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Abstract:
An attention mechanism is integrated into neural network-based equalizers to prune the
fully-connected output layer. For a 100 GBd 16-QAM 20×100 km SMF transmission, this
approach reduces the computational complexity by ∼15% in a CNN+LSTM model.
© 2021 The Author(s)

1. Introduction

Nonlinear effects are a major liming factor in fiber-optic communications. The complexity of receivers designed
to equalize these impairments must be reduced to enable higher data rates. Non-model-driven deep learning-based
equalization methods have shown promise in this area.

In this category of methods, a neural network that does not incorporate the channel model (in contrast to model-
driven architectures [1, 2]) is trained using pairs of the sampled waveform at RX (or typically the waveform
after chromatic dispersion compensation) and the vector of transmitted symbols. Several such models have been
proposed, including multi-layer perceptrons (MLP) [3], convolutional neural network (CNN) [4], bidirectional
long short-term memory (bi-LSTM) [5], gated recurrent unit (GRU) [6], and CNN+LSTM models [7]. It is shown
that the CNN+LSTM model outperforms the other models in terms of bit-error-rate (BER). [7].

In these models, the output layer is often a fully-connected layer with one hidden unit per symbol in PAM
systems, or two hidden units per symbol in QAM systems (one for the real and one for the imaginary part). This
results in 2×n[L−1] real multiplication per symbol in the output layer, where n[L−1] is the number of hidden units in
the layer L−1. Although dense layers could yield good BER performance, their complexity is high. Furthermore,
the signal is already almost equalized in the previous layers, especially in the CNN+LSTM model; thus, paying
the same attention to all the nodes in different temporal distances might not be optimal.

In this paper, we address this problem using an attention mechanism [8]. We consider a state-of-the-art
CNN+LSTM model and reduce the number of floating-point operations (FLOPs) in it (for the inference mode)
by learning and removing the low-impact connections in the output fully-connected layer. We also show that
leveraging this technique facilitates replacing the LSTM units with simple RNN cells without performance dete-
rioration. We present a cumulative FLOPs reduction of ∼27% using this approach, broken down into around 15%
for connections-dropping and around 12% for replacing LSTMs.

2. Fiber-optic system model

Nonlinear Schrödinger (NLS) equation models the evolution of signal with one polarization in the standard single-
mode fiber (SMF)

∂q(t,z)
∂ z

=−α
2

q(z, t)− jβ2

2
∂ 2q
∂ t2 + jγ|q(t,z)|2q(t,z), 0 ≤ z ≤ L , (1)

where q(t,z) is the complex envelope of the signal propagating in fiber as a function of time t and distance z. Here,
γ is the nonlinearity parameter, β2 and α are respectively chromatic dispersion and attenuation coefficients, and
L is the fiber length.

The optical link is split into several spans of equal length. Split-step Fourier method (SSFM) is applied to
solve NLS equation in order to calculate the propagation of the signal in each span. To compensate for fiber loss,
amplification is performed using Erbium-doped fiber amplifiers (EDFA) after each span, followed by ASE noise
addition.

At the transmitter (TX) first the input bit-stream m = (m1,m2, . . . ,mNb), mi ∈ {0,1}, is translated to a sequence
of symbols S = (s1,s2, ..,sNs), where the symbols are drawn from a QAM-constellation. Following this, S is
mapped to the waveform q(t,0) = ∑

Ns
i=0 si p(t − i/Rs), where p(t) is the pulse shape and Rs is the baud rate. The
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signal q(t,0) is then transmitted and propagated in the optical fiber according to (1). Following sampling the
received waveform q(t,L ) at the receiver (RX), and typically after applying chromatic dispersion compensation
(CDC), the resulting vector x is passed to an non-model-driven end-to-end neural network-based equalizer to
retrieve the original sequence of symbols. The retrieved sequence of symbols and the corresponding bit-stream at
RX are denoted by Ŝ and m̂, respectively.

The goal of the neural network-based equalizer is to maximize the performance at fixed computational complex-
ity assessed by the number of FLOPs. In this work, the performance is evaluated by the effective signal-to-noise
ratio (SNR) ||S||22/||S− Ŝ||22, where ||S||2 = (Σ|si|2)1/2 is the L2-norm of S.

3. Attention mechanism and the proposed model

Fig. 1: The schematic of the attention-integrated CNN+RNN
model. The CNN block initially processes the input to capture
short-temporal dependencies. The output feature map is then

passed to a recurrent layer to capture long-term features. There
exits one attention unit on top of each RNN time-step.

The motivation underlying our approach is to reduce
the number of FLOPs in fiber-optic neural network-
based equalizers by learning and removing the unnec-
essary connections in the output fully-connected layer.
The idea of our approach is to make this possible using
the attention mechanism. Without loss of generality,
let us consider the state-of-the-art CNN+LSTM model
[7] as the neural network-based equalizer under exper-
iment. In this case, Fig. 1 illustrates the schematic of
the attention mechanism integrated with this model.
In this approach, an attention unit is placed after each
(RNN) time-step t to evaluate its influence on the re-
sult of each nodes in the output layer.

The attention unit is implemented, as Fig. 2, with
a fully-connected layer with Ns units followed by
Softmax activation function σ(τ(i)) = eτ(i)/Σ

Ns
j=0eτ( j).

This neural network, which outputs Ns values in the
range [0,1], learns how much influence the time-step
t has on the value of each output symbol ŝi, captured
by the attention score α<t,i> ( α<t,i> = 0 denotes no
influence).

We highlight that this process is applied only dur-
ing the training to obtain the attention scores. Once
α<t,i> are obtained, the attention units and the connec-
tions with attention scores lower than a given threshold
should be removed. Then, the model requires to pro-
ceeds with or restart the training in order to update its
weights.

The adopted attention mechanism also facilitates the replacement of LSTM units with simple RNN cells. Indeed,
the attention mechanism could substitute for the primary purpose of using LSTMs in fiber-optics, which is to
manage and learn what attention should be given to long-range time-steps. This substitution is done with the
difference that the complexity of the attention mechanism does not remain in the inference mode, unlike LSTMs.

Fig. 2: The schematic of the
attention unit.

However, it should be noted that since after the recurrent layer in the CNN+LSTM
model, there is a fully connected layer, the advantage of using LSTMs over simple
RNNs, in general, is questionable.

4. Numerical results

A single-polarization 16-QAM 100 GBd fiber-optic communication system over
20x100km SMF optical-link was considered according to the system model dis-
cussed in Section 2. Root-raised cosine (RRC) filters, with roll-off of 0.25, were
utilized as pulse shapes. Forward propagation of the optical signal at carrier wave-
length of λ0 = 1550nm was simulated using 8 sample/symbol and 50 step/span
in SSFM (increasing either value did not affect the results). The sampling rate at
RX was also adjusted to 8 sample/span.The fiber and noise parameters were as-
sumed as follows: nonlinearity parameter γ = 1.4 W−1km−1, chromatic dispersion
D = 17ps/(nm− km), fiber loss adB = 0.2 dB/km, and EDFA noise figure NF = 5
dB.



CNN+LSTM model and the corresponding attention-integrated version were adopted to learn the equalization.
The models were created and trained using Tensorflow 2.0 in Python. Logcosh was set as the loss function, and the
optimization was conducted using Adam algorithm with the learning rate of 0.001, having the reduce on plateau
property with the patience of 7 and the factor of 0.7, β1 = 0.85, and β2 = 0.999. The hyper-parameters, the same
for both the models, were optimized using k-fold cross-validation in such a way as to achieve the maximum
performance to the same level as digital back-propagation (DBP). The obtained attention-integrated model was
then pruned with the drop-connection threshold of 0.1%.
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Fig. 3: The effective SNR of the models as a function of
the launch power.

Fig. 3 demonstrates the effective SNR plot of the result-
ing models. As expected, both models provide the same
level of performance. This is while the number of connec-
tions in the output layer of the attention-integrated model is
dropped by 25%, resulting in around 15% FLOPs reduction
over CNN+LSTM without attention. It is also noteworthy to
elaborate that the output of the attention mechanism can be
exploited more fruitfully in field-programmable gate array
(FPGA) and circuit design frameworks by assigning lower
bits to the connections with moderate impacts.

The performance of simple RNN cells in place of LSTMs
was also investigated. It was observed the CNN+RNN
achieves the same performance as CNN+LSTM in both
cases. Considering this observation and the discussion in
Section 3, it is highly motivated to use simple RNN cells in
lieu of LSTMs. This replacement resulted in ∼12% FLOPs
reduction in our considered scenario.

5. Conclusion

An attention mechanism was introduced to detect and drop the unnecessary connections in the output layer of
non-model-driven equalizers in optical fiber communication systems. For a recently proposed CNN+LSTM ar-
chitecture, in a 100 GBd 16-QAM 20× 100km SMF optical transmission system, it was demonstrated that this
technique drops 25% of connections in the output fully-connected layer without affecting the performance, result-
ing in 15% reduction in the total number of FLOPs. Further, it was shown that the LSTM units in the recurrent layer
could be safely replaced with simple RNN cells, bringing an additional 12% FLOPs reduction in the considered
system.
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