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Abstract

Motivated by a wide variety of applications,
ranging from stochastic optimization to di-
mension reduction through variable selection,
the problem of estimating gradients accurately
is of crucial importance in statistics and learn-
ing theory. We consider here the classical
regression setup, where a real valued square
integrable r.v. Y is to be predicted upon ob-
serving a (possibly high dimensional) random
vector X by means of a predictive function
f(X) as accurately as possible in the mean-
squared sense and study a nearest-neighbour-
based pointwise estimate of the gradient of
the optimal predictive function, the regression
function m(x) = E[Y | X = x]. Under clas-
sical smoothness conditions combined with
the assumption that the tails of Y − m(X)
are sub-Gaussian, we prove nonasymptotic
bounds improving upon those obtained for
alternative estimation methods. Beyond the
novel theoretical results established, several
illustrative numerical experiments have been
carried out. The latter provide strong em-
pirical evidence that the estimation method
proposed here performs very well for vari-
ous statistical problems involving gradient es-
timation, namely dimensionality reduction,
stochastic gradient descent optimization and
disentanglement quantification.

1 INTRODUCTION

In this paper, we place ourselves in the usual regression
setup, one of the flagship predictive problems in statis-
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tical learning. Here and throughout, (X,Y ) is a pair
of random variables defined on the same probability
space (Ω, F , P) with unknown probability distribu-
tion P : the r.v. Y is real valued and square integrable,
whereas the (supposedly continuous) random vector
X takes its values in RD, with D ≥ 1, and models
some information a priori useful to predict Y . Based
on a sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of n ≥ 1
independent copies of the generic pair (X,Y ), the goal
pursued is to build a Borelian mapping f : Rd → R
that produces, on average, a good prediction f(X) of Y .
Measuring classically its accuracy by the squared error,
the learning task then boils down to finding a predic-
tive function f that is solution of the risk minimization
problem minf RP (f), where

RP (f) = E
[
(Y − f(X))

2
]
. (1)

Of course, the minimum is attained by the regression
function m(X) = E[Y | X], which is unknown, just
like Y ’s conditional distribution given X and the risk
(1). The empirical risk minimization (ERM) strategy
consists in solving the optimization problem above, ex-
cept that the unknown distribution P is replaced by an
empirical estimate based on the training data Dn, such
as the raw empirical distribution P̂n = (1/n)

∑
i≤n δXi

typically, denoting by δx the Dirac mass at any point
x, and minimization is restricted to a class F supposed
to be rich enough to include a reasonable approximant
of m but not too complex (e.g. of finite VC dimension)
in order to control the fluctuations of the deviations
between the empirical and true distributions uniformly
over it. Under the assumption that the random vari-
ables Y and f(X), f ∈ F , have sub-Gaussian tails, the
analysis of the performance of empirical risk minimiz-
ers (i.e. predictive functions obtained by least-squares
regression) has been the subject of much interest in
the literature, see e.g. Györfi et al., 2002, Massart,
2007, Boucheron et al., 2013 or Lecué and Mendelson,
2016 (and refer to e.g. Lugosi and Mendelson, 2016 for
alternatives to the ERM approach in non sub-Gaussian
situations).
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In this paper, we are interested in estimating accurately
the (supposedly well-defined) gradient∇m(x) by means
of the popular k nearest neighbour (k-NN) approach,
see e.g. Chapter in Devroye et al., 1996 or Biau and De-
vroye, 2015. The gradient learning issue has received
increasing attention in the context of local learning
problems such as classification or regression these last
few years, see e.g. Mukherjee and Wu, 2006; Mukherjee
and D.-X. Zhou, 2006. Because it provides a valuable
information about the local structure of a dataset in a
high-dimensional space, an accurate estimator of the
gradient of a predictive function can be used for various
purposes such as dimensionality reduction or variable
selection (see e.g. Dalalyan et al., 2008; Hristache, Ju-
ditsky, Polzehl, et al., 2001; Hristache, Juditsky, and
Spokoiny, 1998; Trivedi et al., 2014; Xia, 2007; Xia
et al., 2002; Ye and Xie, 2012), the partial derivative
w.r.t. a given variable being a natural indicator of its
importance regarding prediction. The previous refer-
ences are all concerned with outer products of gradients
so as to recover some dimension-reduction subspace.
Estimators of the gradients have also been proposed
for zeroth-order optimization (see e.g. Berahas et al.,
2020; Nesterov and Spokoiny, 2017; Wang et al., 2018)
and can benefit from good convergence properties.

Whereas the use of standard nonparametric methods
for gradient estimation is documented in the literature
(see De Brabanter et al., 2013; Delecroix and Rosa,
1996; Fan and Gijbels, 1996 for the use of local poly-
nomial with kernel smoothing techniques, Gasser and
Müller, 1984 for the so-called Gasser-Muller alternative,
S. Zhou and Wolfe, 2000 for the use of regression spline
and Mukherjee and D.-X. Zhou, 2006 for the estima-
tion on a reproducing kernel Hilbert space with kernel
smoothing), it is the purpose of the present article
to investigate the performance of an alternative local
averaging method, the popular k-NN method. As it
provides piecewise constant estimates, it is easier to con-
ceptualize for the practitioner and, more importantly;
the neighbourhoods determined by the parameter k are
data-driven and often more consistent than those de-
fined by the bandwidth in the kernel setting, especially
in high dimensions.

Here we investigate the behaviour of the estimator
of the (supposedly sparse) gradient of the regression
function at a given point x ∈ RD, obtained by solving
a regularized local linear version of the k-NN prob-
lem with a Lasso penalty. Precisely, nonasymptotic
bounds for the related estimation error are established.
Whereas k-NN estimators of the regression function
have been extensively analysed (see e.g. Biau, Cérou,
et al., 2010; Jiang, 2019; Kpotufe, 2011 and the ref-
erences therein), the result stated in this paper is the
first of this type to the best of our knowledge.

The relevance of the approach promoted is then illus-
trated by several applications. A variable selection
algorithm that exploits the local nature of the gradi-
ent estimator proposed is first exploited to refine the
popular random forest algorithm (see Breiman, 2001):
by exploiting the node estimate of the gradient we
are able to direct better the choice of cuts. Very sim-
ple to implement and accurate, as supported by the
various numerical experiments carried out, it offers
an attractive and flexible alternative to existing tradi-
tional methods such as PCA or the more closely related
method of Dalalyan et al., 2008, allowing for a local
reduction of the dimension rather than implementing a
global preprocessing of the data. We next show how a
rough statistical estimate of the gradient of any smooth
objective function based on the estimation principle
previously analysed in the context of regression can be
exploited in a basic gradient descent algorithm. We
exploit the local structure of the algorithm to be able
to reuse past computations in order to calculate our
estimator and jump to a better local minimum at each
gradient step as well. Finally, we give an example of
the usefulness of a sparse gradient estimate when the
gradient is believed to be truly sparse: we use our
estimator to retrieve the direction of interest for a spe-
cific attribute inside a disentangled representation and
show how this can be used as an ad hoc measure of
disentanglement.

The article is organized as follows. In section 2, the
estimation method and the assumptions involved in the
subsequent analysis are listed. The main theoretical
results of the paper are stated in section 3, while sev-
eral applications of the estimation method promoted
are described at length and illustrated by numerical
experiments in section 4. Some concluding remarks
are collected in section 5 and technical proofs are post-
poned to the Supplementary Material.

2 BACKGROUND - FRAMEWORK

We place ourselves in the nonparametric regression
setup described in the previous section. Here and
throughout, the indicator function of any event E is
denoted by 1E , the cardinality of any finite set E by
#E. By ||x||∞ = max{|x1|, . . . |xD|}, ||x|| = |x1| +
. . .+ |xD| and ||x|| =

√
x2
1 + . . .+ x2

D are meant the
`∞-norm, the `1-norm and the `2-norm of any vector
x = (x1, . . . , xD) in RD. Any vector x in RD is
identified as a column vector, the transpose of any
matrix M is denoted by Mᵀ and B(x, τ) = {z ∈ RD :
||x − z||∞ ≤ τ} is the (closed) ball of centre x ∈ RD

and radius τ > 0.

k-NN estimation methods in regression. Let x ∈
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RD be fixed and k ∈ {1, . . . , n}. Define

τ̂k(x)= inf{τ ≥ 0 :

n∑
i=1

1{Xi∈B(x,τ)} ≥ k},

which quantity is referred to as the k-NN radius.
Indeed, observe that, equipped with this notation,
B(x, τ̂k(x)) is the smallest ball with centre x con-
taining k points of the sample Dn and the mapping
α ∈ (0, 1] 7→ τ̂αn(x) is the empirical quantile function
related to the sample {‖x−X1‖∞, . . . , ‖x−Xn‖∞}.
The rationale behind k-NN estimation in the regression
context is simplistic, the method consisting in approx-
imating m(x) = E[Y | X = x] by E[Y | X ∈ B(x, τ)],
the mapping m being assumed to be smooth at x, and
computing next the empirical version of the approxi-
mant (i.e. replacing the unknown distribution P by the
raw empirical distribution). This yields the estimator

m̂k(x) =
1

k

∑
i:Xi∈B(x,τ̂k(x))

Yi, (2)

usually referred to as the standard k-nearest neighbour
predictor at x. Of course, the mapping x ∈ RD 7→
m̂k(x) is locally/piecewise constant, just like x ∈ RD 7→
τ̂k(x). The local average m̂k(x) can also be naturally
expressed as

m̂k(x) = argmin
m∈R

∑
i:Xi∈B(x,τ̂k(x))

(Yi −m)2. (3)

For this reason, the estimator (2) is sometimes referred
to as the local constant estimator in the statistical lit-
erature. Following in the footsteps of the approach
proposed in Fan, 1992, the estimation of the regres-
sion function at x can be refined by approximating the
supposedly smooth function m(z) around x in a linear
fashion, rather than by a local constant m, since we
have m(z) = m(x) +∇m(x)ᵀ(z − x) + o(‖z − x‖) by
virtue of a first-order Taylor expansion. For any point
Xi close to x, one may write m(Xi) ' m+ βᵀ(Xi − x)
and the local linear estimator of m(x) and the related
estimator of the gradient β(x) = ∇m(x) are then de-
fined as

argmin
(m,β)∈RD+1

∑
i:Xi∈B(x,τ̂k(x))

(Yi −m− βᵀ(Xi − x))2. (4)

Because of its reduced bias, the local linear estimator
(the first argument of the solution of the optimization
problem above) can improve upon the local constant
estimator (2) in moderate dimensions. However, when
the dimension D increases, its variance becomes large
and the design matrix of the regression problem is
likely to have small eigenvalues, causing numerical

difficulties. For this reason, we introduce here a lasso-
type regularized version of (4), namely

(m̃k(x), β̃k(x)) ∈

argmin
(m,β)∈RD+1

∑
i:Xi∈B(x,τ̂k(x))

(Yi −m− βᵀ(Xi − x))2

+ λ‖β‖1 (5)

for i ∈ i(x) = {j : Xj ∈ B(x, τ̂k(x))} and where
λ > 0 is a tuning parameter governing the amount
of `1-complexity penalization. For the moment, we
let it be a free parameter and will propose a specific
choice in the next section. Focus is here on the gradient
estimator β̃k(x), i.e. the second argument in (5). In
the subsequent analysis, nonasymptotic bounds are
established for specific choices of λ and k. The following
technical assumptions are required.

Technical hypotheses. The hypothesis formulated
below permits us to relate the volumes of the balls
B(x, τ) to their probability masses, for τ small enough.

Assumption 1 There exists τ0 > 0 such that restric-
tion of X’s distribution on B(x, τ0) has a bounded
density fX , bounded away from zero, with respect to
Lebesgue measure:

bf = inf
y∈B(x,τ0)

fX(y) > 0

Uf = sup
y∈B(x,τ0)

fX(y) < +∞.

Suppose in addition that Uf/bf ≤ 2.

The constant 2 involved in the condition above for
notational simplicity can be naturally replaced by any
constant 1+γ, with γ > 0. The next assumption, useful
to control the variance term, is classical in regression,
it stipulates that we have Y = m(X) + ε, with a sub-
Gaussian residual ε independent from X.

Assumption 2 The zero-mean and square integrable
r.v. ε = Y − m(X) is independent from X and is
sub-Gaussian with parameter σ2 > 0, i.e. ∀λ ∈ R,
E[exp(λε)] ≤ exp(−σ2λ2/2).

In order to control the bias error when estimating the
gradient β(z) = ∇m(z) of the regression function at x,
smoothness conditions are naturally required.

Assumption 3 The function m(z) is differentiable on
B(x, τ0) with gradient β(z) = ∇m(z) and there exists
L2 > 0 such that for all z ∈ B(x, τ0),

|m(z)−m(x)− β(x)(z − x)| ≤ L2‖z − x‖2∞.

Finally, a Lipschitz regularity condition is required for
the density fX .
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Assumption 4 The function fX is L-Lipschitz at x
on B(x, τ0), i.e. there exists L > 0 such that for all
z ∈ B(x, τ0),

|fX(z)− fX(x)| ≤ L‖z − x‖∞.

We point out that, as the goal of this paper is to give
the main ideas underlying the use of the k-NN method-
ology for gradient estimation rather than carrying out
a fully general analysis, the `∞-norm is considered here,
making the study of `1 regularization easier. The re-
sults of this paper can be extended to other norms at
the price of additional work.

3 MAIN RESULT - THE k-NN
BASED GRADIENT ESTIMATOR

The main theoretical result of the present paper is now
stated and further discussed. Under the hypotheses
listed in the previous section and for specific choices
of k and λ, it provides a nonasymptotic bound for
the estimator β̃k(x) of the gradient β(x) = ∇m(x) at
x given by (5). Whereas nonasymptotic bounds for
k-NN estimators of the regression function have been
established under various smoothness assumptions (see
e.g. Jiang, 2019 or Kpotufe, 2011), no nonasymptotic
study of k-NN based estimator of the gradient of the
regression function is documented in the literature. To
the best of our knowledge, the result proved in this
article is the first of this nature. Two key quantities
are involved in the upper confidence bound given in
Theorem 1, the (deterministic) radius

τk =

(
2k

nbf2D

)1/D

,

that upper bounds the k-NN radius on an event holding
true with high probability, as well as the cardinality of
the so-called local active set

Sx = {1 ≤ k ≤ D : βk(x) 6= 0},

which, for clarity reasons, is supposed to be non-empty.

Theorem 1 Suppose that assumptions 1, 2, 3 and 4
are fulfilled. Let n ≥ 1 and k ≥ 1 such that τk ≤ τ0. Let
δ ∈ (0, 1) and set λ = τk(

√
2σ2 log(16D/δ)/k+L2τ

2
k).

Then, we have with probability larger than 1− δ,

‖β̃k(x)− β(x)‖2 ≤

(24)2
√
#Sx

(
τ−1
k

√
2σ2 log(16D/δ)

k
+ L2τk

)
, (6)

as soon as C1#Sx log(Dn/δ) ≤ k ≤ C2n, τ2k ≤
(b2f/(C3#SxL2) ∧ τ20 ), where C1, C2 and C3 are uni-
versal constants.

The analysis of the accuracy of the nearest neighbour
estimate m̂k(x) classically involves the following de-
composition of the estimation error

m̂k(x)−m(x) = (m̂k(x)−mk(x)) + (mk(x)−m(x)) ,
(7)

where mk(x) = (1/k)
∑

i:Xi∈B(x,τ̂k(x))
m(Xi). The ap-

proach developed in Jiang, 2019 essentially consists
in combining this decomposition with the fact that
τ̂k(x) ≤ τk with high probability. By its own nature,
our local linear Lasso regularized estimate of the gra-
dient β̃k cannot be treated in the same way. First, in
order to take advantage of the Lasso regularization in
sparse situations (i.e. when the gradient at x depends
on a small number of covariates solely), we rely on a
basic inequality Hastie et al., 2015, Lemma 11.1 which
is useful when analysing standard Lasso estimates. Sec-
ond, we need to control the size of the neighbourhoods
τ̂k(x) on an event of high probability. In this respect,
we slightly deviate from the approach of Jiang, 2019:
we do not rely on concentration results over VC classes
but only on the Chernoff concentration bound. This
way, we can relax significantly the lower bound condi-
tions for k as the dimension D increases, see Theorem
2 below, which compares favourably with Corollary 1
in Jiang, 2019 for instance.

Balancing between the bias and the variance term of
the upper bound provided in (6) we obtain that the
optimal value for k is k ∼ n4/(4+D). In this case, the
bound stated above yields the rate n−1/(4+D). As a
consequence, our bound matches the minimax rate (up
to log terms) given in Stone, 1982 for the problem of
the estimation of the derivative (in a L2 sense).

Pointwise k-NN estimation of m(x). Though it
concerns the local estimation error, the bound in the
theorem below can be viewed as a refinement of the
nonasymptotic results recently established in Jiang,
2019 (see also Kpotufe, 2011), which provide uniform
bounds in x. It requires a local smoothness condition
for the regression function. From now on, ‖ · ‖ denotes
any norm on RD.

Assumption 5 The regression function m(z) is L1-
Lipschitz at x, i.e. there exists L1 > 0 such that for
all z ∈ B(x, τ0) = {x′ ∈ RD : ‖x′ − x‖ ≤ τ0},

|m(x)−m(z)| ≤ L1‖x− z‖.

Theorem 2 Suppose that assumptions 1, 2 and 5 are
fulfilled and that 2k ≤ nτ0bfVD. Then for any δ ∈ (0, 1)
such that k ≥ 4 log(2n/δ), we have with probability 1−δ:

|m̂k(x)−m(x)| ≤
√

2σ2 log(4/δ)

k
+ L1

(
2k

nbfVD

)1/D

,

where VD =
∫
1{x∈B(0,1)}dx denotes the volume of the

unit ball.
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We obtain a weaker condition on the value of k than
that obtained in Jiang, 2019 (see Corollary 1 therein),
due to our different treatment of the approximation
term (the second term in decomposition (7)) is differ-
ent (see the argument detailed in the Supplementary
Material). With k ∼ n2/(2+D), the bound stated above
yields the minimax rate n−1/(D+2).

4 NUMERICAL EXPERIMENTS

In order to motivate the need for a robust estimator of
the gradient, we introduce three different examples of
use of our estimator compared to existing approaches.
All the code to reproduce the experiments and fig-
ures can be found at https://git.sr.ht/~aussetg/
locallinear.

As our estimator is sensitive to the choice of hyper-
parameters k and λ we use a local leave-one-out pro-
cedure described in Algorithm 1 for hyperparameter
selection. As only the regression variable Y is observed,
the regression error is used as a proxy loss in the cross-
validation. The high cost of k-NN is amortized by
using k-d trees, bringing the total average complexity
of the nearest neighbour search down to O(n log n). In
cases where the aforementioned cost is too high (n in
the order of millions) it is possible to instead make
use of approximate nearest neighbour schemes such as
HNSW (Malkov and Yashunin, 2020). Approximate
Nearest Neighbours algorithms have recently enjoyed a
regain of interest and provide high accuracy at a very
low computational cost (Aumüller et al., 2018).

Algorithm 1 Local Leave-One-Out
Require: x: sample point, (X,Y ): training set,

(K,Λ): grid
1: XLoO ← Neighbourhood of x in X of size N
2: for k ∈ K,λ ∈ Λ do
3: for Xi ∈ XLoO do
4: mi, βi ← estimated gradient at Xi

w.r.t X,Y using (5)
5: end for
6: errork,λ ← 1

N

∑N
i=1(mi − Yi)

2

7: end for
8: k?, λ? ← argmink,λ errork,λ

9: return k?, λ?

4.1 Variable Selection

While a large number of observations is desirable the
same is not necessarily the case for the individual fea-
tures; a large number of features can be detrimental to
the computational performance of most learning meth-
ods but also harmful to the predictive performance. In

order to mitigate the detrimental impact of the high di-
mensionality, or curse of dimensionality, one can try to
reduce the effective dimension of the problem. A large
body of work exists on dimensionality reduction as a
preprocessing step that considers the intrinsic dimen-
sionality of X by considering for example that X lies on
a lower-dimensional manifold. Those approaches only
consider X in isolation and do not take into account
Y which is the variable of interest. It is possible to
use the information in Y to direct the dimension re-
duction of X, either by treating Y as side information,
as is done in Bach and Jordan, 2005, or by consider-
ing the existence of an explicit index space such that
Yi = g(vᵀ1Xi, · · · , vᵀmXi) + εi as is done in Dalalyan
et al., 2008. In the latter case, it is possible to observe
that the index space lies on the subspace spanned by
the gradient.

In contrast with the work of Dalalyan et al., 2008 our
approach is local and it is therefore possible to retrieve
a different subspace in different regions of RD. As
localizing the estimator increases its variance, we choose
to only identify the dimensions of interest instead of
estimating the full projection matrix. We introduce
Gradient Guided Trees in Algorithm 2 to exploit the
local aspect of our estimator in order to direct the
cuts in a random tree: at each step, cuts are drawn
randomly with probability proportional to estimated
mean absolute gradient in the cell. We demonstrate the

Algorithm 2 Node Splitting for Gradient Guided
Trees
Require: (X,Y ): training set, Node: indexes of points

in the node
1: ∇m(Xi) ← estimated gradient at Xi, ∀i ∈

Node using (5)
2: ω ←

∑
i∈Node|∇m(Xi)|

3: K ← sample
√
D dimensions in

{1, . . . , d} with probability weights ∝ ω
4: k, c← best threshold c and dimension k
5: return k, c

improvements brought by guiding the cuts by the local
information provided by the gradient by comparing the
performance of a vanilla regression random forest with
the same procedure but with local gradient information.
We consider five datasets: the Breast Cancer Wisconsin
(Diagnostic) Data Set introduced in Street et al., 1993;
the Heart Disease dataset introduced by Detrano et al.,
1989; the classic Diamonds Price dataset; the Gasoline
NIR dataset introduced by Kalivas, 1997 and the Sloan
Digital Sky Survey DR14 dataset of Abolfathi et al.,
2018. We measure the L2 loss by cross validation
across 50 folds using the same hyperparameters for the
growing of the forest in both the standard and gradient
guided variants.

https://git.sr.ht/~aussetg/locallinear
https://git.sr.ht/~aussetg/locallinear
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Description Loss
Dataset n D RF GGF

Wisconsin 569 30
0.0352

±3.29 · 10−4
0.0345

±3.35 · 10−4

Heart 303 13
0.128

±6.6 · 10−4
0.124

±8.6 · 10−4

Diamonds 53940 23
680033

±3.45 · 109
664265

±2.81 · 109

Gasoline 60 401
0.678
±0.451

0.512
±0.347

SDSS 10000 8
0.872 · 10−3

±4.50 · 10−6
0.776 · 10−3

±6.00 · 10−6

Table 1: Performance of the two random forest
algorithms on a 50-folds cross validation.

We denote by RF, Random Forests grown from stan-
dard CART trees while GGF denote Gradient Guided
Forests grown from the Gradient Guided Trees previ-
ously introduced. As seen in Table 1, gradient guided
split sampling consistently outperform the vanilla vari-
ant. When all variables are relevant, as is the case when
the variables were carefully selected by the practitioner
with prior knowledge, our variant performs similarly
to the original algorithm while performance is greatly
improved when only a few variables are relevant, such
as in the NIR dataset (Portier and Delyon, 2014).

4.2 Gradient Free Optimization

Many of the recent advances in the field of machine
learning have been made possible in one way or an-
other by advances in optimization; both in how well
we are able to optimize complex function and what
type of functions we are able to optimize if only locally.
Recent advances in automatic differentiation as well as
advances that push the notion of what can be differ-
entiated have given rise to the notion of differentiable
programming (Innes et al., 2019) in which a significant
body of work can be expressed as the solution to a
minimization problem usually then solved by gradient
descent.

We study here the use of the local linear estimator of
the gradient in Algorithm 3 in cases where analytic or
automatic differentiation is impossible, and compare
it to a standard gradient free optimization technique
as well as the oracle where the true gradient is known.
While line 1 bears resemblance with Gaussian smooth-
ing and could therefore be seen as analogous to gradient
estimation via Gaussian smoothing (see Berahas et al.,
2020), two key differences here are the subsequent local
linear step as well as the fact that the samples from

Algorithm 3 Estimated Gradient Descent
Require: x0: initial guess, f : function RD → R, M :

budget
1: X ← X1, . . . , XM with Xi ∼ N (x0, ε× ID)
2: Y ← f(X) := f(X1), . . . , f(XM )
3: while not StoppingCondition do
4: m,∆ ← estimated gradient at x w.r.t

X,Y using (5)
5: X ← X,X1, . . . , XM with Xi ∼
N (GradientStep(x,∆), ε× ID)

6: Y ← f(X)
7: x← argminXi

{f(Xi)}
8: end while
9: return x

line 1 are not necessarily the samples used in the local
linear estimator of line 4.

We first minimize the standard but challenging Rosen-
brock function for different values of d. which is defined
as

f(x) = 100

d−1∑
i=1

(xi+1 − xi)
2 + (xi − 1)2. (8)

We compare for reference our approach to the Nelder-
Mead (simplex search) algorithm; a standard gradient
free optimization technique. It is apparent in Figure 1
that estimating the gradient yields a significant advan-
tage compared to traditional gradient-free techniques
that usually have to rely on bounding arguments and
feasible regions and therefore scale unfavourably with
the dimension. As our approach uses a nearest neigh-
bours formulation for the gradient estimate, we are able
to efficiently reuse past samples in the current estimate
of the gradient; this makes it possible to achieve a suf-
ficiently accurate estimate of the gradient even in high
dimensions. We compare in Figure 2 the approach de-
veloped previously to the estimators proposed by Wang
et al., 2018 and Fan, 1992. As the approach proposed
by Wang et al., 2018 includes the use of mirror de-
scent, for fairness, we have implemented our proposed
gradient descent algorithm of Algorithm 3 using our
estimator as well as those of Wang et al., 2018 and Fan,
1993 (with reuse of previous samples where appropriate)
for the gradient. We then reimplemented the mirror de-
scent algorithm of Wang et al., 2018 with the previous
estimators of the gradient. We observe in Figure 2 that
our method compares favourably: our estimator is able
to reuse past samples in its gradient estimation and
has therefore access to a better gradient estimate for a

1The number of function evaluations does not have any
meaning for the true gradient. We use here that 1 estimated
gradient step ≈ 50 function evaluations. 5000 function
evaluations therefore equate to 100 gradient steps.
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Figure 1: Nesterov Gradient Descent on the
rosenbrock function for d = 50 (top) and d = 100

(bottom).

fixed, given number of function evaluations. We apply
the previous method to the minimization of the log-
likelihood of a logistic model on the UCI’s Adult data
set, consisting of 48842 observations and 14 attributes
amounting to 101 dimensions once one-hot encoded
and an intercept added.

Lθ(X) = −
∑
i

Yi log(1 + exp(−θXi))

− (1− Yi) log(1 + exp(θXi)), θ ∈ R101. (9)

We also compare the effective CPU wall time needed
to reach a given log-likelihood in order to give a more
comprehensive view of the relative performance of the
multiple algorithms. Given that the time per iteration
can vary greatly depending on the cost of evaluations
and the cost of the gradient procedures, it is important
to use both the number of evaluations and the time
metric jointly with the former being more relevant as
the cost of individual function evaluations increases.

4.3 Disentanglement

Disentangled representation learning aims to learn a
representation of the input space such that the inde-
pendent dimensions of the representation each encode
separate but meaningful attributes of the original fea-
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Figure 2: Nesterov Gradient Descent (top) and Mirror
Gradient Descent (bottom) on the Rosenbrock

function for d = 100.
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ture space. If the space of interest is the space of faces,
a disentangled representation would then for example
be a lower-dimensional space where one dimension en-
codes the sex of the subject, another its age, and so
forth. We show here how our estimator can be useful
for retrieving the dimensions associated with a concept
in a supervised manner.

A β-VAE (Higgins et al., 2017) model is trained on the
CACD2000 dataset of celebrity faces with age labels to
first build low-dimensional a representation of the im-
ages and then extract the direction relating to age. We
learn Eφ and Dθ parameterizing qφ and pθ, to minimize
the loss

L(θ, φ;x, z, β) = Eqφ(z|x) [log pθ(x | z)]
− βDKL(qφx ‖ x), (10)

where β acts as a constraint on the representational
power of the latent distribution; β = 1 leads to the
standard VAE formulation of Kingma and Welling,
2014 while β > 1 increases the level of disentanglement.
We use a standard symmetrical encoder-decoder archi-
tecture for the variational autoencoder, schematically
presented in Figure 4. All the relevant implementa-
tion details can be found in the Julia code in the
supplementary materials. We learn a 512-dimensional
representation of the 128× 128 images and encode all
the CACD2000 images. Once all the images have been
encoded in R512 it is possible to use the local linear
estimator of the gradient studied in this work to derive
the gradient of the age with respect to the latent vari-
able, making it possible to produce a new version of
the input image that appears either older or younger
as done in Figure 5. By computing a local estimate of
the gradient, we are able to derive a more meaningful
change when the age is not perfectly disentangled.

z + 0.1×∇m(z)

Figure 5: Extracting the direction of interest for aging.

Note that the quality of the image reconstruction and
generation is here solely limited by the choice of the
encoding and decoding model and is not related to the
methods introduced in this paper, significant advances
in the quality of the decoding have been made in the
recent years and if a better quality and less blurry
decoded output is desired we encourage the reader to
replace the decoder with a PixelCNN architecture such
as presented in Salimans et al., 2017. The quality of
the gradient is also significantly impacted by the qual-

ity of the annotations as CACD200 is an automatically
annotated and noisy dataset.

Using our estimator it is possible to estimate the gra-
dient ∇m of E[Y | Z = z] with respect to the latent
variable Z (illustrated in the Appendix). It is then
possible to analyse the sparsity of ∇m to quantify the
quality of the disentanglement for varying level of β by
quantifying how far from a single dimension the gradi-
ent for the age is concentrated. As the true dimension
is unknown, we instead measure the angular distance
to all dimensions reweighted by the magnitudes of the
partial derivatives:

∑
i

|∇̂im(x)|
|∇̂m(x)|

cos(ei,
1

n

∑
k

|∇̂m(x)|),

where cos(a, b) =
a · b
‖a‖‖b‖

.

(11)

We observe in Figure 6 that as β increases the age slowly
become disentangled, as expected if one considers the
age to be an important and independent characteristic
of human faces.
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Figure 6: Quality of disentanglement with respect to
the age

While not an entirely adequate metric for disentan-
glement, not only because disentanglement does not
necessarily require the dimensions to be the one an
observer expected but more importantly because this
metric requires an annotated dataset; we believe this
metric can be useful for practitioners. By measuring
how close the estimated gradients are to the axis, with
respect to an annotated dataset of characteristics of
interest, a practitioner can ensure his model is suffi-
ciently disentangled for downstream tasks such as face
manipulation by a user. We also believe it is possible to
design an end-to-end differentiable framework in order
to force disentanglement to consider the characteristics
of interest: our estimator is the solution to a convex
optimization program and as such admits an adjoint;
it is therefore possible to fit a local linear estimator
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Figure 4: Encoder-Decoder Architecture used for this work

inside an automatic differentiation framework such as
done in Agrawal et al., 2019.

5 CONCLUSION

In this paper, we have studied the estimator of the
(supposedly sparse) gradient of the regression function
obtained by solving a regularized local linear version
of the k-NN problem with a `1 penalty. Nonasymp-
totic bounds for the local estimation error have been
established, improving upon those obtained for alter-
native methods in sparse situations. We derived non-
asymptotic error bounds on a local linear estimator of
the gradient based on k-nearest neighbours averaging
and with a sparsity inducing L1 penalty. Compared
to previous similar estimators we show that exploiting
the sparsity of the gradient improves convergence rates.
Beyond its theoretical properties and its computational
simplicity, the local estimation method promoted here
is shown to be the key ingredient for designing efficient
algorithms for variable selection and M -estimation, as
supported by various numerical experiments. Hope-
fully, this work shall pave the way to the elaboration of
novel statistical learning procedures that exploits the
local structure of the gradient, and for which the theory
will be extended to take into account the underlying
geometry of the space in order to obtain convergence
rates depending only on the true intrinsic dimension
of the data such as done in Mukherjee, Wu, and D.-X.
Zhou, 2010 for the kernel smoothing setting.
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