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Abstract—In the context of multibeam satellite uplink commu-
nications, we derive a closed-form expression for the sum rate
when nonlinearity related to the high power amplifier is taken
into account. We then propose a per-user power allocation for
maximizing this sum rate. We resort to Signomial Programming.
We show significant performance robustness compared to the
allocation done by using linear regime only.

Satellite communications are a candidate for routing traffic
between two terrestrial points in order to handle the exponen-
tial increase of data traffic. Therefore satellite uplink/return
link is of great interest where terrestrial users transmit data
to the satellite, which then acts as a relay and sends it to a
terrestrial gateway. The advocated bandwidth is the so-called
Ka-band. Unfortunately, when operating close to their satura-
tion regime, High Power Amplifiers (HPA) on satellite board
may exhibit nonlinearity and communication may operate on
this non-linear regime in order to ensure large Signal-to-Noise
Ratio (SNR) enough. In addition, each satellite operates on
various earth areas, called beams which may overlap. Conse-
quently, the performance of the satellite system is affected by
the nonlinear HPA which leads to several kinds of interference,
especially, the inter-beam nonlinear interference.

The objective of this paper is twofold:

• Deriving in closed-form the per-user date rate by taking
into account the nonlinearity and the multibeam context.
Note that the single beam case has been addressed in [1].

• Optimizing the per-user power regarding several metrics:
(a) minimization of the sum-power, (b) maximization of
the minimum per-user rate, and (c) maximization of the
sum-rate. The proposed solutions are valid for any HPA’s
operating mode.

The paper is organized as follows: in Section I, we introduce
the system model. In Section II, we provide the data rate in
closed-form and especially the non linear interference level. In
Section III, we solve our resource allocation problem related
to the the expressions exhibited in Section II. In Section IV,
numerical evaluations are provided. Concluding remarks are
drawn in Section V.

This work has been funded by ANR through the SIERRA French-
Luxembourgian grant.

I. SYSTEM MODEL

We assume B beams and each beam assigns M users.
Frequency-Division Multiple-Access (FDMA) is considered
for multiple access per beam. The user belonging to beam b
and using subband m transmits a symbol sequence {ab,m,n}n.
Let Pb,m := E

[
|ab,m,n|2

]
and Rb,m be the power and the data

rate for this user, respectively.
The baseband signal emitted by the user using subband m

in beam b, denoted by xb,m(t), is

xb,m(t) =
∑
n∈Z

ab,m,npT (t− nTs), (1)

where pT (t) is a square-root Nyquist shaping filter, assumed
to be the same for all users, and Ts is the symbol rate .

Each signal xb,m(t) is transposed around the frequency fm.
The difference between two adjacent frequencies is ∆F .

The antenna b at the satellite side associated with beam b
receives the sum of the M transposed signals of this beam and
the inter-beam interference. This received signal is denoted by
x

(b)
c (t),

x(b)
c (t) =

M∑
m=1

√
G

(b)
m xb,m(t)e2iπfmt + x

(b)
IB (t) (2)

where x(b)
IB (t) is the inter-beam interference,

x
(b)
IB (t) =

B∑
b′=1
b′ 6=b

M∑
m=1

√
G

(b′,b)
m xb′,m(t)e2iπfmt, (3)

with
• G

(b)
m the channel gain on subband m between the user of

beam b and antenna b,
• G

(b′,b)
m the channel gain on subband m between the user

of beam b′ and antenna b.
Let y(b)

c (t) be the received signal at the gateway coming
from the antenna b. Due to the HPA on satellite board, modeled
by a third-order power series, we get

y(b)
c (t) = ω1x

(b)
c (t) + ω3x

(b)
c (t)x(b)

c (t)xc
(b)(t) + w(t). (4)

where · stands for the complex-conjugate, and w(t) is a
complex-valued circularly-symmetric zero-mean AWGN. The



coefficients ω1 and ω3 are positive parameters and characterize
the nonlinear distortion of the HPA [2].

Let us now consider the demodulation for user belonging
to beam b using subband m. We first go back in baseband,

yb,m(t) = y(b)
c (t)e−2iπfmt, (5)

we then apply the matched filter pR(t) := pT (−t),

zb,m(t) =

∫
R
pR(τ)yb,m(t− τ)dτ. (6)

Assuming perfect synchronization between beams, which
is realistic since the beams are collocated at the satellite, and
after some straightforward derivations, we obtain

zb,m(t) = ω1

M∑
m′=1

∑
n′∈Z

√
G

(b)
m′ab,m′,n′e2iπ(fm′−fm)t

× h1(t− n′Ts,m′ −m)

+ ω1

B∑
b′=1
b′ 6=b

M∑
m′=1

∑
n′∈Z

√
G

(b′,b)
m′ ab′,m′,n′e2iπ(fm′−fm)t

× h1(t− n′Ts,m′ −m)

+ ω3

B∑
b1,b2,b3=1

M∑
m1,m2,m3=1

∑
n1,n2,n3∈Z

√
G

(b1,b)
m1 G

(b2,b)
m2 G

(b3,b)
m3

× ab1,m1,n1
ab2,m2,n2

a∗b3,m3,n3
e2iπ(m1+m2−m3−m)∆Ft

× h3(t− n1Ts, t− n2Ts, t− n3Ts,m1 +m2 −m3 −m)

+

∫
R
pR(τ)wc(t− τ)e−2iπfm(t−τ)dτ, (7)

with the following two Volterra kernels of first-order and third-
order respectively

h1(t1, `) =

∫
R
pT (t1 − τ)pR(τ)e−2iπ`∆Fτdτ,

h3(t1, t2, t3, `) =

∫
R

3∏
j=1

[pT (tj − τ)] pR(τ)e−2iπ`∆Fτdτ.

Finally, the signal is sampled at the symbol rate Ts, resulting
in the sequence zb,m,n = zb,m(nTs). This term can be
decomposed into four parts:

zb,m,n = z
(L)
b,m,n + z

(I)
b,m,n + z

(NL)
b,m,n + wb,m,n, (8)

with z(L)
b,m,n the part depending on the current symbol, z(I)

b,m,n

the part depending linearly on the symbols {ab,m,n} except
the current one, and z(NL)

b,m,n the part depending non-linearly on
the symbols {ab,m,n}.

As h1(nTs,m) is zero for any n 6= 0 or any m 6= 0
(orthogonality in time and frequency between users), and one
otherwise, we force m′ = m and n′ = n to obtain the linear
part as follows

z
(L)
b,m,n = ω1

√
G

(b)
m ab,m,n, (9)

z
(I)
b,m,n = ω1

B∑
b′=1
b′ 6=b

√
G

(b′,b)
m ab′,m,n. (10)

The non-linear part takes the following form

z
(NL)
b,m,n =ω3

B∑
b1,b2,b3=1

M∑
m1,m2,m3=1

∑
n1,n2,n3∈Z

e2iπ(m1+m2−m3−m)∆FnTs

×
√
G

(b1,b)
m1 G

(b2,b)
m2 G

(b3,b)
m3

× ab1,m1,n−n1
ab2,m2,n−n2

a∗b3,m3,n−n3

× h3(n1Ts, n2Ts, n3Ts,m1 +m2 −m3 −m).
(11)

As currently done in most receivers, we consider the case of
nonlinearity-agnostic receiver, i.e., a receiver which sees the
nonlinear effects just as an additional noise. As a consequence,
the data rate of user belonging to beam b using subband m
becomes

Rb,m = log2 (1 +Qb,m) (12)

with the following SINR,

Qb,m =
P(L)
b,m

P(I)
b,m + P(NL)

b,m + PW

, (13)

where P(L)
b,m := E[|z(L)

b,m,n|2], P(I)
b,m := E[|z(I)

b,m,n|2], P(NL)
b,m :=

E[|z(NL)
b,m,n|2] are the power of the useful signal, the linear

interference, and the nonlinear interference, respectively. The
power of the AWGN is PW := E[|wb,m,n|2].

II. CLOSED-FORM EXPRESSION OF THE INVOLVED TERMS
IN DATA RATE

The purpose of this Section is to express in closed-form the
terms involved in (12), and emphasize their properties. To this
aim, let us consider the two definitions below [3].

Definition 1. A monomial function takes the following form:

m(P) = c
∏
b

∏
m

P
αb,m

b,m

with c ∈ R+ and αb,m ∈ R.

Definition 2. A posynomial function takes the following form:

p(P) =

N∑
n=1

mn(P)

where {mn}n=1,··· ,N are monomial functions.

A. Expression for the power of the useful signal

According to (9), the power of the useful signal is

P(L)
b,m = ω2

1G
(b)
m Pb,m (14)

where Pb,m = E[|ab,m,n|2] is the transmit power of user
belonging to beam b using subband m.

Result 1. The term P(L)
b,m is a monomial function in P.



B. Expression for the power of the linear interference

According to (10), the power of the linear interference is

P(I)
b,m = ω2

1

B∑
b′=1
b′ 6=b

G(b′,b)
m Pb′,m (15)

Result 2. The term P(I)
b,m is a posynomial function in P.

C. Expression for the power of the nonlinear interference

Since (11), the power of the nonlinear interference is

P(NL)
b,m = ω2

3

B∑
b1,b2,b3=1

B∑
b′1,b

′
2,b

′
3=1

M∑
m1,m2,m3=1

M∑
m′

1,m
′
2,m

′
3=1∑

n1,n2,n3∈Z

∑
n′
1,n

′
2,n

′
3∈Z

e2iπ(m1+m2−m3−m)∆FnTs

× e−2iπ(m′
1+m′

2−m
′
3−m)∆FnTs

×
√
G

(b1,b)
m1 G

(b2,b)
m2 G

(b3,b)
m3

√
G

(b′1,b)

m′
1
G

(b′2,b)

m′
2
G

(b′3,b)

m′
3

× E[ab1,m1,n−n1ab2,m2,n−n2ab3,m3,n−n3

ab′1,m′
1,n−n′

1
ab′2,m′

2,n−n′
2
ab′3,m′

3,n−n′
3
]

× h3(n1Ts, n2Ts, n3Ts,m1 +m2 −m3 −m)

× h3(n′1Ts, n
′
2Ts, n

′
3Ts,m

′
1 +m′2 −m′3 −m). (16)

This term is already involved in the derivations done in [4]
for single beam satellite. We easily extend this work in case
of multibeam satellite.

Finally, we have

P(NL)
b,m = 4ω2

3θ
(1)
0

B∑
b1,b2,b3=1

M∑
m′,m′′=1

G(b1,b)
m G

(b2,b)
m′ G

(b3,b)
m′′

× Pb1,mPb2,m′Pb3,m′′

+ 4δ̃m,Mω
2
3θ

(1)
1

B∑
b1,b2,b3=1

M∑
m′,m′′=1

G
(b1,b)
m+1 G

(b2,b)
m′ G

(b3,b)
m′′

× Pb1,m+1Pb2,m′Pb3,m′′

+ 4δ̃m,1ω
2
3θ

(1)
1

B∑
b1,b2,b3=1

M∑
m′,m′′=1

G
(b1,b)
m−1 G

(b2,b)
m′ G

(b3,b)
m′′

× Pb1,m−1Pb2,m′Pb3,m′′

+ 2ω2
3θ

(2)
0

B∑
b1,b2,b3=1

M∑
m1,m2,m3=1

m=m1+m2−m3

G(b1,b)
m1

G(b2,b)
m2

G(b3,b)
m3

× Pb1,m1Pb2,m2Pb3,m3

+ 2ω2
3θ

(2)
1

B∑
b1,b2,b3=1

M∑
m1,m2,m3=1

m=m1+m2−m3±1

G(b1,b)
m1

G(b2,b)
m2

G(b3,b)
m3

× Pb1,m1Pb2,m2Pb3,m3 . (17)

where δ̃m,m′ = 1 − δm,m′ with δm,m′ being the Kronecker
index. The coefficients θ(1)

` and θ(2)
` are positive and given by

θ
(1)
` =

∑
n′∈Z

∣∣∣∣∣ ∑
n′′∈Z

h3(n′Ts, n
′′Ts, n

′′Ts, `)

∣∣∣∣∣
2

.

θ
(2)
` =

∑
n1,n2,n3∈Z

|h3(n1Ts, n2Ts, n3Ts, `)|2 .

Result 3. The term P(NL)
b,m is a posynomial function in P.

III. POWER ALLOCATION STRATEGIES

So far, we have an expression of the data rate in closed-
form as well as the mathematical properties of the involved
terms. We now are interested in three optimization problems.
For all the studied problems, the users undergo a maximum
transmission power constraint, which is expressed by the
following relationship,

0 ≤ Pb,m ≤ Pmax ∀b,m. (18)

Before starting to study the problems, we can notice that the
term (13) is a ratio of a monomial function over a posynomial
function. As a result, the expression of the data rate (12) is
the logarithm of ratio of posynomial functions.

Optimization problems containing posynomial ratios boil
down to Signomial Programming (SP) [5], which are non-
convex and can be solved by using alternatively Successive
Convex Approach (SCA) and Geometric Programming (GP).
Consequently, we are able to obtain practical algorithms for
solving SP optimization problems.

A. Minimization of the sum-power

In this Section, the problem of minimization of the sum-
power is formulated.

Problem 1.

P? = arg min
P

B∑
b=1

M∑
m=1

Pb,m

s.t. (18),
log2 (1 +Qb,m) ≥ Rtb,m ∀b,m (19)

The formulation of Problem 1 is neither concave nor of the
GP form. It is therefore impossible to use tools to solve it
analytically or numerically with acceptable complexity, i.e.,
in polynomial time. The idea is to rewrite this problem in a
standard GP form in order to be able to apply the standard
tools of GP optimization.

The difficulty is located in the constraint (19), where we
have a ratio of posynomial functions. However, this equation
can be rewritten as:(

2R
t
b,m − 1

)
P(L)
b,m

−1 (
P(I)
b,m + P(NL)

b,m + PW

)
≤ 1 (20)

Lemma 1. The constraint (20) has the form of a posynomial
less than or equal to one, leading to a valid constraint for GP.

Proof. The term 2R
t
b,m − 1 is a positive scalar, P(L)

b,m

−1
is a

monomial function. Thanks to the addition rule of posynomial,



the rest of the Left Hand Side (LHS) is a posynomial function.
Finally, thanks to multiplication rule between a monomial and
a posynomial function, the LHS is a posynomial function.

The resulting optimization problem writes as:

Problem 2.

P? = arg min
P

B∑
b=1

M∑
m=1

Pb,m

s.t. (18) and (20).

Result 4. Problem 2 is GP since it minimizes of posynomial
over a set in GP form and can be efficiently solved by
numerical algorithms [3].

B. Maximization of the minimum per-user rate
In this Section, we formulate the problem of maximization

of the minimum per-user rate.

Problem 3.

P? = arg max
P

min
b,m

log2 (1 +Qb,m) s.t. (18).

Thanks to the monotonic growth of the logarithm function,
Problem 3 is equivalent to the following one.

P? = arg max
P

min
b,m

Qb,m

s.t. (18).

The difficulty is located in the objective function, which
is not concave nor a posynomial function because of the
minimum operator and the ratio of posynomial functions. First,
we introduce a new variable t ∈ R+∗ in order to remove the
minimum operator. The problem becomes

{P?, t?} = arg max
P,t

t

s.t. (18),
Qb,m ≥ t ∀b,m (21)

Remark 1. We notice that max t is equivalent to min t−1

Moreover, the constraint (21) can be rewritten as:

P(L)
b,m

−1
t
(
P(I)
b,m + P(NL)

b,m + PW

)
≤ 1 ∀b,m (22)

Lemma 2. The constraint (22) has the form of a posynomial
less than or equal to one, leading to a valid constraint for GP.

Proof. The term P(L)
b,m

−1
is a monomial function. By recalling

that posynomial are closed to addition and multiplication, the
LHS is a posynomial function.

The resulting optimization problem writes as:

Problem 4.

{P?, t?} = arg min
P,t

t−1

s.t. (18) and (22).

Result 5. Problem 4 is GP since it minimizes of monomial
(which is a posynomial term) over a set in GP form and can
be efficiently solved by numerical algorithms [3].

C. Maximization of the sum-rate

In this Section, the problem of maximization of the sum-rate
is formulated.

Problem 5.

P? = arg max
P

B∑
b=1

M∑
m=1

log2 (1 +Qb,m)

s.t. (18).

Thanks to the monotonic growth of the logarithm function,
Problem 5 is equivalent to the following one.

P? = arg min
P

B∏
b=1

M∏
m=1

P(I)
b,m + P(NL)

b,m + PW

P(L)
b,m + P(I)

b,m + P(NL)
b,m + PW

s.t. (18).

The difficulty is located in the objective function, where we
have a ratio of posynomial functions, so the problem boils
down to SP. Since the objective function of the problem is
already a ratio of posynomials, we can directly use the succes-
sive monomial approximation of the denominator [5], [6]. In
[6], the authors cover the case of linear interference and apply
the trick of monomial approximation since its denominator is
also a posynomial function. Here, our denominator includes
the nonlinear interference terms and remains a posynomial
function. We denote it by

Db,m = P(L)
b,m + P(I)

b,m + P(NL)
b,m + PW (23)

The monomial approximation at the point P(i) is denoted
by D̃(i)

b,m(P). This approximation (25) is built in such way that
it satisfies the SCA condition.

The coefficients introduced in (25) are given by

λ
(L)
b,m =

ω2
1G

(b)
m P

(i)
b,m

Db,m(P(i))
, λ

(I)
b,m(b′) =

ω2
1G

(b′,b)
m P

(i)
b′,m

Db,m(P(i))

λ
(NL,1)
b,m (b1, b2, b3,m

′,m′′) =

4ω2
3θ

(1)
0 G

(b1,b)
m G

(b2,b)
m′ G

(b3,b)
m′′ P

(i)
b1,m

P
(i)
b2,m′P

(i)
b3,m′′

Db,m(P(i))

λ
(NL,2)
b,m (b1, b2, b3,m

′,m′′) =

4δ̃m,Mω
2
3θ

(1)
1 G

(b1,b)
m+1 G

(b2,b)
m′ G

(b3,b)
m′′ P

(i)
b1,m+1P

(i)
b2,m′P

(i)
b3,m′′

Db,m(P(i))

λ
(NL,3)
b,m (b1, b2, b3,m

′,m′′) =

4δ̃m,1ω
2
3θ

(1)
1 G

(b1,b)
m−1 G

(b2,b)
m′ G

(b3,b)
m′′ P

(i)
b1,m−1P

(i)
b2,m′P

(i)
b3,m′′

Db,m(P(i))

λ
(NL,4)
b,m (b1, b2, b3,m1,m2,m3) =

2ω2
3θ

(2)
0 G

(b1,b)
m1 G

(b2,b)
m2 G

(b3,b)
m3 P

(i)
b1,m1

P
(i)
b2,m2

P
(i)
b3,m3

Db,m(P(i))



D̃
(i)
b,m(P) =

(
ω2

1G
(b)
m Pb,m

λ
(L)
b,m

)λ(L)
b,m
(
PW

λ
(W)
b,m

)λ(W)
b,m B∏

b′=1
b′ 6=b

(
ω2

1G
(b′,b)
m Pb′,m

λ
(I)
b,m(b′)

)λ(I)
b,m(b′)

×
B∏

b1,b2,b3

M∏
m′,m′′=1

(
4ω2

3θ
(1)
0 G

(b1,b)
m G

(b2,b)
m′ G

(b3,b)
m′′ Pb1,mPb2,m′Pb3,m′′

λ
(NL,1)
b,m (b1, b2, b3,m′,m′′)

)λ(NL,1)
b,m (b1,b2,b3,m

′,m′′)

×
B∏

b1,b2,b3=1

M∏
m′,m′′=1

(
4δ̃m,Mω

2
3θ

(1)
1 G

(b1,b)
m+1 G

(b2,b)
m′ G

(b3,b)
m′′ Pb1,m+1Pb2,m′Pb3,m′′

λ
(NL,2)
b,m (b1, b2, b3,m′,m′′)

)λ(NL,2)
b,m (b1,b2,b3,m

′,m′′)

×
B∏

b1,b2,b3=1

M∏
m′,m′′=1

(
4δ̃m,1ω

2
3θ

(1)
1 G

(b1,b)
m−1 G

(b2,b)
m′ G

(b3,b)
m′′ Pb1,m−1Pb2,m′Pb3,m′′

λ
(NL,3)
b,m (b1, b2, b3,m′,m′′)

)λ(NL,3)
b,m (b1,b2,b3,m

′,m′′)

×
B∏

b1,b2,b3

M∏
m1,m2,m3=1

m=m1+m2−m3

(
2ω2

3θ
(2)
0 G

(b1,b)
m1 G

(b2,b)
m2 G

(b3,b)
m3 Pb1,m1Pb2,m2Pb3,m3

λ
(NL,4)
b,m (b1, b2, b3,m1,m2,m3)

)λ(NL,4)
b,m (b1,b2,b3,m1,m2,m3)

×
B∏

b1,b2,b3=1

M∏
m1,m2,m3=1

m=m1+m2−m3±1

(
2ω2

3θ
(2)
1 G

(b1,b)
m1 G

(b2,b)
m2 G

(b3,b)
m3 Pb1,m1Pb2,m2Pb3,m3

λ
(NL,5)
b,m (b1, b2, b3,m1,m2,m3)

)λ(NL,5)
b,m (b1,b2,b3,m1,m2,m3)

(25)

λ
(NL,5)
b,m (b1, b2, b3,m1,m2,m3) =

2ω2
3θ

(2)
1 G

(b1,b)
m1 G

(b2,b)
m2 G

(b3,b)
m3 P

(i)
b1,m1

P
(i)
b2,m2

P
(i)
b3,m3

Db,m(P(i))

λ
(W)
b,m =

PW

Db,m(P(i))

The resulting approximated optimization problem is

Problem 6.

P?(i) = arg min
P

B∏
b=1

M∏
m=1

(
D̃

(i−1)
b,m

)−1 (
P(I)
b,m + P(NL)

b,m + PW

)
s.t. (18).

Result 6. Problem 6 is GP since it minimizes a posynomial
function over a set in GP form and can be efficiently solved
by numerical algorithms [3].

Since the monomial approximation satisfies the SCA con-
dition, the SCA procedure depicted in Algorithm 1 converges
towards a stationary point. The obtained solution is sub-
optimal.

IV. NUMERICAL RESULTS

We consider the uplink of a multibeam multiband satellite
communication system, where each beam utilizes the 27.5 -
29.5GHz band. We assume that the assignement of users in the
beams and the subbands is done [7], [8]. We set B = 2 beams
and M = 6 subbands (so we have 6 users per beam). The users
use the same shaping filter, which is a SRRC with a roll-off
factor of 0.25. The maximum transmit power of terrestrial user
is Pmax = 50W. The channel gains are computed according

Algorithm 1 SCA based procedure for solving Problem 5
1: Set ε > 0, E = ε+ 1, i = 0
2: Find P(0) a feasible solution of Problem 5
3: Compute the sum-rate R0 using (12)
4: while E > ε do
5: i = i+ 1
6: Compute the monomial approximation D̃

(i−1)
b,m around

the point P(i− 1), using (25)
7: Find P?(i) the optimal solution of Problem 6
8: Compute the sum-rate Ri and E = |Ri −Ri−1|
9: end while

10: return P? = P?(i)

to [8]. Notice that the channel gain values within a same
beam {G(b)

m }m are close to each others. The HPA distorsion
coefficient ω1 and ω3 are 1 and 0.05 respectively. In addition,
we add a variable gain pre-amplifier just before the HPA. This
device allows to set the HPA regime and changes the channel
gains uniformly for incoming signal of the same antenna. For
simplicity, we assume that the gains of the pre-amplifiers are
identical for all HPAs. The CVX toolbox is used to solve GP
problem [9].

For each figure, we display three power allocations related
to the considered problem:
• naive1 heuristic allocation, where the users transmit at the

same power, i.e. Pb,m = P , and line-search is performed
to find the optimal allocation for the considered problem.

• naive2 heuristic allocation, where the received power at
the satellite level is the same, i.e. G(b)

m Pb,m = PR, and
line-search is performed to find the optimal allocation for



the considered problem.
• the solution proposed by this paper, denoted P ?.

In addition, we display the solution obtained when the con-
sidered problem does not take into account the nonlinear
interference, i.e. when P(NL)

b,m = 0 in (13). This solution is
denoted by P li and the data rate is then evaluated with (12).
In dotted line, we draw the data rate evaluated without the
nonlinear interference.

In Fig. 1, we plot the sum-rate versus the pre-amplifier gain
obtained for the four above mentioned resource allocations. We
remark that taking into account the nonlinear interference in
the optimization problem is relevant since it increases the sum-
rate, and enables us to keep the same performance whatever
the nonlinear regime.
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Fig. 1. Sum rate vs. pre-amplifier gain Gamp.

In Fig. 2, we plot the minimum per-user data rate versus the
pre-amplifier gain for the four above mentioned resource allo-
cations. We observe that the proposed solution is better when
the HPA operates in nonlinear regime. It can be interesting to
use this regime when the channel gains are very different.
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Fig. 2. Minimum per-user data rate vs. pre-amplifier gain Gamp.

In Fig. 3, we plot the sum-power versus the target data rate
for the four above mentioned resource allocations. We assume
that the target rate is the same for the users and we focus
on two values of pre-amplifier gain. Once again, the proposed
solution is interesting for the nonlinear regime of the HPA.
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Fig. 3. Sum-power vs. target data rate Rt
b,m = Rt for Gamp =∈ {−10, 10}.

V. CONCLUSION

The proposed allocation based on Signomial Programming
(more precisely, Complementary Geometric Programming)
outperforms the naive policies as well as the resource allo-
cation obtained by taking into account only the inter-beam
linear interference. For future work, we will focus on the case
where the receiver exploits the nonlinear effect which leads
to new data rate closed-form expressions and new resource
allocations optimization problems.
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