N

N

A Formal Security Model for Verification of Automotive
Embedded Applications
Renaud Pacalet, Gabriel Pedroza, Ludovic Apvrille

» To cite this version:

Renaud Pacalet, Gabriel Pedroza, Ludovic Apvrille. A Formal Security Model for Verification of
Automotive Embedded Applications. SAFA Annual Workshop on Formal Techniques (SAFA’2010),
Oct 2010, Sophia-Antipolis, France. hal-03576507

HAL Id: hal-03576507
https://telecom-paris.hal.science/hal-03576507
Submitted on 16 Feb 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://telecom-paris.hal.science/hal-03576507
https://hal.archives-ouvertes.fr

A Formal Security Model for Verification of
Automotive Embedded Applications

Gabriel Pedroza, Ludovic Apvrille, Renaud Pacalet
Institut Telecom, Telecom ParisTech, LTCI CNRS
2229, Routes des Crétes, B.P. 193 F-06904 Sophia Antipolis, France
Email: {gabriel.pedroza, ludovic.apvrille, renaud.pacalet} @telecom-paristech.fr

Abstract— Intelligent Transport Systems (ITS) arose several
years ago as a promising solution to decrease road casualties
[1]. ITS are based upon heterogeneous wireless networks of
vehicles and road side infrastructures. In such critical vehicular
embedded systems, the safety is at stake, and so, the security
of car-to-car and car-to-infrastructure communications shall be
carefully taken into account, first for safety issues, but also
for privacy issues. We propose a validation methodology that
assists the design of such embedded systems, and based on a
Formal Security Model that mainly targets model checking. If
modeling of embedded in-car applications is a major issue due
to system constraints and complexity, formal validation of such
models shall offer a higher level of guarantee. Apart from its
formal semantics, another strength of our approach relies on
the decoupling between system design and security issues (e.g.,
attacks, requirements, and so on) whilst all are integrated in the
same framework.

I. INTRODUCTION

Intelligent Transport Systems (ITS) intend to dramatically
decrease road casualties. One of the main ideas is to have cars
and road infrastructures communicate and collaborate so as to
detect and avoid dangerous situations. Those communications
rely on wireless networks. Because those networks and sys-
tems could be targeted by attackers, the security of vehicular
embedded systems is an ongoing trend.

The development of protected in-car applications is a chal-
lenging task. Indeed, to support current vehicle applications,
cars are commonly equipped with up to 70 controllers called
Electronic Control Units (ECU) [2]. ECUs are interconnected
through several buses (CAN, FlexRay) thus forming highly
complex networks. The actual protection for in-car safe sys-
tems like centralized car closure or mileage counter protection
mainly relies on software-based solutions that are installed
in the core CPU. Additionally, gaining access to the core
CPU makes it possible to manipulate and compromise car
operations [2]. In this context, the successful implementation
of ITS relies on protection of in-car applications. If the
design of embedded systems has been studied for years,
the development of secured embedded system, taking into
account both hardware and software levels, and integrating
all methodological stages is still an open issue, at least in the
vehicular domain. For example, solutions proposed in [3] to
[12] lack either flexibility or formality, therefore leading to
strong limitations on proposed design solutions.

The purpose of this paper is a methodology which aims to pro-
vide a modeling and verification method integrated with usual

embedded systems design methodologies. To achieve this, we
introduce a Formal Security Model (FSecM). FSecM borrows
elements from other security frameworks and approaches, for
instance attacks and security requirements modeling. FSecM
also introduces new relevant elements: it mainly includes
a first attempt of formal security language unification. Our
security model also addresses dependencies between security
properties.

The FSecM is part of a global methodology which includes
in-car system representation and formal verification based on
model checking. This methodology is briefly presented in
section III. A complementary but relevant part of our approach
is the instantiation of the proposed methodology: one possible
instantiation is presented in section IV. We finally conclude
this paper (section V).

II. FORMAL SECURITY MODEL (FSECM)

The FSecM integrates four entities: System Attacks, Se-
curity Requirements, Formal-based Security Properties and
Security Dependencies (See Figure 1). In next subsections a
brief description of these security entities is presented.

Informal Security
Properties

7
~_

Formal Security
Properties
[N
[\; | <<Requires>>
A e - \\ /7
) Secuity 1)

Model ——

Security \}
\ Dependencies ,

(Security \J
_Requirements ,

{
\

Fig. 1. Security Model
A. System Attacks

FSecM includes System Attacks. The rationale for Attacks
comprises Dolev-Yao threat model instantiation [13]. This

approach supposes that an attacker can listen, overhear, in-
tercept and alter agent’s exchanges and its power is only
limited by restrictions imposed by cryptographic protocols.
Attacks are seen as any possible violation of correct system
operation. Identified attacks are usually modeled through ma-
licious agents that interact with the system model, and that
are expressed in the same language [14]. The modeling of
known attacks usually gives a first insight for identifying
unknown attacks. The construction of a generic attack model
is a paramount task that should be ideally included. However
it is out of the scope of this paper.

B. Security Requirements

Security Requirements (SR’s) establish protection require-
ments for in-car HW-SW assets and components. SR’s can be
obtained from translation of a technical/security specification
(which is written in plain language) or as protection against
identified attacks. Attacks can be derived from risk and threat
analysis as well as directly from Use Case scenarios. SR’s can
be categorized in hierarchy graphs whose nodes are informal
security requirements. Indeed, the graph determines relation-
ships between SR’s whose semantics needs to be formalized.

C. Formal Security Properties

Formal Security Properties (FSP’s) are the core of our
FSecM. We claim that formal-based definitions can provide a
unified-consistent and efficient security framework. FSP’s are
defined from a semantic analysis that includes categorization,
abstraction and unification of informal security properties.
From this analysis, informal definitions for Integrity,
Authenticity, Freshness, Non-Repudiation, Controlled Access,
Availability, Confidentiality, Anonymity and Privacy were
derived. Several temporal logic languages still need to be
evaluated to determine the best candidate for representing
them at formal verification stage [15], [16], [19]. Since we
target model checking we currently explore expressiveness
capabilities of CTL.

D. Security Dependencies

Security dependencies are meant to offer a support for
formal verification purposes. The security dependencies are
derived from a logical analysis of security definitions. This
analysis takes into account the verification context:

1) Verifier Viewpoint: A viewpoint is related to the verifier’s
knowledge. The property may be verified with respect
to the viewpoint of different system Verifiers. Local
as well as global viewpoints may modify the property
representation. We exemplify this by considering an
external message that arrives to a target vehicle. To
verify Integrity the Verifier may assume that the original
message is known or contrarily that it is unknown.
Hence, property representation may accordingly change
thus reflecting different agent’s knowledge.

2) Target of the Property: The modeling entity(ies) to
which the property is meant to be verified. A property

may be addressed for verifying different elements in
the model. Property representation and its dependencies
may evolve according to the different targets. Thus,
for instance the verification of message Integrity relies
on original and received messages whereas platform
Integrity relies on non altering of code and registers.

3) Assumptions: Security properties may be implic-
itly/explicitly assumed in the system model. For instance
when two communicating elements are encapsulated in
the same SoC, Integrity of exchanges might be assumed
by default. Related assumptions like channel integrity
protection and message immunity against transmission
delays may also modify security dependencies.

Since verification of properties may be influenced by
the context, several schemes of security dependencies may
arise; global and local schemes for formal verification might
be necessary. We currently work on the establishment and
formalization of these security dependencies.

E. FSecM integration

A SR specification conforms a hierarchy graph of informal
security requirements (See section II-B). Each lowest depen-
dency node of a SR can be related to a Security Property in
the FSecM thus achieving formal based SR’s. Afterwards, de-
pendencies between security properties determine hierarchical
order for verification; if Authenticity is going to be verified and
Authenticity has a dependency with respect to Integrity then
Integrity should be verified first. Modeling assumptions may
provoke that certain security properties are held by default.
In such case those properties are ensured and don’t require
additional verification. Last, once the system model satisfies a
security property it must resist related attacks.

III. GLOBAL VALIDATION METHODOLOGY

The global validation methodology is mainly intended to
formally represent and validate security properties in automo-
tive applications. The flow of this methodology is presented
in Figure 2. The methodology comprises translation of the
technical specification to the model (box 1), and the decou-
pling between security and other concerns (boxes 2 and 3).
Indeed, since we target model checking, the system must be
represented in a formal framework, for instance by Timed
Automata [17] or Kripke structures [18]. We indeed consider
that the decoupling of system and security models is an initial
step in order to achieve model correctness. By this separation
we aim to provide enough flexibility for SW-HW modeling and
to prevent that system model is biased by security specifica-
tion, and conversely. As a consequence of this decoupling, the
process of integrating security model to system model should
be as automated as possible (box 6). Model simplifications and
refinements are suggested as a way to simplify verification
process and to deal with state explosion problem (boxes 4
and 5), but preservation of relevant model properties is a
paramount issue. Since the state explosion problem may limit
verification capabilities even after model simplification, we

propose a hybrid method for validation (box 7). This hybrid
method may combine formal as well as heuristic techniques,
attack tests and simulation. Security flaws are finally identified
(box 8) thus starting a model improvement process until all
security requirements are satisfied.

COMMON TEMPORAL FORMAL
m LANGUAGE LANGUAGE LANGUAGE
| E— S N
1. TECHNICAL | 2. SYSTEM N 3. SECURITY
\SPECIFICATION MODEL MODEL

4. REFINED _ 5. REFINED
MODEL SECURITY MODEL

—=e Written in

~ "~ Translation

=< -2 Conformity

— Methodology flow

rf \fELlDA_'nEN_‘l
|[METHODOLOGY |

Ep—

Fig. 2. Methodology Flow

IV. EXAMPLE OF FSECM

An example of FSecM integration has been made
using TTool [20]. This tool targets system formal verification
through the implementation of formally defined UML profiles,
including the Timed UML Real-Time Language Environment
(TURTLE) profile [21]. TTool relies on SysML Requirement
Diagrams to represent Security Requirements. Since attacks
are closely related to system operation, they are represented as
classes modeled along with system classes, within TURTLE
class diagrams. The latter define the system architecture based
on TURTLE classes, and on communications between those
classes through composition operators. Internal behavior
of each TURTLE class must be expressed with a UML
Activity Diagram. TTool automatically translates TURTLE
class and Activity Diagrams to a specification in a formal
language (LOTOS, RT-LOTOS, UPPAAL). TURTLE offers
a good level of abstraction thus allowing a flexible HW-SW
modeling. Formal Security Properties as well as Security
Dependencies still need to be integrated in TTool as an
extension of the TURTLE profile.

Our FSecM example relies on the work that has been
developed in the scope of the EVITA project [22]. The target
of verification is based upon a model of a Local Danger
Warning (LDW) scenario [23]. In this scenario a vehicle
aims to securely broadcast a Cooperative Awareness Message
(CAM) among neighborhood vehicles. The goal is to prevent
cars about of a casualty on the road. In this example the FSecM
is composed by:

1) A tampered external vehicle which is represented in
the model. This attacker vehicle broadcasts older-faked
messages to the neighborhood vehicles.

2) A set of Security Requirements that should be accom-
plished to achieve trust exchanges. To prevent attacker’s
behavior we should address specific security require-
ments, for instance Freshness Requirement for message
exchanges.

3) A set of formal security properties. In this case a formal
definition for Freshness is required.

4) The verification dependencies for Freshness. The Ver-
ifier viewpoint considers that the original CAM mes-
sage is unknown. The attacker model supposes possible
message delays and altering. Additionally, since it is
assumed that Freshness is verified based on message
contents consequently message Integrity should be ver-
ified before Freshness.

V. CONCLUSIONS

Dealing with both security and safety constraints when
designing vehicular systems is a challenging task that we
propose to address with a new framework called FSecM.
Through FSecM and the proposed validation methodology,
we address issues of Intelligent Transport Systems validation:
consistencies in security approaches, flexibility for HW-SW
modeling, process automation and formal verification of com-
plex embedded systems.

If we have already successfully experimented that framework
over some uses cases of the EVITA project, methodological
stages of the FSecM still need to be more closely defined.

ACKNOWLEDGMENT
This work has been performed in the scope of the EVITA
project financed by the European Commission.
REFERENCES
(1 EVITA
[2

—

Objectives of the
project.org/objectives.html.
T. Kosch, Local Danger Warning based on Vehicle Ad-hoc Networks,
Prototype and Simulation, Proceedings of 1st International Workshop on
Intelligent Transportation (WIT), Hamburg, Germany, 2004.

[3] M. J. Toussaint, A New Method for Analyzing the Security of Crypto-
graphic Protocols, IEEE Journal on Selected Areas in Communications,
Vol. 11, No. 5, June 1993.

Denis Treck and Borka Jerman Blazic, Formal Language for Security Ser-
vices base Modelling and Analysis, Elseiver Science Journal, Computer
Communications Vol. 18, No. 12, 1995.

Michael Drouineaud, Maksym Bortin, Paolo Torrini, Karsten Sohr, A First
Step towards Formal Verification of Security Policy Properties for RBAC,
Proceedings of the Fourth International Conference on Quality Software
(QSIC’04), IEEE 0-7695-2207-6/04, 2004.

[6] Clare Dixon, Mari-Carmen Fernandez Gago, Michael Fisher and Wiebe
van der Hoek, Using Temporal Logics of Knowledge in the Formal
Verification of Security Protocols, Proceedings of the 11th International
Symposium on Temporal Representation and Reasoning (TIME’04),
IEEE 1530-1311/04, 2004.

Achim D. Druker and Burkhart Wolff, A Verification Approach to Applied
System Security, Internation Journal in Software Tools and Technology,
Vol. 7, pp. 233-247, Springer-Verlag, 2005.

Alessandro Aldini, Marco Bernardo, A Formal Approach to the Integrated
Analysis of Security and QoS, Reliability Engineering and System Safety,
Vol. 92,pp. 1503-1520, Elseiver, 2007.

project, in http://www.evita-

[

[4

—_

[5

—

[7

—

[8

—_

[9] Genge Béla and Haller Piroska, A Modeling Framework for Generat-
ing Security Protocol Specifications, 10th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, IEEE 978-
0-7695-3523-4/08, 2008.

[10] Antonio Mafia and Gimena Pujol, Towards Formal Specification of
Abstract Security Properties, The Third International Conference on
Availability, Reliability and Security, IEEE 0-7695-3102-4/08, 2008.

[11] Riham Hassan, Shawn Bohner, Sherif El-Kassas and Michael Hinchey,
Proceedings of the 42nd Hawaii International Conference on System
Sciences, IEEE 978-0-7695-3450-3/09, 2009.

[12] Yomna Ali, Sherif El-Kassas, Mohy Mahmoud, A Rigorous Method-
ology for Security Architecture Modeling and Verification, Proceedings
of the 42nd Hawaii International Conference on System Sciences, IEEE
978-0-7695-3450-3/09, 2009.

[13] D. Dolev and A. Yao. On the security of public key protocols, in
Proceedings of the IEEE Transactions on Information Theory, 29(2),
1983.

[14] A. Maturia, A.R. Singh, P.V. Sharavan, R. Kirtankar, Some New Multi-
Protocol Attacks, in proceedings 15th International Conference on Ad-
vanced Computing and Communications, 0-7695-3059-1/07, IEEE, 2007.

[15] Z. Huzar, J. Maggot, Real-Time and Performance Evaluation Extensions
of Specification Language LOTOS, 0-8186-6902-0/95, IEEE, 1995.

[16] J-P. Courtiat, C.A.S. Santos, C. Lohr, B. Outtaj, Experience with
RT-LOTOS, a Temporal Extension of the LOTOS Formal Description
Technique, in Computer Communications Vol. 23, Elsevier Science, pp.
1104-1123, 2000.

[17] A. Furfaro and L. Nigro, Temporal Verification of Communicating Real-
Time State Machines Using Uppaal, IEEE International Conference on
Industrial Technology, Rende, Italy, Dec 2003.

[18] E.M. Clarke Jr., O. Grumberg and D.A. Peled, Model Checking, Ed. The
MIT Press, Cambridge Massachusetts, London, England, 1999.

[19] G. Behrmann, A. David and K.G. Larsen, A Tutorial on Uppaal, in
http://www.uppaal.com/.

[20] TTool: The TURTLE Toolkit. In http://labsoc.comelec.enst.fr/turtle/ttool.html.

[21] L. Apvrille, J.-P. Courtiat, C. Lohr, and P. De Saqui-Sannes, TURTLE:
A Real- Time UML Profile Supported by a Formal Validation Toolkit, In
IEEE transactions on Software Engineering, volume 30, pages 473-487,
Jul 2004.

[22] The website of the EVITA project in http://www.evita-project.org/.

[23] E. Kelling, M. Friedewald, T. Leimbach, M. Menzel, P. Séger, H. Seudie,
and B. Weyl, Specification and Evaluation of e-Security Relevant Use
Cases, Technical Report Deliverable, D2.1, EVITA Project, 2009.

