random value,
zero, or the network architecture can be designed in or-
der to achieve a "blind spot", i.e., the central area of the
patch is unconnected to the output (the receptive field of the
neural net does not contain this area). The latter approach
leads to effective training because all observed pixels ap-
pear in turn in the loss function. Direct application of a net-
work with a blind spot would be disappointing, especially
in SAR imaging where point-like structures are common,
since such punctual elements would be lost when falling
within the blind spot. In order to also account for the ob-
servations inside the blind spot in the reflectivity estimate,
the algorithm Speckle2Void [11] follows the Bayesian ap-
proach of [14]: the network predicts a parametric distribu-
tion gr(r; o ¢) (Where oy ¢ = [fo(Vi,, (€))]s is the vector
of parameters output by the network, defining the function
r — gr(r; o). This parametric distribution character-
izes the reflectivity [r], at pixel ¢, based on the observed
intensities V;, (¢) in the neighborhood of pixel ¢ (the neigh-
borhood excludes pixel ¢ which represents the blind spot).
It defines a prior that can then be combined with the actual
observed intensity [¢x]¢, for example using the posterior



mean estimator:

File / ([2x]elr)gr(r; o r)
fP [irelr ) gr(r'; ot e) dr’

The training loss function is obtained from equation (6) by
setting yi" = V;, (¢) and Y} = [ix]e:

®)

Ly [fo(Viy, (£)), [ix]e] = —10%/13([1'1«]@\7“)91%(7“;%,@)dT

€))

with ag,¢ = [fo(Vs, (€))]e-

In practice, it is much more convenient if the integrals in
equations (8) and (9) are known in closed form. This is the
case if the parametric distribution gp is a conjugate prior
of the likelihood p([é]¢|r). In Speckle2Void [11], Molini
et al. therefore use an inverse gamma distribution for gp.

An important requirement to apply a spatial splitting is that
the speckle be spatially uncorrelated. If it is correlated,
then the network will be able to recover the masked noisy
intensity [¢x], using only the neighborhood V;, (¢) and the
resulting estimation will still be corrupted by speckle. To
prevent this, speckle correlations must be reduced either by
subsampling the image or by applying a spectral equaliza-
tion (and possibly a resampling if the image has been over-
sampled), see [15, 16, 9]. Moreover, to obtain a blind spot
centered on pixel /, the architecture of the neural network
must be carefully designed, which severely constrains the
choice of the network.

O Real/imaginary part diversity:

In a recent paper [12], we have suggested another possi-
ble splitting of SLC training data for unsupervised train-
ing: the decomposition into the real and imaginary parts.
Under reasonable assumptions (a SAR system with a real-
valued response, i.e., with a transfer function with Hermi-
tian symmetry), the real and imaginary parts of an SLC im-
age are indeed statistically independent. In contrast to the
approach @ based on temporal diversity, there is no issue
with possible changes between the two components since
they are acquired simultaneously.

The splitting of a sample from the training set takes either
the form y‘,j‘ = ay and y‘,f‘] = by, or the converse (real and
imaginary parts can be swapped randomly during training),
where we recall that a, and by, are the real and imaginary
parts of the SLC image zj. From equations (6) and (1), the
unsupervised training loss takes the form:

Le[fo(ar),by] = —logpp(br|ry = fo(ax))

1 [b1];
= Z log [fe(ar)] [fe( an)l, + cst.
(10)
and
[ax];
Le [fo(br), Ze:%log fa(br)], m + cst.

an

In order to ensure that the real and imaginary parts a and
b;. are independent, a preprocessing may be necessary to
achieve a 0-Doppler shift and possibly to correct for spec-
trum asymmetries, as depicted at the bottom right of figure
1 and in [12].

4  Experimental comparison and
discussion

We illustrate each self-supervised training strategy by de-
speckling TerraSAR-X Stripmap images with the follow-
ing algorithms:

* SAR2SAR [10], trained using the temporal diversity
(strategy @);

» Speckle2Void [11], trained using the spatial diversity
(strategy @);

e MERLIN [12], trained using the real / imaginary part
diversity (strategy @).

The networks in SAR2SAR and MERLIN share the same
architecture derived from the U-Net of [17]. The network
used in Speckle2Void has a specific architecture in order
to enforce a blind spot at the center of the receptive field.
To ensure a fair comparison, all three training strategies are
applied on a dataset of TerraSAR-X Stripmap images. As
a baseline, we also include the results of SAR-BM3D [18]
which is not based on a deep neural network.

Figure 2 displays restoration results for each method as
well as the residual noise, i.e., the ratio image /7.
Upon successful estimation of the reflectivity image 7y,
the residual 45 /7, should correspond solely to the speckle
component and contain no structure from the original in-
tensity image.

By close visual inspection, it appears that the baseline
method, SAR-BM3D, produces some artifacts in smooth
areas (fields, high vegetation) or around strong scatterers
in the form of streaks or oscillations. SAR2SAR provides
the sharpest restorations but suppresses less strongly the
speckle fluctuations: remaining fluctuations can still be ob-
served in some areas. Speckle2Void restores satisfyingly
smooth areas but has difficulties to handle strong punctual
scatterers. Finally, MERLIN seems to offer the smoothest
estimates for vegetated areas and produces an estimation
that is slightly more blurry than SAR2SAR on urban areas.
The residual noise images display more structure in the im-
ages produced by SAR-BM3D and Speckle2Void than with
MERLIN or SAR2SAR. It seems that the latter removes
almost no significant structure from the original image: no
extended pattern can be identified in the residual image.
Beyond the analysis of restoration quality, there are pros
and cons for each approach that are summarized in Table
1. Exploiting temporal diversity requires pairs of regis-
tered intensity images with sufficient temporal separation
to ensure speckle decorrelation. Such image pairs may
not be available when considering airborne SAR systems,
which limits the applicability of the approach. Moreover,
the change detection and/or compensation must be reliable
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Figure 2 Results on two TerraSAR-X Stripmap images. For each method, the ratio noisy/denoised is shown to check
if some structures are removed from the original image by the despeckling step. The statistics (mean and variance)
estimated on the ratio image in the area surrounded by the red rectangle indicates that all algorithms are effective at
removing speckle in physically homogeneous areas (the closer to 1, the better).
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SAR2SAR [10] Speckle2Void [11] MERLIN [12]

pairs of registered

training data requirement . .
Intensity 1mages

intensity images SLC images

bias if imperfect change spectral equalization

reprocessing impact . . .
prep g1mp detection/compensation ~ changes image appearance

limited impact

training complexity +++ ++ +
flexibility of net architecture +++ + et
fine tuning to new images + +++ +++

Table 1 Summary of the advantages and limitations of each self-supervised training strategy.

otherwise a bias may appear in the estimates. Updating  heavier than other self-supervised approaches. Since train-
the change compensation method with the despeckling net-  ing requires pairs of images at different dates, fine tun-
work leads to a training in several steps which makes it  ing the network on a new image (with a content that dif-



fers from the training set) may not be possible if only a
single image is available. Speckle2Void, based on spa-
tial diversity, requires only intensity images, which sim-
plifies the building of the training set and the fine tuning
to new images. The requirement of spatially uncorrelated
speckle leads to a preprocessing that changes the image ap-
pearance (a resampling may be necessary and the spectral
apodization is removed). Only very specific network ar-
chitectures lead to a blind spot in the receptive field, this
limits the design choices and our experiments indicate that
the network requires more care to reach convergence than
a simpler U-Net network. MERLIN self-supervised train-
ing strategy only requires SLC images. The preprocessing
step ensuring that the spectrum is symmetrical has a very
limited impact on the image appearance and on the com-
putational burden. Training is easy and in practice can be
performed even on a single image. Unlike Speckle2Void,
any network architecture can be considered, which allows
the straightforward transfer of evolved network architec-
tures developed in the field of natural image restoration.

5 Conclusions

Self-supervised training of deep neural networks offers
many advantages over conventional supervised training
techniques: building the training set is greatly simplified
and generalization to unseen data is largely improved given
that actual SAR images are used in the training phase rather
than images with synthetic speckle. There now exists sev-
eral approaches to perform self-supervision, based on com-
mon ideas of splitting each training sample into two parts:
one part fed to the neural network and the other used to
compute the self-supervised training loss. Depending on
whether a temporal, spatial or real/imaginary part separa-
tion is used, various methods have been proposed in the
literature. Each offers distinct advantages and drawbacks
both in terms of restoration quality and practicality.

As the reference image is not needed, with self-supervised
methods it is possible to fine-tune the network on a given
area of interest leading to improved performances at test
time on that specific area. This is particularly true for
strategies requiring spatial diversity or real/imaginary part
diversity, where a single image is sufficient to supervise the
training.
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