
HAL Id: hal-03566861
https://telecom-paris.hal.science/hal-03566861

Submitted on 11 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Reinforcement Learning for Scheduling Uplink IoT
Traffic with Strict Deadlines

Benoît-Marie Robaglia, Apostolos Destounis, Marceau Coupechoux, Dimitrios
Tsilimantos

To cite this version:
Benoît-Marie Robaglia, Apostolos Destounis, Marceau Coupechoux, Dimitrios Tsilimantos. Deep Re-
inforcement Learning for Scheduling Uplink IoT Traffic with Strict Deadlines. GLOBECOM 2021 -
2021 IEEE Global Communications Conference, Dec 2021, Madrid, France. pp.1-6, �10.1109/GLOBE-
COM46510.2021.9685561�. �hal-03566861�

https://telecom-paris.hal.science/hal-03566861
https://hal.archives-ouvertes.fr

Deep Reinforcement Learning for Scheduling
Uplink IoT Traffic with Strict Deadlines

Benoı̂t-Marie Robaglia∗†, Apostolos Destounis∗, Marceau Coupechoux†, Dimitrios Tsilimantos∗
∗Mathematical and Algorithmic Sciences Lab, Paris Research Center, Huawei Technologies Co. Ltd.

†LTCI, Telecom Paris, Institut Polytechnique de Paris

Abstract—This paper considers the Multiple Access problem
where N Internet of Things (IoT) devices share a common
wireless medium towards a central Base Station (BS). We propose
a Reinforcement Learning (RL) method where the BS is the agent
and the devices are part of the environment. A device is allowed
to transmit only when the BS decides to schedule it. Besides
the information packets, devices send additional messages like
the delay or the number of discarded packets since their last
transmission. This information is used to design the RL reward
function and constitutes the next observation that the agent can
use to schedule the next device. Leveraging RL allows us to
learn the sporadic and heterogeneous traffic patterns of the IoT
devices and an optimal scheduling policy that maximizes the
channel throughput. We adapt the Proximal Policy Optimization
(PPO) algorithm with a Recurrent Neural Network (RNN) to
handle the partial observability of our problem and exploit the
temporal correlations of the users’ traffic. We demonstrate the
performance of our model through simulations on different num-
ber of heterogeneous devices with periodic traffic and individual
latency constraints. We show that our RL algorithm outperforms
traditional scheduling schemes and distributed medium access
algorithms.

Index Terms—Multiple Access, Reinforcement Learning, Prox-
imal Policy Optimization, POMDP, Internet of Things, Wireless
sensor networks, scheduling.

I. INTRODUCTION

With the development of the Internet of Things (IoT),
billions of devices are expected to be connected, such as
smartphones, sensors and tracking devices [1]. This very large
amount of wireless connected devices makes the standard mul-
tiple access (MA) protocols inefficient due to their tendency to
saturate quickly as the number of devices increases. In addi-
tion, IoT devices need to transmit time sensitive data as many
of their applications are related to tracking and monitoring
(home monitoring, factory automation, health monitoring or
energy management) [2]. IoT devices are also expected to
have very limited wireless communication resources because
of their limited battery life [3] and thus need to have minimal
interaction with a base station (BS) to operate. Therefore,
MA protocols need to operate autonomously with minimal
control signalling in this type of systems, commonly known
as massive machine type (mMTC) communications systems.
Since this type of devices are characterized by having a
sporadic traffic, deterministic access schemes such as Time
Division Multiple Access (TDMA) and Orthogonal Frequency
Division Multiple Access (OFDMA) become inadequate for
the mMTC requirements. New protocols, capable of adapting
to these new dynamic environments are called for. Machine

Learning and more precisely Reinforcement Learning (RL) are
therefore promising candidates for the multiple access problem
[4].

A. Related Work

Random access protocols: traditional protocols are based on
random access. One of the first and the most famous one is the
ALOHA protocol [5], where a device attempts to access the
channel with a probability p. Another random access protocol
extensively studied is the Carrier Sense Multiple Access
(CSMA), where the transmitter can ”sense” the channel before
accessing it [6]. However, most random access protocols suffer
from collisions and thus, achieve a sub-optimal throughput.
They are also unable to guarantee strict deadlines.

Decentralized RL protocols: distributed approaches are the
most appealing solutions as they can be deployed without the
need of a central coordinator and thus meet the IoT constraints
of scalability and low energy consumption. With the recent
development of deep neural networks, deep RL solutions
[7] have been proposed as good candidates for solving high
dimensional sequential decision making problems. Regarding
the distributed multiple access challenges, most approaches
use Multi-Agent Reinforcement Learning (MARL) to model
IoT sensors. Their objective is to learn how to cooperate
in order to access the channel with minimal collisions and
thus maximize the throughput. The easiest and most natural
approach to extend the Q-learning theory of RL to the multi-
agent case is independent deep Q-learning (IQL) [8]. The idea
is that each agent learns independently and simultaneously its
own deep Q-function while considering the other agents as part
of the environment. While IQL does not give any theoretical
convergence guarantees as the environment is non-stationary
due to the concurrent learning, it has demonstrated good
empirical results, in particular in wireless communications. For
instance, in multiple access scenarios, several approaches [9]–
[11] apply deep IQL to the dynamic spectrum access problem
in order to learn a channel access strategy for the secondary
users with low collision rate. More generally, [12] applied
IQL to multiple access where other nodes are traditional MA
protocols (TDMA, ALOHA) and show that their model can
learn the optimal transmission strategy (maximum through-
put). However, these decentralized models aim at maximizing
the throughput by minimizing the number of collisions without
considering delay constraints and seem inadequate to solve a
system model with strict deadlines.

Centralized protocols: centralized solutions require a central
controller to gather relevant information from every device
every time it wants to allocate the medium. This constant
communication is very heavy in energy and communication
resources and thus is very impractical for IoT scenarios.
However, centralized protocols have the advantage of allowing
transmissions without collisions and potentially achieve a
maximum throughput. One way to use a centralized approach
while being energy efficient is by exploiting historical data
with Machine Learning (ML) [13] to learn an optimal schedul-
ing strategy. Yet, the biggest limitation of these data-based
methods is to constitute a proper dataset, let alone getting a
labeled training set if we intend to apply supervised learning.
Another way to tackle this substantial limitation is to con-
sider centralized solutions with very limited communication
where the BS tries to predict the traffic of the devices. A
popular method to learn an optimal scheduling policy under
uncertainty is Multi-Armed Bandits [14], [15], but unlike RL,
actions are not conditioned to states and do not have impact on
the environment. In RL, the authors in [16] model a network
controller with a deep Q-network to determine the next update
time at which each sensor should transmit its observations.
Similarly, and closest to our work, [17] tackles the dynamic
multi-channel access problem with an actor-critic model where
the agent (the access point) can only sense the chosen channel
at each iteration.

Even if extensive work has been done to propose centralized
solutions for multiple access, to the best of our knowledge this
paper is the first that offers a centralized approach tackling
partial observability and latency constraints with deep RL.

B. Our contribution

In this paper, we consider the multiple access problem
where N heterogeneous devices have to transmit to a BS
within a given deadline. To do so, they can access a common
communication medium, but only when the BS chooses to
schedule them. Therefore, only one device can transmit at each
time slot. This has the benefit of avoiding collisions, which
typically occur when using standard random access protocols.
However, the BS can only observe the state of the last polled
device. Thus, it needs to learn efficiently the traffic patterns
of the devices in order to maximize the throughput as it does
not know when a device has a packet to transmit. Therefore,
our model falls in the category of centralized protocols with
limited communication and scales linearly with the network
size. To incorporate the strict latency constraint in our model,
we impose the devices to transmit their packets within a given
deadline δ so that if a packet is not sent before, it is discarded.
This framework captures the practical challenges of real-time
wireless networks [18].

Our approach models the access point as an RL agent: it
combines the proximal policy optimization (PPO) algorithm
[19] with deep Recurrent Neural Networks (RNNs) to handle
partial observability. In addition, we incorporate invalid action
masking [20] to speed up the training process and make our
algorithm more efficient with large number of devices.

Device 1

Device 2

t

t

T T

T T

f1 f1 + T f1 + 2T

f2 f2 + T f2 + 2T

Receives a packet with probability p1

Receives a packet with probability p2

δ1 δ1

δ2 δ2

dropdrop

dropdrop

0

0

Fig. 1. Traffic model of 2 heterogeneous devices. Every period T, they receive
a packet with probability pi and need to deliver it within δi slots. They are
also not synchronous: they have an individual offset fi, i ∈ {1, 2}.

II. PROBLEM FORMULATION

A. Traffic model

We consider a network of N devices communicating with a
BS over a wireless shared channel on the uplink. The wireless
channel is supposed to be time-slotted and at every slot, the
BS polls one of the devices for a potential uplink transmission.
We assume the traffic pattern of every device to be periodic,
i.e. every period of T time slots, a device i has a probability pi
of receiving a new packet. All packets are supposed to require
the same transmission time of one time slot. Propagation delay
is assumed to be negligible. Moreover, each device has an
individual constraint δi, such that when a packet has not been
transmitted before the constraint δi, it is dropped. We allow
the devices to be heterogeneous in the following sense:
• They can have different packet arrival probabilities pi.
• They can have different packet delivery constraints δi.
• They are not synchronous: each device is assigned an

offset parameter fi ∈ [0, T].
However, the traffic period T is assumed the same for every

device and is known by the BS. At every slot t ≥ 0, the
probability for a device i ∈ [1, N] of having a new packet is:

qi(t|fi, pi, T) = 1{t[T]=fi}pi (1)

with 1{·} the indicator function and [·] the modulo operator
such that x[y] = z if there exists k ∈ Z such that x = ky + z
for x, y, z ∈ N. An illustration of the traffic is shown in Fig.1.

B. Problem formulation

Compared to traditional MA protocols like ALOHA [5],
devices do not decide when to transmit their packets. In our
case, the BS is a central controller that decides whether or not
a device can transmit. At every time step t, the BS schedules
a sensor to send its packet. If the latter has indeed a packet
to send, the transmission is successful. On the other hand, if
it does not have a packet, it remains idle. We illustrate these
interactions in Fig.2. The main advantage of this model is
that it guarantees no collision as all decisions are made by the
BS. However, in order to minimize the control overhead, we
only allow the controller to have access to partial information,

RL agent (Base station)

Environment (IoT devices)

reward
next observation

Action
(Polling)

Fig. 2. Multiple access problem modeled as a polling problem where the BS
is the RL agent. The IoT devices share a common communication channel
with the BS.

that is the information received by the device after polling
it, which explains why the BS can poll a device that has no
packet to send. Indeed, assuming a centralized agent that can
gather relevant information before allocating the communica-
tion resources is not realistic to meet the strict performance
requirements of the IoT. As a consequence, many packets can
be lost and the throughput will be sub-optimal if the RL agent
is not able to learn the traffic patterns successfully.

C. Partially observable Markov Decision Process

We model the problem as a Partially Observable Markov
Decision Process (POMDP) where an agent observes
an environment and interacts with it. We define s =
(s1, s2, . . . , sN) ∈ NN the environmental state where si ∈ N
is the time a packet has spent in device i’s buffer. For
example, si = 0 means i’s buffer is empty. The action set
of the agent is A = {1, 2, . . . , N}: at each time, the BS
schedules a device a ∈ A that can transmit its packet if
its buffer is not empty. When a sensor i is scheduled, in
addition to the main message, it also transmits the number
of discarded packets ηit since the last time it was scheduled as
an additional message. We thus define the reward of the agent
rt as a trade-off between maximizing the throughput (number
of successful transmissions) and minimizing the number of
discarded packets:

rt(st, a) = β1{sat>0} + (1− β) 1

1 + ηat
(2)

where β ∈ [0, 1] is a hyperparameter balancing the preferences
of the agent between both quantities. Note that even if maxi-
mizing the throughput and minimizing the number of dropped
packets seem equivalent, the agent has different incentives
depending on the load. Indeed, if a few devices have very high
arrival probabilities, the agent is almost certain to get a strictly
positive reward when scheduling these devices. If the number
of available slots is limited (inferior to the number of devices),
only these devices will be scheduled and the learned policy
would not be fair. Thus, balancing the number of successful
transmissions with the number of discarded packets is a way
to ensure fairness while also maximizing the throughput.

Every step t, the agent can only observe ot =
(at−1, s

at−1

t−1) ∈ A × N, which is the device chosen at time
t−1 and its corresponding state. The agent keeps a history of
the H most recent observations, ht = (ot, ot−1, . . . , ot−H+1).
An action is selected following the policy π(·|ht), which is a
probability distribution over the action space A given the H
most recent observations ht.

Finally, we can write the transition from a state st to a state
st+1. A component i ∈ {1, 2, . . . , N} of a new state, knowing
the action and the previous state is:

sit+1|a, sit =

0 if a = i
0 if a 6= i and sit > δi

sit + 1 if a 6= i and 0 < sit ≤ δi
Xi ∼ B(qi) if sit = 0 and t[T] = fi

(3)
where B(·) is the Bernoulli distribution.

In other words, the next state of a device i becomes 0 if it
has been polled in the last time slot or if the last state reached
the constraint δi. If it has not been polled and has not reached
the constraint yet, we increment the last state. Finally, if the
last state was 0, we draw a new packet according to a Bernoulli
distribution with parameter qi if t[T] = fi.

III. SINGLE-AGENT REINFORCEMENT LEARNING
APPROACH

In order to solve the POMDP formulated above, we use
Deep Reinforcement Learning, which has demonstrated state-
of-the-art performances in solving complex sequential decision
making problems ([7]) even in a partially observable setting
[21]. We propose a policy gradient algorithm with masked
invalid actions to solve this POMDP problem.

Policy gradient methods aim at finding the parameterized
policy πθ that maximizes the expected sum of discounted
rewards: J(πθ) = Eπθ [

∑τ
t=0 γ

trt] with θ the vector of
parameters, γ the discount factor and τ the length of the
trajectory. This optimization problem is usually solved with a
stochastic gradient ascent algorithm with a gradient estimate.
The most common estimator is given by the policy gradient
theorem [22]: ĝ = ÊB [

∑τ
t=0∇θ log πθ(at|st)Ât] with Ât an

estimator of the advantage function A(st, at) and ÊB the
empirical average over a finite batch of trajectories.

A. Trust Region Policy Optimization

Vanilla policy gradient algorithms suffer from sample inef-
ficiency leading to a convergence to local optima and large
policy steps (resulting in high variance estimators and some-
times performance collapse). The authors in [23] introduced
Trust Region Policy Optimization (TRPO) that restricts the
amplitude of the policy update with a KL divergence con-
straint. Formally, TRPO’s optimization problem is:

max
θ

Es,a∼πθold

[
πθ(a|s)
πθold(a|s)

A(s, a)

]
(4)

Es[KL[πθold(·|s), πθ(·|s)]] ≤ δ (5)

where θold are the policy parameters before the update. How-
ever, TRPO is a second order method as it requires the
computation of a second order matrix when approximating the
KL term which makes it computationally expensive. Proximal
Policy Optimization (PPO) [19] uses policy ratio clipping to
solve the trust region constraints problem with a first order
method and the objective becomes:

Es,a
[
min

(
πθ(a|s)
πold(a|s)

A(s, a), φ(ε)A(s, a)

)]
(6)

with φ(ε) = clip
(
πθ(a|s)
πold(a|s) , 1− ε, 1 + ε

)
the probability ratio

clipped to (1 − ε, 1 + ε) and ε > 0 a hyperparameter. The
intuition behind the clipping is to prevent the new policy from
getting far from the old one.

B. Speeding up the learning process with action masking

When the number of devices increases, the action space
becomes larger, therefore training a policy becomes slower
and sometimes requires a deeper architecture (more layers,
more neurons) to learn the optimal policy. In order to address
this issue, we use a trick called invalid action masking [20]
to provide an algorithm, namely Filtered PPO, able to solve
the polling problem for any number of agents with the same
architecture and the same parameters.

The idea is to speed up the training process by masking
actions which we know that are suboptimal for the agent
because of the structure of the problem. Indeed, the traffic
is periodic so one device cannot have more than one packet
to transmit during the arrival period T . Thus, we mask the κ
last actions made by the agent in the policy by setting their
probability to 0. [20] theoretically and experimentally studied
the action masking methodology for policy gradient algorithms
and prove that it leads to valid policy gradient updates. In our
experiments, we took κ = T .

C. Algorithm overview

In this section, we explain in detail our implementation of
PPO for the device polling problem.

First, our algorithm needs to consider the partial observ-
ability of our problem as the agent can only see the states
of the devices it has previously selected. The authors in [21]
tackle partial observability using a recurrent architecture that
allows the agent to better approximate the underlying system
state based on past action-observation pairs. We denote ht the
action-observation history of the agent at time step t. We adapt
the PPO theory to the partially observable setting by using the
approach of [21]. In practice, we replace the state s by the
action-observation history h and we replace the linear layer
by a recurrent one. For the recurrent architecture, we chose
a long short-term memory (LSTM) architecture to alleviate
the vanishing gradient problem that usually exists by using an
RNN [24].

We can define the policy loss based on (6):

Lπ(θ) = −ÊB
[
min

(
πθ(at|ht)
πold(at|ht)

Ât, φ(ε)Ât

)]
, (7)

LSTM Linear

Linear

Linear

Linear

Linear

ReLU

ReLU

ReLU Softmax

policy

value

Action-observation
history

a0 o0

a1 o1

… …

ad od

Fig. 3. Neural network architecture

where we recall that ÊB is the empirical average over a finite
batch of trajectories.

The advantage function A in a POMDP setting is defined
by A(ht, at) = Q(ht, at)−V (ht) which describes the relative
value of an action with respect to the value of the state (how
much better or worse it is to take this action). Q(ht, at) is
the Q-function evaluating the value of choosing the action
at based on the history ht, and V (ht) is the value function
indicating the value of the action-observation history ht.
Among all the ways to derive an estimator of the advantage
function [25], we chose to use the simplest one using the
empirical rewards:

Ât = R̂t − V̂θ(ht) (8)

with R̂t =
∑τ
t′=t rt′ the sum of future rewards obtained on

the trajectory and V̂θ(ht) an estimate of the value function
with a neural network. Note that the value and policy network
share the same parameters θ.

The neural network we use is the one described in Fig.3. All
hidden layers have 100 neurons. It takes the action-observation
history as input and returns the policy vector and the value of
the corresponding input. To update the head corresponding
to the value estimator, we minimize the Mean Square Error
(MSE) between our value estimator and the sum of future
rewards:

LV (θ) = ÊB(V̂θ(ht)− R̂t)2. (9)

Therefore, the total loss we minimize is:

L(θ) = Lπ(θ) + LV (θ). (10)

Algorithm 1: PPO for centralized multiple-access.
Input Initial policy parameters θ0
for k = 0, 1, 2, . . . NUM UPDATES do

1) Run the policy πθk and collect a set of trajectories
2) Compute the advantage estimates Ât with (8)
3) Compute the policy loss Lπ(θ) and the value loss

LV (θ) from (7) and (9)
4) Minimize the total loss L(θ) = Lπ(θ) + LV (θ)

with multiple steps of stochastic gradient descent.
end

IV. EXPERIMENTS

We tested our algorithm with on different number of devices
ranging between 6 and 60, with and without offsets. The
environment parameters are chosen as follows:
• The arrival probabilities are chosen from {0.2, 0.5} with

probabilities (0.5, 0.5) respectively.
• The deadlines are chosen from {5, 10, 15, 20} with prob-

abilities (0.1, 0.1, 0.4, 0.4) respectively.
• The period is equal to T = 20 for all devices.
In the scenario with offsets, the offsets are chosen uniformly

in [0, T]. Otherwise, they are all set to 0. In the following, the
figures show the mean and standard deviation over multiple
seeds.

A. Benchmarks

To evaluate the performance of our algorithm, we bench-
mark it against the following algorithms:
• Random agent: schedules a device uniformly at random.
• Round Robin agent: schedules devices in a cycle so that

the resource is shared equally among the devices.
• Slotted ALOHA: all devices can access the medium with

the same probability p. As it is not trivial to derive the
optimal probabilities analytically, we set the transmission
probabilities experimentally, such that the throughput is
maximal.

• Matching Agent: in the scenario where all offsets are
equal to 0, it is possible to derive the optimal scheduler if
the statistics of the model are known (arrival probabilities,
constraints, period). We call this algorithm the Matching
agent. The idea is to model the scheduling problem as
a bipartite graph matching problem where we need to
match N devices with T slots. There is an edge between
a device i and a slot t if the latter is inferior to the
device’s constraint, i.e. t < δi. We set the weight of
device i to pi in order to maximize the throughput. Note
that this scheduling method is completely unfair when the
number of devices is greater than the number of slots T .
To alleviate this issue, we could set the weights in order to
maximize an α-fairness objective but this is beyond the
scope of this paper and we leave this for future work.
In our experiments, we solve the maximum weighted
matching problem using the Hungarian algorithm [26].

B. Simulation results

The parameters of our algorithm are given in Table I.

TABLE I
PARAMETERS OF THE EXPERIMENTS

Parameter Value
Episode length 50

Discount factor: γ 0.8
Learning rate 0.002

Clipping hyperparameter: ε 0.1
Number of epochs 4

Preference parameter: β 0.3
History length H N

10 20 30 40 50 60
Number of devices

0.1

0.2

0.3

0.4

0.5

Th
ro

ug
hp

ut

Random
Round Robin
Filtered PPO
Matching
Slotted ALOHA

Fig. 4. Evolution of the throughput with the number of devices. The devices
are synchronous. The results are computed on 5 seeds.

10 20 30 40 50 60
Number of devices

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Th
ro

ug
hp

ut

Random
Round Robin
Filtered PPO
No filter PPO
Slotted aloha

Fig. 5. Evolution of the throughput with the number of devices. The devices
are not synchronous. The results are computed on 10 seeds.

We train our algorithm on 200000 timesteps (4000 episodes)
and test it on 20000 timesteps (400 episodes). We update
the neural network every 200 steps (4 episodes). The neural
network weights are initialized with a random orthogonal
matrix as described in [27].

Synchronous setting: First, in Fig.4, we test our algorithm
on a scenario where all devices are synchronous. This allows
us to benchmark it against the optimal scheduler knowing all
the environment parameters (matching agent).

Asynchronous setting: Second, we test our algorithm in the
more general asynchronous setting. The results are shown in
Fig.5, including the version of our proposed algorithm without
invalid action masking, called No-filter PPO.

We can notice that in both scenarios, Filtered PPO success-
fully exploits the heterogeneity in the devices to outperform
Round Robin, ALOHA and the Random agent for every num-
ber of transmitters in terms of throughput. In the synchronous
setting, the performance of our algorithm is close to the perfor-
mance of the matching algorithm. This is achieved despite the
fact that our algorithm is not aware of the traffic probabilities
and deadlines. Our algorithm still outperforms Round Robin,
ALOHA and Random scheduling in the asynchronous setting
where the matching agent cannot be applied. We also note

0 500 1000 1500 2000 2500 3000 3500 4000
Episode

0.20

0.25

0.30

0.35

0.40

0.45
Th

ro
ug

hp
ut

Filtered PPO
No Filter PPO

Fig. 6. Evolution of the throughput during the training phase of PPO with and
without invalid action masking. The experiment was made with 36 devices
and with offsets. The dark curves show the moving average over 70 episodes.

that in the asynchronous setting, ALOHA performs better
than Round Robin, unlike the synchronous one, because the
probability of having a collision is smaller when devices are
not synchronous.

Finally, we show the impact of invalid action masking on the
throughput in the asynchronous setting. One the one hand, we
can see in Fig.5 that when the number of devices increases,
learning a good policy becomes more difficult for No-filter
PPO, leading to a lower throughput than Filtered PPO. On the
other hand, Fig.6 shows the evolution of the throughput during
training for 36 asynchronous devices. We can see that Filtered
PPO outperforms No-filter PPO quite fast and keeps increasing
this difference until it converges to a high throughput.

V. CONCLUSION

In this paper, we modelled the centralized uplink multiple
access problem with strict deadlines in IoT as a polling
problem with imperfect information and proposed a deep RL
algorithm for the BS to learn the polling strategy. We extended
the Proximal Policy Optimization algorithm to the partially
observable setting using an Recurrent Neural Network and
improved its performance on a large number of agents with in-
valid action masking. We showed that our method successfully
manages to learn the traffic patterns of the transmitters despite
the partial observability of our problem. Numerical results
show that our solution outperforms traditional MA protocols
and reaches a performance comparable to the performance of
an optimal algorithm aware of the traffic characteristics and
of the strict deadlines.

A possible extension to the centralized polling approach is
to allow the central agent to poll multiple devices at the same
time. Even if this would allow potential collisions, we expect
the RL agent to learn how to poll clusters of devices with low
probability of collision and thus outperform both centralized
and decentralized solutions.

REFERENCES

[1] C. Bockelmann et al., “Towards massive connectivity support for scal-
able mmtc communications in 5g networks,” IEEE access, vol. 6, pp.
28 969–28 992, 2018.

[2] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[3] C. Hägerling, C. Ide, and C. Wietfeld, “Coverage and capacity analysis
of wireless m2m technologies for smart distribution grid services,” in
2014 IEEE International Conference on Smart Grid Communications
(SmartGridComm). IEEE, 2014, pp. 368–373.

[4] M. A. Al-Garadi et al., “A survey of machine and deep learning methods
for internet of things (iot) security,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 3, pp. 1646–1685, 2020.

[5] L. G. Roberts, “Aloha packet system with and without slots and capture,”
ACM SIGCOMM Computer Communication Review, vol. 5, no. 2, pp.
28–42, 1975.

[6] G. Bianchi, “Performance analysis of the ieee 802.11 distributed co-
ordination function,” IEEE J. Sel. Areas Commun., vol. 18, no. 3, pp.
535–547, 2000.

[7] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[8] A. Tampuu et al., “Multiagent cooperation and competition with deep
reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395, 2017.

[9] H.-H. Chang et al., “Distributive dynamic spectrum access through deep
reinforcement learning: A reservoir computing-based approach,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1938–1948, 2018.

[10] Y. Xu, J. Yu, and R. M. Buehrer, “The application of deep reinforcement
learning to distributed spectrum access in dynamic heterogeneous en-
vironments with partial observations,” IEEE Trans. Wireless Commun.,
vol. 19, no. 7, pp. 4494–4506, 2020.

[11] Y. Xu, J. Yu, W. C. Headley, and R. M. Buehrer, “Deep reinforce-
ment learning for dynamic spectrum access in wireless networks,”
in MILCOM 2018-2018 IEEE Military Communications Conference
(MILCOM). IEEE, 2018, pp. 207–212.

[12] Y. Yu, T. Wang, and S. C. Liew, “Deep-reinforcement learning mul-
tiple access for heterogeneous wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 6, pp. 1277–1290, 2019.

[13] S. Bi, R. Zhang, Z. Ding, and S. Cui, “Wireless communications in the
era of big data,” IEEE communications magazine, vol. 53, no. 10, pp.
190–199, 2015.

[14] A. Slivkins, “Introduction to multi-armed bandits,” arXiv preprint
arXiv:1904.07272, 2019.

[15] Z. Yu, Y. Xu, and L. Tong, “Deadline scheduling as restless bandits,”
IEEE Transactions on Automatic Control, vol. 63, no. 8, pp. 2343–2358,
2018.

[16] J. Hribar, A. Marinescu, G. A. Ropokis, and L. A. DaSilva, “Using
deep q-learning to prolong the lifetime of correlated internet of things
devices,” in 2019 IEEE Int. Conf. Commun. Workshops ICC Workshops
2019. IEEE, 2019, pp. 1–6.

[17] C. Zhong, Z. Lu, M. C. Gursoy, and S. Velipasalar, “Actor-critic deep
reinforcement learning for dynamic multichannel access,” in 2018 IEEE
Glob. Conf. Signal Inf. Process. (GlobalSIP). IEEE, 2018, pp. 599–603.

[18] I.-H. Hou and P. R. Kumar, “Packets with deadlines: A framework
for real-time wireless networks,” Synthesis Lectures on Communication
Networks, vol. 6, no. 1, pp. 1–116, 2013.

[19] J. Schulman et al., “Proximal policy optimization algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[20] S. Huang and S. Ontañón, “A closer look at invalid action masking in
policy gradient algorithms,” arXiv preprint arXiv:2006.14171, 2020.

[21] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” arXiv preprint arXiv:1507.06527, 2015.

[22] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[23] J. Schulman et al., “Trust region policy optimization,” in International
conference on machine learning. PMLR, 2015, pp. 1889–1897.

[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[25] J. Schulman et al., “High-dimensional continuous control using gener-
alized advantage estimation,” arXiv preprint arXiv:1506.02438, 2015.

[26] G. A. Mills-Tettey, A. Stentz, and M. B. Dias, “The dynamic hungarian
algorithm for the assignment problem with changing costs,” Robotics
Institute, Pittsburgh, PA, Tech. Rep. CMU-RI-TR-07-27, 2007.

[27] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks,” arXiv
preprint arXiv:1312.6120, 2013.

