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Abstract—Nonlinear channel impairments are a major obstacle
in fiber-optic communication systems. To facilitate a higher data
rate in these systems, the complexity of the underlying digital
signal processing algorithms to compensate for these impairments
must be reduced. Deep learning-based methods have proven
successful in this area. However, the concept of computational
complexity remains an open problem. In this paper, a low-
complexity convolutional recurrent neural network (CNN+RNN)
is considered for deep learning of the long-haul optical fiber
communication systems where the channel is governed by the
nonlinear Schrödinger equation. This approach reduces the com-
putational complexity via balancing the computational load by
capturing short-temporal distance features using strided convolu-
tion layers with ReLU activation, and the long-distance features
using a many-to-one recurrent layer. We demonstrate that for
a 16-QAM 100 G symbol/s system over 2000 km optical-link
of 20 spans, the proposed approach achieves the bit-error-rate
of the digital back-propagation (DBP) with substantially fewer
floating-point operations (FLOPs) than the recently-proposed
learned DBP, as well as the non-model-driven deep learning-
based equalization methods using end-to-end MLP, CNN, RNN,
and bi-RNN models.

Index Terms—Fiber-optic communications, deep learning, non-
linear channel impairments, convolutional recurrent neural net-
works.

I. INTRODUCTION

Signal propagation in long-haul optical fibers is subject to
chromatic dispersion (CD), Kerr nonlinearity, and noise. This
causes the signal to undergo distortions while propagating in
the channel. As a result, digital signal processing is usually
performed at the receiver (RX) to equalize the signal. A pop-
ular equalization method for optical fiber channels modelled
by nonlinear Schrödinger (NLS) equation, is digital back-
propagation (DBP) [1]. DBP reverses the deterministic effects
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of the channel by propagating the signal backward in distance
using the split-step Fourier method (SSFM) [2].

In addition to limited performance, DBP suffers from high
computational complexity associated with a large number of
spatial segments and processing bandwidth [3]. This high com-
plexity has hindered the real-time implementation of DBP in
practice [4]. To address this limitation, several low-complexity
equalizers have been proposed in lieu of DBP, including neural
receivers that are most promising [5]–[10].

There are generally two classes of neural network-based
receivers for fiber-optic communications: those driven by a
model-based deep learning approach, also called deep unfold-
ing [11], and those obtained on the basis of end-to-end deep
learning of the transmitted symbols given the sampled wave-
form at RX (or typically the waveform after CD compensation)
by using a neural network that does not incorporate the channel
model [12].

In model-based deep learning methods, a neural network
architecture is considered with a computation graph based
on the channel model. The model parameters are then tuned
using variants of the stochastic gradient descent and back-
propagation algorithm. An example is learned DBP (LDBP)
[5], [6], [13], which uses the computation graph generated by
SSFM as a blueprint for the neural network design, resulting
in a convolutional neural network (CNN) with a trainable
activation function. It is shown that LDBP provides 50%
complexity reduction over DBP for a comparable Q-factor
performance in a 16-QAM transmission at 20 G symbol/s
for a 32 × 100km optical fiber link [5]. A roughly similar
approach is also adopted by [14] to simulate DBP in dual-pol
wavelength-division-multiplexing (WDM) systems.

Although LDBP achieves good performance, it remains
computationally complex (in addition to requiring training).
The computation graph of LDBP with Nsp spans and Nstps

steps per span (StPS) is a convolutional neural network (CNN)
with ℓ = 3 × Nsp × Nstps successive linear and non-linear
layers [13, Sec. 4]. For Nsp = 32 and Nstps = 3 considered
in [13], this results in ℓ = 288 layers, which is high.

On the other hand, non-model-driven neural network-based
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equalizers try to learn the equalization using a relatively
shallow neural network. Several models have been proposed
in this category [10]. A number of end-to-end multi-layer
perceptron (MLP) based approaches is reviewed in [7], [12].
A number of CNN+MLP based methods are also presented
in [15]–[17]. These papers report a good BER performance
for the proposed models in short-reach single-mode fiber
(SMF) transmission. Particularly, [16] presents a relatively
low-complexity CNN+MLP model with 5 hidden layers, out-
performing the Volterra nonlinear equalizers in a 128 Gbps
PAM-4 EML-based optical-link over 40 km SMF transmission.
The performance of bidirectional recurrent neural networks
(bi-RNNs) models is also investigated in [9], [18], [19]. [9]
shows that a bi-LSTM can achieve the BER performance of
DBP with lower computational complexity in 16-QAM trans-
mission at distances over 1000 km. The same performance
as bi-LSTMs, at near-optimal launch powers, is argued to
be achievable by bi-GRUs with approximately 20% fewer
floating-point operations (FLOPs) [19]. A comparative study
of the performance and complexity of several neural network
architectures for end-to-end deep learning-based equalization
in fiber-optic communications is provided in [20].

In this paper, we note that different neural network mod-
els achieve nearly the same BER with optimized hyper-
parameters, however, with different computational costs (mea-
sured by the number of FLOPs). This is associated with
the efficiency of the models to capture the features in data.
Therefore, an architecture more aligned with the considered
learning task could lead to a notable optimization in computa-
tional complexity. We note that although CNNs can efficiently
capture short-temporal-distance features in the signal, they
may not efficiently capture long-distance features in terms
of the model size and complexity. On the other hand, even
though RNNs have turned out to be efficient in capturing long-
temporal-distance features, they are not as powerful as CNNs
in capturing short-temporal-distance dependencies.

We thus propose a hybrid CNN+RNN model for efficient
end-to-end deep learning-based equalization of the sampled
waveform at RX (after CD compensation) in fiber-optic com-
munication systems. We reduce the computational complexity
of the model using two techniques. First, we apportion the
learning task into capturing short temporal-distance features
using a cascade of CNN layers and capturing long temporal-
distance features using a many-to-one recurrent layer. Second,
we reduce the dimensionality of data prior to the RNN layer
via strided convolutions in the CNN block. We show that
for a 16-QAM 100 G symbol/s SMF transmission over a
20 × 100km optical-link, the proposed CNN+RNN model
results in, respectively, 98%, 77%, 32%, and 34% reduction
in the number of FLOPs over LDBP and the non-model-
driven end-to-end deep learning-based approach using MLP,
CNN+MLP, and RNN models adopted in the literature.

Fig. 1: The schematic of the fiber-optic communication system under
consideration.

II. SYSTEM MODEL

The propagation of signal in one polarization in SMF is
governed by the NLS equation

∂q(t, z)

∂z
= −α

2
q(z, t)− jβ2

2

∂2q

∂t2
+ jγ|q(t, z)|2q(t, z)

, 0 ≤ z ≤ L, (1)

where q(t, z) is the complex envelope of the signal propagating
in fiber as a function of time t and distance z. Here, L is
the fiber length, α and β2 are respectively attenuation and
chromatic dispersion coefficients, and γ is the nonlinearity
parameter.

The fiber-optic link is typically divided into a number of so-
called spans. Amplification is performed using Erbium-doped
fiber amplifiers (EDFA) after each span to compensate for the
span loss.

The NLS equation is numerically solved using SSFM. The
algorithm can be used to reverse the deterministic effects of the
channel by calculating the evolution of the signal in backward
direction using the negated channel parameters. The BER
performance of this approach, called digital back-propagation
[1], is extensively studied [21].

In SSFM, after conceptually splitting the fiber into M
spans of length Lsp, the evolution of the signal in each span
is calculated as follows: both space and time are uniformly
discretized into the sets {z0, z1 . . . , zK} and {t0, t1, . . . , tL},
respectively, i.e. zk = z0 + ∆zk and tu = t0 + ∆tu, where
K = Nstps. The evolution of the signal q(z) from the position
z0 to position zK is computed as follows:

q(zk+1) = F†DLFDNq(zk), (2)

where q(zk) is the L × 1 length-vector of sample values
q(tu, zk), u = 0, 1, . . . ,L − 1, at position zk, F and F† are
respectively discrete Fourier transform (DFT) and inverse DFT
(IDFT) matrices, DN is a diagonal matrix operator with entries

ejγ|q(tu,zk)|
2∆z, u = L/2, . . . ,L− 1, (3)

and DL is a diagonal matrix with entries:

e−(α
2 +j β

2 u2/(L∆t)
2)∆z , u = 0, 1, . . . ,L/2− 1,

e−(α
2 +j

β2
2 (L−u)2/(L∆t)

2)∆z , u = L/2, . . . ,L− 1 .
(4)

The EDFA after each span is imitated by applying the mul-
tiplicative factor G−1 = e

α
2 Lsp to the signal, followed by a



L× 1 length-vector of zero-mean white circularly symmetric
complex Gaussian noise with the power spectral density σ2

derived from the amplifier noise figure.
Fig. 1 depicts the schematic of the communication sys-

tem under consideration. First, the input bit-stream block
m = (m1,m2, . . . ,mNb

), mi ∈ {0, 1}, is mapped to a
sequence of symbols S = (s1, s2, .., sNs

), where si are drawn
from a QAM-constellation. Next, the sequence of symbols is
transformed to the waveform q(t, 0) =

∑∞
i=−∞ sip(t− i/Rs),

where p(t) is the pulse shape and Rs is the baud rate. At RX,
following the sampling of the received waveform q(t,L), the
corresponding vector x is passed to a DSP unit to retrieve
the original sequence of symbols. The retrieved sequence of
symbols and the corresponding bit-stream at RX are denoted
by Ŝ and m̂, respectively.

The goal is to implement an efficient neural network-based
DSP unit in Fig. 1 in terms of complexity-performance trade-
off. The computational complexity is measured as the number
of FLOPs, and performance is evaluated using BER defined
as

BER =
1

Nb

∑
i

1 {mi ̸= m̂i}, (5)

where 1 is the indicator function, equal to 1 if the bracket
condition is met and 0 otherwise. Nb is the number of bits
(bit-stream size). Another performance metric is the effective
signal-to-noise ratio (SNR), defined as

effective SNR =
||S||22

||S− Ŝ||
2

2

, (6)

where ||S||2 = (Σ|si|2)1/2 is the L2-norm of S.

III. PROPOSED HYBRID CNN+RNN ARCHITECTURE

The motivation underlying our approach is to use the
properties of the channel memory and adapt the network ar-
chitecture to obtain a less complex model. This is achieved by
leveraging a many-to-one recurrent layer, thanks to its hidden
state property. However, a purely recurrent architecture is not
efficient either. This is due to the corresponding computational
complexity in the case of passing raw data to the recurrent
layer, and also the inefficiency of the RNN in capturing the
short-temporal dependencies. We suggest that the many-to-one
recurrent and strided convolution layers should be combined
suitably to efficiently represent the memory and capture the
dependencies within the sampled waveform.

Fig. 2 depicts the proposed neural network architecture.
This architecture consists of an initial reshaper mapping the

TABLE I: Fiber and Noise Parameters

adB 0.2 dB/km fiber loss
D 17 ps/(nm-km) chromatic dispersion
γ 1.4 W−1km−1 nonlinearity parameter
h 6.626× 10−34J · s Planck’s constant
c 3× 108 speed of light
λ0 1.55 µm carrier wavelength
Lsp 100 km span length
NF 5 dB EDFA noise figure

Fig. 2: The architecture of the proposed CNN+RNN model.

complex-valued input vector to two parallel channels contain-
ing the real and imaginary parts. The output of the reshaper
is passed to a cascade of strided convolution layers (in our
implementation, we set it to 3 layers), each followed by an
activation function. The low-complexity ReLU activation is
adopted in this respect. This is as against the relatively high-
complexity model-based activation σℓ(x) = xe−jγℓ|x|2 (γℓ is
a trainable parameter for the layer ℓ) used in LDBP, which is
adapted from Kerr induced nonlinearity effect of the fiber-
optic channel. Each strided convolution layer captures the
short-temporal dependencies within the data and reduces the
dimensionality by taking the sampled waveform to a latent
space. Considering that the dimensionality reduction can only
be applied to an extent, reducing the length of the input matrix

Fig. 3: The process flow in the CNN+RNN model. Each array in the
depth axis of the resulting feature map output by the CNN block is
passed to one RNN cell.



TABLE II: The complexity measures for the implemented LDBP,
CNN+MLP, RNN, and the proposed CNN+RNN

Model
#Params
/symbol

#FLOPs
/symbol

Memory requirment
(training mode) #Layers

LDBP-2StPS 0.17K ∼ 750K > 1GB 120
MLP 37K ∼ 37K 80MB 3

CNN+MLP 4.6K ∼ 12.6K 148MB 4
RNN 0.8K ∼ 13K 92MB 1

CNN+RNN 0.75K ∼ 8.5K 107MB 4

at each convolution layer should be accompanied by increasing
the depth of the matrix but in a smaller ratio. This is carried
out by applying the same number of filters as the desired depth
on the input matrix.

Following the CNN block, the batch-normalization layer
normalizes the resulting feature map based on a learned
optimal mean and variance. This has a positive contribution in
speeding up the convergence rate of the model. The normalized
feature map is then passed to a many-to-one recurrent layer,
such that each array in the depth axis is passed to one RNN
cell.

Each RNN cell in the recurrent layer processes the input
vector while it also considers the information received from
the previous cells. The hidden state of the final RNN cell is
subsequently passed to a linear mapping f(x) = αx+µ, where
α, µ ∈ R are trainable parameters, to output the sequence of
symbols Ŝ = (ŝ1, ŝ2, . . . , ŝNs). It is important to note that the
model outputs two values for each ŝi, one for the real part
and one for the imaginary part. Fig. 3 depicts an illustrative
description of the process flow in the proposed CNN+RNN
model.

We highlight that since no information should be forgotten
or reset, in the recurrent layer pipeline, from the first RNN
cell to the last, there is no need to use LSTM or GRU cells.
Furthermore, as the short-temporal dependencies have already
been captured and the neighboring symbols are efficiently
grouped via the CNN block, the number of time-steps passed
to the recurrent layer is quite limited and can be managed well
by simple RNNs.

IV. NUMERICAL RESULTS

We consider a single-polarization 16-QAM 100 G sym-
bol/s point-to-point fiber-optic communication system over
20x100km SMF optical-link, according to the system model
illustrated in Fig. 1. The fiber and noise parameters are
mentioned in Table. I. In this system, root-raised cosine (RRC)
filters, with roll-off of 0.1, were used for pulse shaping.
Forward propagation was simulated using 8 SpS and 50 StPS
in SSFM (increasing either value did not affect the results).
The sampling rate at RX was also set to 8 SpS.

A. Comparison of the neural equalizers

Equalization was considered using CD compensation
(CDC), DBP, LDBP, MLP, CNN (followed by fully connected
layers), RNN, and the proposed hybrid CNN+RNN models.
These models were trained over 120 epochs on a dataset
containing 216 signals of size 27 symbols, i.e., Nb = 29,
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Fig. 5: The effective SNR of the models as a function of the launch
power.

divided into mini-batches of size 29. A validation set of size
213 signals was used during training, and a test set of size 220

was leveraged to evaluate the models. All the models were
created and trained using Tensorflow 2.0 in Python. For all
the models, the loss function was set to mean absolute error
(MSE). For all the models, the optimization algorithm was set
to Adam with the learning rate of 0.001, having the reduce on
plateau property with the patience of 7 and the factor of 0.7,
β1 = 0.85, and β2 = 0.999. The source code of the simulated
system is accessible at [22].

The models that are used in the comparison are described
here. LDBP-2StPS is a fully CNN approach, as it is discussed
in [13], with 3 layers (2 linear and 1 nonlinear) per step,
resulting in 120 layers in total for our scenario. In LDBP,
the input to the neural network is the sampled waveform at



RX, and the output is the equalized waveform. On the other
hand, the MLP, CNN, RNN, and CNN+RNN models were
trained in an end-to-end learning fashion, based on the pairs
of the sampled waveform at RX after CD compensation and
the corresponding transmitted symbols. The MLP has 2 hidden
layers, similar to [7], [23], with the sizes 2 × Ns × fsps
and 2 × Ns, respectively, where fsps is the sampling rate
per symbol. The CNN+MLP is a CNN model with 4 hidden
layers consists of 3 non-strided convolution layers, similar to
[16], followed by a fully-connected layer. The kernel size
for the CNN layers was set to 192 to cover 12 adjacent
symbols. The output layer of the MLP and CNN+MLP models
is a fully-connected layer, without activation, which has two
units per output symbol, one for the real part and one for
the imaginary. The RNN is a many-to-one RNN architecture
consists of simple RNN cells. The input size to each RNN
cell is 16×fsps. The activation function in MLP, CNN+MLP,
and RNN models is Tanh (it was observed in the simulations
to have a better performance than sigmoid, ELU, and ReLU
activations). The CNN+RNN consists of a cascade of 3 strided
convolution layers (followed by ReLU activations) with both
kernel size and stride of 5 for all the layers and the depths of
10,30,70, respectively. A many-to-one RNN layer follows the
CNN block with Tanh activation.

The resulting BER and effective SNR plots of the models
are illustrated in Fig. 4 and Fig. 5, respectively. Expectedly, all
the models (excluding CDC, low complexity DBPs, and the
corresponding LDBPs) reached roughly the same level of error
performance. However, their complexities are quite different,
as shown in Table. II.

It follows from Fig. 5 and Table. II that the proposed
CNN+RNN model achieves the error performance of the other
models with respectively, 98%, 77%, 32%, and 34% fewer
FLOPs than LDBP, MLP, CNN, and RNN models.

The learning curve of the models is also depicted in Fig.
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Fig. 6: Learning curve of the models. Resulting loss (MSE) at optimal
launch power (4 dBm) on the validation dataset as a function of the
number of epochs.

6. According to this figure, the CNN+RNN model takes more
epochs to converge in the training process compared to the
other models. However, training is an offline process, and
therefore training convergence speed is a quite low-impact
criterion for model adoption.

B. The benefits of RNN

As discussed, the lower complexity of the CNN+RNN
model is owing to the efficient distribution of the computa-
tional load between the CNN and RNN blocks such that each
block is primarily responsible for capturing the dependencies it
is more efficient at capturing. For example, in the CNN+MLP
approach, a kernel size of 192 had to be used to capture
the long-range temporal dependencies. This results in a high
memory requirement and leads to inefficiency in the number of
FLOPs. On the other hand, in the pure RNN approach, a high
computational load is tolerated to capture the short temporal
dependencies, which is inefficient.

The memory requirement mentioned in Table. II is obtained
by analyzing the training process of the models on an Intel(R)
Core(TM) i5-2410 CPU @ 2.30 GHz 2.30 GHz, 16.00 GB
RAM, Win10 PC 64-bit system. As it is typically envisioned,
MLP has a lower memory requirement for training than the
other models owing to its relatively lightweight computations
for the back-propagation process; whereas a CNN model,
due to the computational complexity of the back-propagation
for the convolutional layers, and moreover, the size of the
kernel, consumes a noticeable amount of memory. The RNN
model, on another side requires a lower memory requirement
for training than the CNN due to the simple dynamics of
the simple RNN layer (similar to the MLP) for the back-
propagation. However, the lower memory requirement of the
MLP and the RNN models accompanies by a higher number
of FLOPs in a disproportionate manner. Furthermore, they do
not have the same parallel processing capability as CNNs.

The CNN+RNN model captures the so-called equilibrium
point in the memory-FLOPs dilemma. In the problem under
our consideration, it reduces the number of FLOPs by 34%
compared to the pure RNN approach using 16% higher mem-
ory. Plus that it facilitates the possibility of parallel processing
in the CNN layers. Furthermore, note that memory is a highly
more available resource than the processing speed.

Because no information is supposed to be forgotten or rest in
the recurrent layer pipeline, we discussed that there is no need
to use LSTM or GRU units in the recurrent layer. However, we
tested the leveraging of LSTM and GRU cells to check this. In
addition, we also investigated the performance of bidirectional
recurrent layers. These models were designed based on the
many-to-many architecture followed by a flattening and fully-
connected (without activation) layers, similar to [9], [19].

Fig. 7 shows the resulting effective SNR plot of the
CNN+LSTM, CNN+GRU, CNN+biLSTM, CNN+biGRU, and
CNN+biSimpleRNN based equalizers. As anticipated, using
LSTM and GRU layers led to no gain over using simple RNN.
Moreover, no considerable performance improvement was
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observed for using many-to-many bi-RNNs in lieu of many-
to-one uni-RNNs, despite the fact that the former architecture
brings about higher computational complexity. We analyze the
reason for this is that in the many-to-one architecture, all the
information is gathered (by leveraging a memory emulated
by the hidden state property of the RNNs) and processed
collectively, without the need to propagate information in the
reverse direction; whereas, in the many-to-many architecture,
each RNN cell in the layer requires to know the state of the
previous and next RNN cells in the layer, in order to output
an accurate result.

V. CONCLUSION

We proposed a lightweight end-to-end hybrid CNN+RNN
based equalizer trained on the pairs of the sampled wave-
form at RX after CD compensation and the corresponding
transmitted symbols. In the proposed approach, the learning
task was apportioned into capturing long-range dependencies
using RNNs and short-term features using CNNs with ReLU
activation. A many-to-one architecture was implemented for
the recurrent layer to emulate a memory enabling efficient pa-
rameter sharing. Striding was also exploited in the CNN block
to reduce the dimensionality of the data prior to the recurrent
layer. It was demonstrated that for a 16-QAM transmission at
100 G symbol/s over a 20 x 100km SMF optical-link, the
CNN+RNN model achieves the performance of DBP with
around 98% fewer FLOPs than the recently-proposed model-
driven LDBP approach. We furthermore showed that the
proposed CNN+RNN model is computationally more efficient
than using non-model-driven end-to-end MLP, CNN+MLP,
RNN, and biRNN models for the same deep learning-based
equalization task.
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