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Abstract
Most modern asset transfer systems use consensus to maintain a totally ordered chain of transactions.
It was recently shown that consensus is not always necessary for implementing asset transfer. More
efficient, asynchronous solutions can be built using reliable broadcast instead of consensus. This
approach has been originally used in the closed (permissioned) setting. In this paper, we extend it
to the open (permissionless) environment. We present Pastro, a permissionless and asynchronous
asset-transfer implementation, in which quorum systems, traditionally used in reliable broadcast, are
replaced with a weighted Proof-of-Stake mechanism. Pastro tolerates a dynamic adversary that is
able to adaptively corrupt participants based on the assets owned by them.
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1 Introduction

Inspired by advances in peer-to-peer data replication [25,31], a lot of efforts are currently
invested in designing an algorithm for consistent and efficient exchange of assets in dynamic
settings, where the set of participants, actively involved in processing transactions, varies
over time.

Sometimes such systems are called permissionless, emphasizing the fact that they assume
no trusted mechanism to regulate who and when can join the system. In particular, permis-
sionless protocols should tolerate the notorious Sybil attack [7], where the adversary creates
an unbounded number of “fake” identities.

Sharing data in a permissionless system is a hard problem. To solve it, we have to choose
between consistency and efficiency. Assuming that the network is synchronous and that the
adversary can only possess less than half of the total computing power, Bitcoin [25] and
Ethereum [31] make sure that participants reach consensus on the order in which they access
and modify the shared data. For this purpose, these systems employ a proof-of-work (PoW)
mechanism to artificially slow down active participants (miners). The resulting algorithms
are notoriously slow and waste tremendous amounts of energy.

Other protocols obviate the energy demands using proof-of-stake [2,4,18], proof-of-space [9],
or proof of space-time [24]. However, these proposals still resort to synchronous networks,
randomization, non-trivial cryptography and/or assume a trusted setup system.
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28:2 Permissionless and Asynchronous Asset Transfer

In this paper, we focus on a simpler problem, asset transfer, enabling a set of participants
to exchange assets across their accounts. It has been shown [15,16] that this problem does
not require consensus. Assuming that every account is operated by a dedicated user, there
is no need for the users to agree on a total order in which transactions must be processed:
one can build an asset transfer system on top of the reliable broadcast abstraction instead of
consensus. Unlike consensus [11], reliable broadcast allows for simple asynchronous solutions,
enabling efficient asset transfer implementations that outperform their consensus-based
counterparts [6].

Conventionally, a reliable broadcast algorithm assumes a quorum system [12, 22]. Every
delivered message should be certified by a quorum of participants. Any two such quorums
must have a correct participant in common and in every run, at least one quorum should
consist of correct participants only. In a static f -resilient system of n participants, these
assumptions result in the condition f < n/3. In a permissionless system, where the Sybil
attack is enabled, assuming a traditional quorum system does not appear plausible. Indeed,
the adversary may be able to control arbitrarily many identities, undermining any quorum
assumptions.

In this paper, we describe a permissionless asset-transfer system based on weighted quo-
rums. More precisely, we replace traditional quorums with certificates signed by participants
holding a sufficient amount of assets, or stake. One can be alerted by this assumption,
however: the notion of a “participant holding stake” at any given moment of time is not well
defined in a decentralized consensus-free system where assets are dynamically exchanged and
participants may not agree on the order in which transactions are executed. We resolve this
issue using the notion of a configuration. A configuration is a partially ordered set of trans-
actions that unambiguously determines the active system participants and the distribution
of stake among them. As has been recently observed, configurations form a lattice order [20]
and a lattice agreement protocol [10, 20, 21] can be employed to make sure that participants
properly reconcile their diverging opinions on which configurations they are in.

Building on these abstractions, we present the Pastro protocol to settle asset transfers,
despite a dynamic adversary that can choose which participants to compromise during the
execution, taking their current stake into account. The adversary is restricted, however, to
corrupt participants that together own less than one third of stake in any active candidate
configuration. Intuitively, a configuration (a set of transactions) is an active candidate
configuration if all its transactions can be accepted by a correct process. At any moment of
time, we may have multiple candidate configurations, and the one-third stake assumption
must hold for each of them.

Note that a superseded configuration that has been successfully replaced with a new
one can be compromised by the adversary. To make sure that superseded configurations
cannot deceive slow participants that are left behind the reconfiguration process, we employ
a forward-secure digital signature scheme [1,8], recently proposed for Byzantine fault-tolerant
reconfigurable systems [21]. The mechanism allows every process to maintain a single public
key and a “one-directional” sequence of matching private keys: it is computationally easy to
compute a new private key from an old one, but not vice versa. Intuitively, before installing
a new configuration, one should ask holders of > 2/3 of stake of the old one to upgrade their
private keys and destroy the old ones.

We believe that Pastro is the right alternative to heavy-weight consensus-based replicated
state machines, adjusted to applications that do not require global agreement on the order
on their operations [20, 27]. Our solution does not employ PoW [25,31] and does not rely on
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complex cryptographic constructions, such as a common coin [4,26]. More importantly, unlike
recently proposed solutions [14,28], Pastro is resistant against a dynamic adversary that
can choose which participants to corrupt in a dynamic manner, depending on the execution.

In this paper, we first present Pastro in its simplest version, as our primary message
is a possibility result: a permissionless asset-transfer system can be implemented in an
asynchronous way despite a dynamic adversary. We then discuss multiple ways of improving
and generalizing our system. In particular, we address the issues of maintaining a dynamic
amount of assets via an inflation mechanism and the performance of the system by delegation
and incremental updates.

Road map. We overview related work in Section 2. In Section 3, we describe our model
and recall basic definitions, followed by the formal statement of the asset transfer problem in
Section 4. In Section 5, we describe Pastro and outline its correctness arguments in Section 6.
We conclude with practical challenges to be addressed as well as related open questions in
Section 7. Detailed proofs and the discussion of optimizations as well as delegation, fees,
inflation, and practical aspects of using forward-secure digital signatures are deferred to the
appendix.

2 Related Work

The first and still the most widely used permissionless cryptocurrencies are blockchain-
based [5]. To make sure that honest participants agree (with high probability) on the order
in which blocks of transactions are applied, the most prominent blockchains rely on proof-
of-work [25,31] and assume synchronous communication. The approach exhibits bounded
performance, wastes an enormous amount of energy, and its practical deployment turns out
to be hardly decentralized (https://bitcoinera.app/arewedecentralizedyet/).

To mitigate these problems, more recent proposals suggest to rely on the stake rather
than on energy consumption. E.g., in next version of Ethereum [30], random committees of a
bounded number of validators are periodically elected, under the condition that they put
enough funds at stake. Using nontrivial cryptographic protocols (verifiable random functions
and common coins), Algorand [13] ensures that the probability for a user to be elected is
proportional to its stake, and the committee is reelected after each action, to prevent adaptive
corruption of the committee.

In this paper, we deliberately avoid reaching consensus in implementing asset transfer,
and build atop asynchronous reliable broadcast, following [15,16]. It has been recently shown
that this approach results in a simpler, more efficient and more robust implementation than
consensus-based solutions [6]. However, in that design a static set of of processes is assumed,
i.e., the protocol adheres to the permissioned model.

In [14], a reliable broadcast protocol is presented, that allows processes to join or leave
the system without requiring consensus. ABC [28] proposes a direct implementation of a
cryptocurrency, under the assumption that the adversary never corrupts processes holding
1/3 or more stake. However, both protocols [14, 28] assume a static adversary: the set of
corrupted parties is chosen at the beginning of the protocol.

In contrast, our solution tolerates an adversary that dynamically selects a set of corrupted
parties, under the assumption that not too much stake is compromised in an active candidate
configuration. Our solution is inspired by recent work on reconfigurable systems that base
upon the reconfigurable lattice agreement abstraction [20, 21]. However, in contrast to
these general-purpose reconfigurable constructions, our implementation is much lighter. In
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28:4 Permissionless and Asynchronous Asset Transfer

our context, a configuration is just a distribution of stake, and every new transaction is a
configuration update. As a result, we can build a simpler protocol that, unlike conventional
asynchronous reconfigurable systems [20,21,29], does not bound the number of configuration
updates for the sake of liveness.

3 Preliminaries

Processes and channels. We assume a set Π of potentially participating processes. In our
model, every process acts both as a replica (maintains a local copy of the shared data) and
as a client (invokes operations on the data).1 In the proofs and definitions, we make the
standard assumption of existence of a global clock not accessible to the processes.

At any moment of time, a process can be correct or Byzantine. We call a process correct
as long as it faithfully follows the algorithm it has been assigned. A process is forever-correct
if it remains correct forever. A correct process may turn Byzantine, which is modelled as an
explicit event in our model (not visible to the other processes). A Byzantine process may
perform steps not prescribed by its algorithm or prematurely stop taking steps. Once turned
Byzantine, the process stays Byzantine forever.

We assume a dynamic adversary that can choose the processes to corrupt (to render
Byzantine) depending on the current execution (modulo some restrictions that we discuss in
the next section). In contrast, a static adversary picks up the set of Byzantine processes a
priori, at the beginning of the execution.

In this paper we assume that the computational power of the adversary is bounded and,
consequently, the cryptographic primitives used cannot be broken.

We also assume that each pair of processes is connected via reliable authenticated channel.
If a forever-correct process p sends a message m to a forever-correct process q, then q
eventually receives m. Moreover, if a correct process q receives a message m from a correct
process p, then p has indeed sent m to q.

For the sake of simplicity, we assume that the set Π of potentially participating processes
is finite.2

Weak reliable broadcast (WRB). In this paper we assume a weak reliable broadcast primitive
to be available. The implementation of such primitive ensures the following properties:

If a correct process delivers a message m from a correct process p, then m was previously
broadcast by p;
If a forever-correct process p broadcasts a message m, then p eventually delivers m;
If a forever-correct process delivers m, then every forever-correct process eventually
delivers m.

This weak reliable broadcast primitive can be implemented via a gossip protocol [17].

Forward-secure digital signatures. Originally, forward-secure digital signature schemes [1,8]
were designed to resolve the key exposure problem: if the signature (private) key used in
the scheme is compromised, then the adversary is capable to forge any previous (or future)

1 We discuss how to split the processes into replicas and clients in the technical report [19].
2 In practice, this assumptions boils down to requiring that the rate at which processes are added is not

too high. Otherwise, if new stake-holders are introduced into the system at a speed prohibiting a client
from reaching a sufficiently large fraction of them, we cannot make sure that the clients’ transactions
are eventually accepted.
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signature. Using forward secure signatures, it is possible for the private key to be updated
arbitrarily many times with the public key remaining fixed. Also, each signature is associated
with a timestamp. This helps to identify messages which have been signed with the private
keys that are already known to be compromised.

To generate a signature with timestamp t, the signer uses secret key skt. The signer can
update its secret key and get skt2 from skt1 if t1 < t2 ≤ T . However “downgrading” the key
to a lower timestamp, from skt2 to skt1 , is computationally infeasible. As in recent work on
Byzantine fault-tolerant reconfigurable systems [21], we model the interface of forward-secure
signatures with an oracle which associates every process p with a timestamp stp. The oracle
provides the following functions:

UpdateFSKey(t) sets stp to t if t ≥ stp;
FSSign(m, t) returns a signature for a message m and a timestamp t if t ≥ stp, otherwise ⊥;
FSVerify(m, p, s, t) returns true if s ̸= ⊥ and it was generated by process p using
FSSign(m, t), false otherwise.

In most of the known implementations of forward-secure digital signature schemes the
parameter T should be fixed in advance, which makes number of possible private key updates
finite. At the same time, some forward-secure digital schemes [23] allow for an unbounded
number of key updates (T = +∞), however the time required for an update operation
depends on the number of updates. Thus, local computational time may grow indefinitely
albeit slowly. We discuss these two alternative implementations and reason about the most
appropriate one for our problem in the technical report [19].

Verifiable objects. We often use certificates and verifiable objects in our protocol de-
scription. We say that object obj ∈ O is verifiable in terms of a given verifying function
Verify : O × ΣO → {true, false}, if it comes together with a certificate σobj ∈ ΣO, such
that Verify(obj, σobj) = true, where ΣO is a set of all possible certificates for objects
of set O. A certificate σobj is valid for obj (in terms of a given verifying function) iff
Verify(obj, σobj) = true. The actual meaning of an object “verifiability”, as well as of a
certificate validness, is determined by the verifying function.

4 Asset Transfer: Problem Statement

Before defining the asset transfer problem formally, we introduce the concepts used later.

Transactions. A transaction is a tuple tx = (p, τ, D). Here p ∈ Π is an identifier of a
process inside the system that initiates a transaction. We refer to p as the owner of tx. The
map τ : Π→ Z+

0 is the transfer function, specifying the amount of funds received by every
process q ∈ Π from this transaction.3 D is a finite set of transactions that tx depends on,
i.e., tx spends the funds p received through the transactions in D. We refer to D as the
dependency set of tx.

Let T denote the set of all transactions. The function value : T → V is defined as follows:
value(tx) =

∑
q∈Π tx.τ(q). T contains one special “initial” transaction txinit = (⊥, τinit, ∅)

with value(txinit) = M and no sender. This transaction determines the initial distribution of
the total amount of “stake” in the system (denoted M).

3 We encode this map as a set of tuples (q, d), where q ∈ Π and d > 0 is the amount received sent to q in
tx.

DISC 2021



28:6 Permissionless and Asynchronous Asset Transfer

For all other transactions it holds that a transaction tx is valid if the amount of funds
spent equals the amount of funds received: value(tx) =

∑
t∈t.D t.τ(tx.p). For simplicity, we

assume that T contains only valid transactions: invalid transactions are ignored.
Transactions defined this way, naturally form a directed graph where each transaction is

a node and edges represent dependencies.
We say that transactions txi and txj issued by the same process conflict iff the intersection

of their dependency sets is non-empty: txi ̸= txj , txi.p = txj .p and txi.D ∩ txj .D ≠ ∅. A
correct member of an asset-transfer system does not attempt to double spend, i.e., it never
issues transactions which share dependencies and are therefore conflicting.

Transactions are equipped with a boolean function VerifySender : T ×ΣT → {true, false}.
A transaction tx is verifiable iff it is verifiable in terms of the function VerifySender(tx, σtx).
Here σtx is a certificate that confirms that tx was indeed issued by its owner process p. One
may treat a transaction’s certificate as p’s digital signature of tx.

Asset-transfer system. An asset-transfer system (AS) maintains a partially ordered set of
transactions Tp and exports one operation: Transfer(tx, σtx) adding transaction tx to the
set Tp. Recall that tx = (p, τ, D), where p is the owner of transaction, τ is a transfer map,
D is the set of dependencies, and σtx is a matching certificate.

In a distributed AS implementation, every process p holds the set of “confirmed” transac-
tions Tp it is aware of, i.e., a local copy of the state. A transaction is said to be confirmed if
some correct process p adds tx to its local copy of the state Tp. Set Tp can be viewed as the
log of all confirmed transactions a process p is aware of. Let Tp(t) denote the value of Tp

at time t.
An AS implementation then satisfies the following properties:

Consistency: For every process p correct at time t, Tp(t) contains only verifiable and non-
conflicting transactions. Moreover, for every two processes p and q correct at time t and
t′ resp.: (Tp(t) ⊆ Tq(t′)) ∨ (Tq(t′) ⊆ Tp(t)).

Monotonicity: For every correct process p, Tp can only grow with time: for all t < t′,
Tp(t) ⊆ Tp(t′).

Validity: If a forever-correct process p invokes Transfer(tx, σtx) at time t, then there exists
t′ > t such that tx ∈ Tp(t′).

Agreement: For a process p correct at time t and a forever-correct process q, there exists
t′ ≥ t such that Tp(t) ⊆ Tq(t′).

Here, σtx ∈ ΣT is a certificate for transaction tx = (p, τ, D). A certificate protects the
users from possible theft of their funds by other users. As we assume that cryptographic
techniques (including digital signatures) are unbreakable, the only way to steal someone’s
funds is to steal their private key.

A natural convention is that a correct process never submits conflicting transactions.
When it comes to Byzantine processes, we make no assumptions. Our specification ensures
that if two conflicting transactions are issued by a Byzantine process, then at most one of
them will ever be confirmed. In fact, just a single attempt of a process to cheat may lead to
the loss of its funds as it can happen that neither of the conflicting transactions is confirmed
and thus may preclude the process from making progress.

Transaction set as a configuration. For simplicity, we assume that the total amount of
funds in the system is a publicly known constant M ∈ Z+ (fixed by the initial transaction
txinit) that we call system stake.4

4 In the technical report [19], we discuss how to maintain a dynamic system stake.
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A set of transactions C ∈ 2T is called a configuration.
A configuration C is valid if no two transactions txi, txj ∈ C are conflicting. In the rest

of this paper, we only consider valid configurations, i.e., invalid configurations appearing in
protocol messages are ignored by correct processes without being mentioned explicitly in the
algorithm description.

The initial configuration is denoted by Cinit, and consists of just one initial transaction
(Cinit = {txinit}).

A valid configuration C determines the stake (also known as balance) of every process p

as the difference between the amount of assets sent to p and the amount of assets sent by p

in the transactions of C: stake(q, C) =
∑

tx∈C tx.τ(q)−
∑

tx∈C∧tx.p=q value(tx). Intuitively,
a process joins the asset-transfer system as soon as it gains a positive stake in a configuration
and leaves once its stake turns zero.

Functions members and quorums are defined as follows: members(C) = {p | ∃tx ∈
C such that tx.τ(p) > 0}, quorums(C) = {Q |

∑
q∈Q stake(q, C) > 2

3 M}. Intuitively, mem-
bers of the system in a given configuration C are the processes that received money at least
once, and a set of processes is considered to be a quorum in configuration C, if their total
stake in C is more than two-thirds of the system stake.

Configuration lattice. Recall that a join-semilattice (we simply say a lattice) is a tuple
(L,⊑), where L is a set of elements provided with a partial-order relation ⊑, such that for
any two elements a ∈ L and b ∈ L, there exists the least upper bound for the set {a, b}, i.e.,
an element c ∈ L such that a ⊑ c, b ⊑ c and ∀d ∈ L: if a ⊑ d and b ⊑ d, then c ⊑ d. The
least upper bound of elements a ∈ L and b ∈ L is denoted by a ⊔ b. ⊔ is an associative,
commutative and idempotent binary operator on L. It is called the join operator.

The configuration lattice is then defined as (C,⊑), where C is the set of all valid configu-
rations, ⊑=⊆ and ⊔ = ∪.

5 Pastro Asset Transfer: Algorithm

In this section we present Pastro – an implementation of an asset-transfer system. We start
with the main building blocks of the algorithm, and then proceed to the description of the
Pastro protocol itself.

We bundle parts of Pastro algorithm that are semantically related in building blocks
called objects, each offering a set of operations, and combine them to implement asset transfer.

Transaction Validation. The Transaction Validation (TV) object is a part of Pastro
ensuring that transactions that a correct process p adds to its local state Tp do not conflict.

A correct process p submits a transaction tx = (p, τ, D) and a matching certificate to the
object by invoking an operation Validate(tx, σtx). The operation returns a set of transactions
txs ∈ 2T together with a certificate σtxs ∈ Σ2T . We call a transaction set verifiable iff it is
verifiable in terms of a function VerifyTransactionSet(txs, σtxs). Intuitively, the function
returns true iff certificate σtxs confirms that set of transactions txs is validated by sufficiently
many system members.

Formally, TV satisfies the following properties:
TV-Verifiability: If an invocation of Validate returns ⟨txs, σtxs⟩ to a correct process, then

VerifyTransactionSet(txs, σtxs) = true;
TV-Inclusion: If Validate(tx, σtx) returns ⟨txs, σtxs⟩ to a correct process, then tx ∈ txs;
TV-Validity: The union of returned verifiable transaction sets consists of non-conflicting

verifiable transactions.
In our algorithm, we use one Transaction Validation object TxVal.

DISC 2021



28:8 Permissionless and Asynchronous Asset Transfer

Adjustable Byzantine Lattice Agreement. Our asset-transfer algorithm reuses elements
of an implementation of Byzantine Lattice Agreement (BLA), a Lattice Agreement [10]
protocol that tolerates Byzantine failures. We introduce Adjustable Byzantine Lattice
Agreement (ABLA), an abstraction that captures safety properties of BLA. An ABLA
object is parameterized by a lattice (L, ⊑) and a boolean function VerifyInputValue :
L × ΣL → {true, false}. An input value of a given ABLA object is verifiable if it complies
with VerifyInputValue.

ABLA exports one operation: Propose(v, σv), where v ∈ L is an input value and
σv ∈ ΣL is a matching certificate. It also exports function VerifyOutputValue : L × ΣL →
{true, false}. The Propose operation returns a pair ⟨w, σw⟩, where w ∈ L is an output value
and σw ∈ ΣL is a matching certificate. An output value w of an ABLA object is verifiable if
it complies with function VerifyOutputValue.

An ABLA object satisfies the following properties:
ABLA-Validity : Every verifiable output value w is a join of some set of verifiable input values;
ABLA-Verifiability: If an invocation of Propose returns ⟨w, σw⟩ to a correct process, then

VerifyOutputValue(w, σw) = true;
ABLA-Inclusion: If Propose(v, σv) returns ⟨w, σw⟩, then v ⊑ w;
ABLA-Comparability: All verifiable output values are comparable.
In our algorithm, we use two ABLA objects, ConfigLA and HistLA.

Combining TV and ABLA. Let ConfigLA be an ABLA object parameterized as follows:
(L,⊑) = (2T ,⊆), VerifyInputValue(v, σv) is defined as VerifyTransactionSet(v, σv),
that is a part of TV. The function VerifyConfiguration(C, σC) is an alias for
ConfigLA.VerifyOutputValue(C, σC). Using this object, the processes produce comparable
configurations, i.e., transaction sets related by containment (⊆).

HistLA is an ABLA object used to produce sets of configurations that are all related
by containment. Under the assumption that every input (a set of configurations) to the
object only contains comparable configurations, the outputs are related by containment and
configurations in these sets are comparable. We can see these sets as sequences of ordered
configurations. Such sets are called histories, as was recently suggested for asynchronous
Byzantine fault-tolerant reconfiguration [21]. It was shown that histories allow us to access
only O(n) configurations, when n configurations are concurrently proposed. A history h is
called verifiable if it complies with VerifyHistory(h, σh).

Formally, the ABLA object HistLA is parameterized as follows: (L,⊑) = (22T
,⊆).

The requirement that the elements of an input are comparable is established via the
function VerifyInputValue({⟨C1, σ1⟩, . . . , ⟨Cn, σn⟩}) =

n∧
i=1

VerifyConfiguration(Ci, σi).

VerifyHistory(H, σH) is an alias for HistLA.VerifyOutputValue(H, σH).

TxVal
txs, σtxs

VerifyTransactionSet(txs, σtxs) = true

ConfigLA
C, σC

VerifyConfiguration(C, σC) = true

HistLA
H, σH

VerifyHistory(H, σH) = true

tx, σtx

VerifySender(tx, σtx) = true

Figure 1 Pastro pipeline.
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Thus, the only valid input values for the HistLA object consist of verifiable output values
of the ConfigLA object. At the same time, the only valid input values for the ConfigLA object
are verifiable transaction sets, returned from the TxVal object. And, the only valid inputs
for a TxVal object are signed transactions. In this case, all verifiable histories are related
by containment (comparable via ⊆), and all configurations within one verifiable history are
related by containment (comparable via ⊆) as well. Such a pipeline helps us to guarantee
that all configurations of the system are comparable and contain non-conflicting transactions.
Hence, such configurations can act as a consistent representation of stake distribution that
changes with time.

To get a high-level idea of how Pastro works, imagine a conveyor belt (Figure 1).
Transactions of different users are submitted as inputs, and as outputs, they obtain sets of
configurations. Then one can choose the configuration representing the largest resulting set
and install it in the system, changing the funds distribution in the system.

Algorithm overview. We assume that blocks of code (functions, operations, callbacks) are
executed sequentially until they complete or get interrupted by a wait condition (wait for . . . ).
Some events, e.g., receiving a message, may trigger callbacks (marked with keyword upon).
However, they are not executed immediately, but firstly placed in an event queue, waiting
for their turn.

By “let var = expression” we denote an assignment to a local variable (which can be
accessed only from the current function, operation, or callback), and by “var← expression”
we denote an assignment to a global variable (which can be accessed from anywhere by the
same process).

We denote calls to a weak reliable broadcast primitive with WRB-broadcast⟨. . . ⟩
and WRB-deliver⟨. . . ⟩. Besides, we assume a weak uniform reliable broadcast (WURB)
primitive, a variant of uniform reliable broadcast [3]. WURB ensures an additional property
compared to WRB: if the system remains static (i.e., the configurations stop changing) and a
correct process delivers message m, then every forever-correct process eventually delivers m.
The primitive helps us to ensure that if configuration C is never replaced with a greater one,
then every forever-correct process will eventually learn about such a configuration C. To
achieve this semantics, before triggering the deliver callback, a correct process just needs to
ensure that a quorum of replicas have received the message [3]. The calls to WURB should
be associated with some configuration C, and are denoted as WURB-broadcast⟨. . . , C⟩
and WURB-deliver⟨. . . , C⟩.

The algorithm uses one TV object TxVal and two ABLA objects: ConfigLA and HistLA.
We list the pseudocode for the implementation of the TxVal object in Appendix A, Figure 5.
The implementations of ConfigLA and HistLA are actually the same, and only differ in
their parameters, we therefore provide one generalized implementation for both objects
(Appendix A, Figure 6).

Every process maintains variables history, Tp and Ccur, accessible everywhere in the code.
Tp is the latest installed configuration by the process p, by Ccur we denote the configuration
starting from which the process needs to transfer data it stores to greater configurations,
and history is the current verifiable history (along with its certificate σhist).

The main part of Pastro protocol (depicted in Figure 2) exports one operation
Transfer(tx, σtx).

In this operation, we first set the local variables that store intermediate results produced in
this operation, to null values ⊥. Next, the Validate operation of the Transaction Validation
object TxVal is invoked with the given transaction tx and the corresponding certificate
σtx. The set of transactions txs and certificate σtxs returned from the TV object are
then used as an input for Propose operation of ConfigLA. Similarly, the result returned
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from ConfigLA “wrapped in” a singleton set, is used as an input for Propose operation
of HistLA. The returned verifiable history is then broadcast in the system. We consider
operation Transfer(tx, σtx) to complete by a correct process p once process p broadcasts
message ⟨NewHistory, h, σ⟩ at line 9 or if p stops the current Transfer by executing line 17.
Basically, the implementation of Transfer operation follows the logic described before and
depicted in Figure 1.

typealias SignedTransaction = Pair⟨T , ΣT ⟩
typealias C = Set⟨T ⟩

Global variables:
TxVal = TV()
ConfigLA = ABLA(L = 2T ,⊑=⊆, vinit = Cinit)
ConfigLA.VerifyInputValue(v, σ) = VerifyTransactionSet(v, σ)
VerifyConfiguration(v, σ) = ConfigLA.VerifyOutputValue(v, σ)
HistLA = ABLA(L = 22T

,⊑=⊆, vinit = {Cinit})
HistLA.VerifyInputValue({v}, σ) = VerifyConfiguration(v, σ)
VerifyHistory(v, σ) = HistLA.VerifyOutputValue(v, σ)

Tp = Cinit

Ccur = Cinit

history = {Cinit}, σhist =⊥

txs =⊥, σtxs =⊥
C =⊥, σC =⊥
H =⊥, σH =⊥
curTx =⊥

operation Transfer(tx: T , σtx: ΣT ): void
1 txs←⊥, σtxs ←⊥
2 C ←⊥, σC ←⊥
3 H ←⊥, σH ←⊥
4 curTx← tx
5 txs, σtxs ← TxVal.Validate(tx, σtx)
6 C, σC ← ConfigLA.Propose(txs, σtxs)
7 H, σH ← HistLA.Propose({C}, σC)
8 curTx← ⊥
9 WRB-broadcast ⟨NewHistory, H, σH⟩

upon WRB-deliver ⟨NewHistory, h, σ⟩ from any:
10 if VerifyHistory(h, σ) and history ⊂ h then
11 trigger event NewHistory(h) { ∀C ∈ h : C is a candidate configuration }
12 history ← h, σhist ← σ
13 let Ch = HighestConf(history)
14 UpdateFSKey(height(Ch))
15 if curT x ̸= ⊥ then { There is an ongoing Transfer operation }
16 if curT x ∈ Ch then { The last issued transaction by p is included in verifiable history }
17 CompleteTransferOperation() { Stops the ongoing Transfer operation if any }
18 else if txs =⊥ then { Operation Transfer is ongoing and txs has not been received }
19 TxVal.Request(∅) { Restarts transaction validation by accessing Ch }
20 else if C =⊥ then { Operation Transfer is ongoing and C has not been received yet }
21 ConfigLA.Refine(∅) { Restarts verifiable configuration reception by accessing Ch }
22 else if H =⊥ then { Operation Transfer is ongoing and H has not been received yet }
23 HistLA.Refine(∅) { Restarts verifiable history reception by accessing Ch }

Figure 2 Pastro: code for process p.

If a correct process delivers a message ⟨NewHistory, h, σ⟩, where σ is a valid certificate
for history h that is greater than its local estimate history, it “restarts” the first step that it
has not yet completed in Transfer operation (lines 18-23). For example, if a correct process p

receives a message ⟨NewHistory, h, σh⟩, where σh is a valid certificate for h and history ⊂ h
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while being in ConfigLA, it restarts this step in order to access a greater configuration. The
result of ConfigLA will still be returned to p in the place it has called ConfigLA.Propose.
Intuitively, we do this in order to reach the most “up-to-date” configuration (“up-to-date”
stake holders).

The State Transfer Protocol (Figure 3) helps us to ensure that the properties of the
objects (TxVal, ConfigLA and HistLA) are satisfied across configurations that our system
goes through. As system stake is redistributed actively with time, quorums in the system
change as well and, hence, we need to pass the data that some quorum knows in configuration
C to some quorum of any configuration C ′ : C ⊏ C ′, that might be installed after C. The
protocol is executed by a correct process after it delivers a verifiable history h, such that
C ∈ h and Ccur ⊏ C.

The height of a configuration C is the number of transactions in it (denoted as height(C) =
|C|). Since all configurations installed in Pastro are comparable, height can be used as
a unique identifier for an installed configuration. We also use height as the timestamp for
forward-secure digital signatures. When a process p answers requests in configuration C, it
signs the message with timestamp height(C). The process p invokes UpdateFSKey(height(C ′))
when it discovers a new configuration C ′ : C ⊏ C ′. Thus, processes that still consider C as
the current configuration (and see the corresponding stake distribution) cannot be deceived
by a process p, that was correct in C, but not in a higher installed configuration C ′ (e.g., p

spent all its stake by submitting transactions, which became part of configuration C ′, thereby
lost its weight in the system, and later became Byzantine).

The implementation of verifying functions (Figure 4) and a description of the auxiliary
functions used in the pseudocode are delegated to Appendix A.

Implementing Transaction Validation. The implementation of the TV object TxVal is
depicted in Figure 5 (Appendix A). The algorithm can be divided into two phases.

In the first phase, process p sends a message request that contains a set of transactions
sentTxs to be validated to all members of the current configuration. Every correct process q

that receives such messages first checks whether the transactions have actually been issued by
their senders. If yes, q adds the transactions in the message to the set of transactions it has seen
so far and checks whether any transaction from the ones it has just received conflicts with some
other transaction it knows about. All conflicting transactions are placed in set conflictTxs.
After q validates transactions, it sends a message ⟨ValidateResp, txs, conflictTxs, sig, sn⟩.
Here, txs is the union of verifiable transactions received by p from q just now and all other
non-conflicting transactions p is aware of so far. Process p then verifies a received message
⟨ValidateResp, txsq, conflictTxsq, sigq, sn⟩. The message received from q is considered to be
valid by p if q has signed it with a private key that corresponds to the current configuration,
all the transactions from txsq have valid certificates, and if for any verifiable transaction
tx from conflictTxs there is a verifiable transaction tx also from conflictTxs, such that tx

conflicts with tx′. If the received message is valid and txsq equals sentTxs, then p adds
signature of process q and its validation result to its local set acks1. In case sentTxs ⊂ txsq,
the whole phase is restarted. The first phase is considered to be completed as soon as p

collects responses from some quorum of processes in acks1.
Such implementation of the first phase makes correct process p obtain certificate not only

for its transaction, but also for other non-conflicting transactions issued by other processes.
This helping mechanism ensures that transactions of forever-correct processes are eventually
confirmed and become part of some verifiable configuration.
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upon Ccur ̸= HighestConf(history):
24 let Cnext = HighestConf(history)
25 let S = {C ∈ history | Ccur ⊑ C ⊏ Cnext}
26 seqNum← seqNum + 1
27 for C in S:
28 send ⟨UpdateRead, seqNum, C⟩ to members(C)
29 wait for (C ⊏ Ccur or ∃Q ∈ quorums(C) responded with seqNum)
30 if Ccur ⊏ Cnext then
31 Ccur ← Cnext

32 WURB-broadcast ⟨UpdateComplete, Cnext⟩

upon receive ⟨UpdateRead, sn, C⟩ from q:
33 wait for C ⊏ HighestConf(history)
34 let txs = TxVal.seenTxs
35 let values1 = ConfigLA.values
36 let values2 = HistLA.values
37 send ⟨UpdateReadResp, txs, values1, values2, sn⟩ to q

upon receive ⟨UpdateReadResp, txs, values1, values2, sn⟩ from q:
38 if VerifySenders(txs) and ConfigLA.VerifyValues(values1)
39 and HistLA.VerifyValues(values2) then
40 TxVal.seenTxs← TxVal.seenTxs ∪ txs
41 ConfigLA.values← ConfigLA.values ∪ values1.filter(⟨v, σv⟩ ⇒ v ̸∈ ConfigLA.values.firsts())
42 HistLA.values← HistLA.values ∪ values2.filter(⟨v, σv⟩ ⇒ v ̸∈ HistLA.values.firsts())

upon WURB-deliver ⟨UpdateComplete, C⟩ from quorum Q ∈ quorums(C):
43 wait for C ∈ history
44 if Tp ⊏ C then
45 if Ccur ⊏ C then Ccur ← C
46 Tp ← C { Update set of “confirmed” transactions }
47 trigger event InstalledConfig(C) { C is an installed configuration }

Figure 3 State Transfer Protocol: code for process p.

In the second phase, p collects signatures from a weighted quorum of the current configu-
ration. If p successfully collects such a set of signatures, then the configuration it saw during
the first phase was active (no greater configuration had been installed) and it is safe for p to
return the obtained result. This way the so-called “slow reader” attack [21] is anticipated.

If during any of the two phases p receives a message with a new verifiable history that is
greater (w.r.t. ⊆) than its local estimate and does not contain last issued transaction by
p, the described algorithm starts over. We guarantee that the number of restarts in TxVal
in Pastro protocol is finite only for forever-correct processes (please refer to the technical
report [19] for a detailed proof). Note that we cannot guarantee this for all correct processes
as during the protocol execution some of them can become Byzantine.

In the implementation, we assume that the dependency set of a transaction only includes
transactions that are confirmed (i.e., included in some installed configuration), otherwise
they are considered invalid.

Implementing Adjustable Byzantine Lattice Agreement. The generalized implementation
of ABLA objects ConfigLA and HistLA is specified by Figure 6 (Appendix A). The algorithm is
generally inspired by the implementation of Dynamic Byzantine Lattice Agreement from [21],
but there are a few major differences. Most importantly, it is tailored to work even if the
number of reconfiguration requests (i.e., transactions) is infinite. Similarly to the Transaction
Validation implementation, algorithm consists of two phases.
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In the first phase, process p sends a message that contains the verifiable inputs it knows to
other members and then waits for a weighted quorum of processes of the current configuration
to respond with the same set. If p receives a message with a greater set (w.r.t. ⊆), it restarts
the phase. The validation process performed by the processes is very similar to the one used
in Transaction Validation object implementation.

The second phase, in fact, is identical to the second phase of the Transaction Validation
implementation. We describe it in the pseudocode for completeness.

As with Transaction Validation, whenever p delivers a verifiable history h, such that it
is greater than its own local estimate and h does not contain last issued transaction by p,
the described algorithm starts over. Similarly to TxVal, it is guaranteed that the number of
restarts a forever-correct process make in both ConfigLA and HistLA is finite.

6 Proof of Correctness

In this section, we outline the proof that Pastro indeed satisfies the properties of an
asset-transfer system. First, we formulate a restriction we impose on the adversary that
is required for our implementation to be correct. Informally, the adversary is not allowed
to corrupt one third or more stake in a “candidate” configuration, i.e., in a configuration
that can potentially be used for adding new transactions. The adversary is free to corrupt a
configuration as soon as it is superseded by a strictly higher one. We then sketch the main
arguments of our correctness proof (the detailed proof is available in [19]).

6.1 Adversarial restrictions
A configuration C is considered to be installed if some correct process has triggered the
special event InstalledConfig(C). We call a configuration C a candidate configuration if some
correct process has triggered a NewHistory(h) event, such that C ∈ h. We also say that a
configuration C is superseded if some correct process installed a higher configuration C ′. An
installed (resp., candidate) configuration C is called an active (resp., an active candidate)
configuration as long as it is not superseded. Note that at any moment of time t, every active
installed configuration is an active candidate configuration, but not vice versa.

We expect the adversary to obey the following condition:

Configuration availability: Let C be an active candidate configuration at time t and let
correct(C, t) denote the set of processes in members(C) that are correct at time t. Then
C must be available at time t:∑

q∈correct(C,t)

stake(q, C) > 2/3M.

Note that the condition allows the adversary to compromise a candidate configuration
once it is superseded by a more recent one. As we shall see, the condition implies that our
algorithm is live. Intuitively, a process with a pending operation will either eventually hear
from the members of a configuration holding “enough” stake which might allow it to complete
its operation or will learn about a more recent configuration, in which case it can abandon
the superseded configuration and proceed to the new one.

6.2 Proof outline
Consistency. The consistency property states that (1) as long as process p is correct, Tp

contains only verifiable non-conflicting transactions and (2) if processes p and q are correct
at times t and t′ respectively, then Tp(t) ⊆ Tq(t′) or Tq(t′) ⊆ Tp(t). To prove that Pastro

DISC 2021



28:14 Permissionless and Asynchronous Asset Transfer

satisfies this property, we show that our implementation of TxVal meets the specification of
Transaction Validation and that both ConfigLA and HistLA objects satisfy the properties of
Adjustable Byzantine Lattice Agreement. Correctness of HistLA ensures that all verifiable
histories are related by containment and the correctness of ConfigLA guarantees that all
verifiable configurations are related by containment (i.e., they are comparable). Taking into
account that the only possible verifiable inputs for HistLA are sets that contain verifiable
output values (configurations) of ConfigLA, we obtain the fact that all configurations of
any verifiable history are comparable as well. As all installed configurations (all C such
that a correct process triggers an event InstalledConfig(C)) are elements of some verifiable
history, they all are related by containment too. Since Tp is in fact the last configuration
installed by a process p, we obtain (2). The fact that every p stores verifiable non-conflicting
transactions follows from the fact that the only possible verifiable input values for ConfigLA
are the output transaction sets returned by TxVal. As TxVal is a correct implementation
of Transaction Validation, then union of all such sets contain verifiable non-conflicting
transactions. Hence, the only verifiable configurations that are produced by the algorithm
cannot contain conflicting transactions. From this we obtain (1).

Monotonicity. This property requires that Tp only grows as long as p is correct. The
monotonicity of Pastro follows from the fact that correct processes install only greater
configurations with time, and that the last installed configuration by a correct process p is
exactly Tp. Thus, if p is correct at time t′, then for all t < t′: Tp(t) ⊆ Tp(t′).

Validity. This property requires that a transfer operation for a transaction tx initiated by a
forever-correct process will lead to tx being included in Tp at some point in time. In order to
prove this property for Pastro, we show that a forever-correct process p may only be blocked
in the execution of a Transfer operation if some other process successfully installed a new
configuration. We argue that from some moment of time on every other process that succeeds
in the installation of configuration C will include the transaction issued by p in the C. We
also show that if such a configuration C is installed then eventually every forever-correct
process installs a configuration C ′ : C ⊑ C ′. As Tp is exactly the last configuration installed
by p, eventually any transaction issued by a forever-correct process p is included in Tp.

Agreement. In the end we show that the Pastro protocol satisfies the agreement property
of an asset-transfer system. The property states the following: for a correct process p at time
t and a forever-correct process q, there exists t′ ≥ t such that Tp(t) ⊆ Tp(t′). Basically, it
guarantees that if a transaction tx was considered confirmed by p when it was correct, then
any forever-correct process will eventually confirm it as well. To prove this, we show that if
a configuration C is installed by a correct process, then every other forever-correct process
will install some configuration C ′, such that C ⊑ C ′. Taking into account the fact that Tp is
a last configuration installed by a process p, we obtain the desired.

7 Concluding Remarks

Pastro is a permissionless asset transfer system based on proof of stake. It builds on lattice
agreement primitives and provides its guarantees in asynchronous environments where less
than one third of the total stake is owned by malicious parties.
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Enhancements and optimizations. To keep the presentation focused, so far we described
only the core of the Pastro protocol. However, there is a number of challenges that
need to be addressed before the protocol can be applied in practice. In particular the
communication, computation and storage complexity of the protocol can be improved with
carefully constructed messages and signature schemes. Also, mechanisms for stake delegation
as well as fees and inflation are necessary. Note that these are non-trivial to implement in an
asynchronous system because there is no clear agreement on the order in which transactions
are added to the system or on the distribution of stake at the moment when a transaction
is added to the system. We discuss these topics as well as the practical aspects of using
forward-secure signatures in the technical report [19].

Open questions. In this paper, we demonstrated that it is possible to combine asynchronous
cryptocurrencies with proof-of-stake in presence of a dynamic adversary. However, there
are still plenty of open questions. Perhaps, the most important direction is to study hybrid
solutions which combine our approach with consensus in an efficient way in order to support
general-purpose smart contracts. Further research is also needed in order to improve the
efficiency of the solution and to measure how well it will behave in practice compared to
consensus-based solutions. Finally, designing proper mechanisms in order to incentivize
active and honest participation is a non-trivial problem in the harsh world of asynchrony,
where the processes cannot agree on a total order in which transactions are executed.
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A Pseudocode

Verifying and auxiliary functions. We provide implementations of required verifying
functions used in ConfigLA and HistLA in Figure 4. The implementation of function
VerifySender(tx, σtx) is not presented there, as it simply consists in verifying that σtx is a
valid signature for tx under tx.p’s public key.

We use the following auxiliary functions in the pseudocode to keep it concise:
VerifySenders(txs) – returns true iff ∀⟨tx, σtx⟩ ∈ txs : VerifySender(tx, σtx) = true,
otherwise returns false;
VerifyValues(vs) – returns true if ∀⟨v, σ⟩ ∈ vs : VerifyInputValue(v, σ) = true, other-
wise returns false;
ContainsQuorum(acks, C) – returns true if ∃Q ∈ quorums(C) such that ∀q ∈ Q⟨q, . . . ⟩ ∈
acks, otherwise returns false;
HighestConf(h) – returns the highest (w.r.t. ⊑) configuration in given history h;
firsts() – method that, when invoked on a set of tuples S, returns a set of first elements
of tuples from set S;
ConflictTransactions(txs) – for a given set of verifiable transactions txs returns a set
conflictTxs such that conflictTxs ⊆ txs and for any ⟨tx, σtx⟩ ∈ conflictTxs there exists
⟨tx′, σtx′⟩ ∈ conflictTxs such that tx conflicts with tx′;
CorrectTransactions(txs) – returns a set of transactions correctTxs such that
correctTxs ⊆ txs, ⟨tx, σtx⟩ ∈ correctTxs iff ⟨tx, σtx⟩ ∈ txs, σtx is a valid certificate
for tx and ∄⟨tx′, σtx′⟩ ∈ txs, such that tx conflicts with tx′.

fun VerifyTransactionSet(txs : Set⟨T ⟩, σtxs : Σ2T ) : Bool
48 let ⟨sentTxs, acks1, acks2, h, σh⟩ = σtxs

49 let C = HighestConf(h)
50 return VerifyHistory(h, σh) and txs = sentTxs.firsts() \ acks1.getConflictTxs().firsts()
51 and ContainsQuorum(acks1, C) and ContainsQuorum(acks2, C)
52 and acks1.forAll(⟨q, sig, conflictTxs⟩ ⇒
53 FSVerify(⟨ValidateResp, sentTxs, conflictTxs⟩, q, sig, height(C)))
54 and acks1.forAll(⟨q, sig, conflictTxs⟩ ⇒
55 conflictTxs.forAll(⟨tx, σtx⟩ ⇒ tx conflicts with tx′ such that ⟨tx′, σtx′⟩ ∈ conflictTxs))
56 and acks2.forAll(⟨q, sig⟩ ⇒ FSVerify(⟨ConfirmResp, acks1⟩, q, sig, height(C)))

fun ABLA.VerifyOutputValue(v : L, σ : Σ) : Bool
57 if σ =⊥ then return v = vinit

58 let ⟨values, acks1, acks2, h, σh⟩ = σ

59 let C = HighestConf(h)
60 return VerifyHistory(h, σh) and v =

⊔
values.firsts()

61 and ContainsQuorum(acks1, C) and ContainsQuorum(acks2, C)
62 and acks1.forAll(⟨q, sig⟩ ⇒ FSVerify(⟨ProposeResp, values⟩, q, sig, height(C)))
63 and acks2.forAll(⟨q, sig⟩ ⇒ FSVerify(⟨ConfirmResp, acks1⟩, q, sig, height(C)))

fun VerifyConfiguration(v, σ) = ConfigLA.VerifyOutputValue(v, σ)

fun VerifyHistory(v, σ) = HistLA.VerifyOutputValue(v, σ)

Figure 4 Verifying functions: code for process p.
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Global variables:
seenTxs, correctTxs, sentTxs : Set⟨SignedTransaction⟩ = {⟨txinit,⊥⟩}
acks1 = ∅, acks2 = ∅, status = inactive

operation Validate(tx : T , σ : ΣT ): Pair⟨Set⟨T ⟩, Σ2T ⟩
64 Request({⟨tr, σ⟩})
65 wait for ContainsQuorum(acks2, HighestConf(history))
66 status← inactive
67 let σ = ⟨sentTxs, acks1, acks2, history, σhist⟩
68 return ⟨sentTxs.firsts() \ acks1.getConflictTxs().firsts(), σ⟩

fun Request(txs: Set⟨SignedTransaction⟩): void
69 seenTxs← seenTxs ∪ txs, correctTxs← CorrectTransactions(seenTxs)
70 sentTxs← correctTxs, acks1 ← ∅, acks2 ← ∅
71 seqNum← seqNum + 1, status← requesting
72 let C = HighestConf(history)
73 send ⟨ValidateReq, sentTxs, seqNum, C⟩ to members(C)

upon ContainsQuorum(acks1, HighestConf(history)):
74 status ← confirming, let C = HighestConf(history)
75 send ⟨ConfirmReq, acks1, seqNum, C⟩ to members(C)

upon receive ⟨ValidateReq, txs, sn, C⟩ from q:
76 wait for C = Tp or HighestConf(history) ̸⊑ C

77 if VerifySenders(txs) then
78 seenTxs← seenTxs ∪ txs, correctTxs← CorrectTransactions(seenTxs)
79 if C = HighestConf(history) then
80 let conflictTxs = ConflictTransactions(seenTxs)
81 let sig = FSSign(⟨ValidateResp, txs ∪ correctTxs, conflictTxs⟩, height(C))
82 send ⟨ValidateResp, txs ∪ correctTxs, conflictTxs, sig, sn⟩ to q

upon receive ⟨ValidateResp, txs, conflictTxs, sig, sn⟩ from q and sn = seqNum and status = requesting:
83 let C = HighestConf(history)
84 let isValid = FSVerify(⟨ValidateResp, txs, conflictTxs⟩, q, sig, height(C))

and VerifySenders(txs ∪ conflictTxs) and conflictTxs.forAll(⟨tx, σtx⟩ ⇒
tx conflicts with some tx′ such that ⟨tx′, σtx′⟩ ∈ conflictTxs)

85 if isValid and txs = sentTxs then acks1 ← acks1 ∪ {⟨q, sig, conflictTxs⟩}
86 else if isValid and sentTxs ⊆ txs then Request(txs)

upon receive ⟨ConfirmReq, acks, sn, C⟩ from q:
87 wait for C = Tp or HighestConf(history) ̸⊑ C

88 if C = HighestConf(history) then
89 let sig = FSSign(⟨ConfirmResp, acks⟩, height(C))
90 send ⟨ConfirmResp, sig, sn⟩ to q

upon receive ⟨ConfirmResp, sig, sn⟩ from q and sn = seqNum and status = confirming:
91 let C = HighestConf(history)
92 let isValidSig = FSVerify(⟨ConfirmResp, acks1⟩, q, sig, height(C))
93 if isValidSig then acks2 ← acks2 ∪ {⟨q, sig⟩}

Figure 5 Transaction Validation: TxVal implementation.
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Parameters:
Lattice (L,⊑) and initial value vinit ∈ L
Function VerifyInputValue(v, σv)
Global variables:
values : Set⟨Pair⟨L, Σ⟩⟩ = {⟨vinit,⊥⟩}
acks1 = ∅, acks2 = ∅, status = inactive

operation Propose(v : L, σ : Σ): Pair⟨L, Σ⟩
94 Refine({⟨v, σ⟩})
95 wait for ContainsQuorum(acks2, HighestConf(history))
96 status← inactive
97 let σ = ⟨values, acks1, acks2, history, σhist⟩
98 return ⟨(

⊔
values.firsts()), σ⟩

fun Refine(vs : Set⟨Pair⟨L, Σ⟩⟩): void
99 acks1 ← ∅, acks2 ← ∅
100 values← values ∪ vs.filter(⟨v, σv⟩ ⇒ v ̸∈ values.firsts())
101 seqNum← seqNum + 1, status← proposing
102 let C = HighestConf(history)
103 send ⟨ProposeReq, values, seqNum, C⟩ to members(C)

upon ContainsQuorum(acks1, HighestConf(history))
104 status ← confirming, let C = HighestConf(history)
105 send ⟨ConfirmReq, acks1, seqNum, C⟩ to members(C)

upon receive ⟨ProposeReq, vs, sn, C⟩ from q:
106 wait for C = Tp or HighestConf(history) ̸⊑ C

107 if VerifyValues(vs \ values) then
108 values← values ∪ vs.filter(⟨v, σv⟩ ⇒ v ̸∈ values.firsts())
109 let replyValues = vs ∪ values.filter(⟨v, σv⟩ ⇒ v ̸∈ vs.firsts())
110 if C = HighestConf(history) then
111 let sig = FSSign(⟨ProposeResp, replyValues⟩, height(C))
112 send ⟨ProposeResp, replyValues, sig, sn⟩ to q

upon receive ⟨ProposeResp, vs, sig, sn⟩ from q and sn = seqNum and status = proposing:
113 let C = HighestConf(history)
114 let isValidSig = FSVerify(⟨ProposeResp, vs⟩, q, sig, height(C))
115 if isValidSig then
116 if values = vs then acks1 ← acks1 ∪ {⟨q, sig⟩}
117 else if VerifyValues(vs \ values) then Refine(vs \ values)

upon receive ⟨ConfirmReq, acks, sn, C⟩ from q:
118 wait for C = Tp or HighestConf(history) ̸⊑ C

119 if C = HighestConf(history) then
120 let sig = FSSign(⟨ConfirmResp, acks⟩, height(C))
121 send ⟨ConfirmResp, sig, sn⟩ to q

upon receive ⟨ConfirmResp, sig, sn⟩ from q and sn = seqNum and status = confirming:
122 let C = HighestConf(history)
123 let isValidSig = FSVerify(⟨ConfirmResp, acks1⟩, q, sig, height(C)))
124 if isValidSig then acks2 ← acks2 ∪ {⟨q, sig⟩}

Figure 6 Adjustable Byzantine Lattice Agreement: generalized implementation of ConfigLA and
HistLA.
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