
HAL Id: hal-03559370
https://telecom-paris.hal.science/hal-03559370

Submitted on 6 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning from Biased Data: A Semi-Parametric
Approach

Stéphan Clémençon, Patrice Bertail, Yannick Guyonvarch, Nathan Noiry

To cite this version:
Stéphan Clémençon, Patrice Bertail, Yannick Guyonvarch, Nathan Noiry. Learning from Biased Data:
A Semi-Parametric Approach. 2021. �hal-03559370�

https://telecom-paris.hal.science/hal-03559370
https://hal.archives-ouvertes.fr


Learning from Biased Data: A Semi-Parametric Approach

Patrice Bertail * 1 Stephan Clémençon * 2 Yannick Guyonvarch * 2 Nathan Noiry * 2

Abstract
We consider risk minimization problems where
the (source) distribution PS of the training obser-
vations Z1, . . . ,Zn differs from the (target) distri-
bution PT involved in the risk that one seeks to
minimize. Under the natural assumption that PS

dominates PT , i.e. PT << PS , we develop a semi-
parametric framework in the situation where we
do not observe any sample from PT , but rather
have access to some auxiliary information at the
target population scale. More precisely, assuming
that the Radon-Nikodym derivative dPT /dPS (z)
belongs to a parametric class {g(z, α), α ∈ A}
and that some (generalized) moments of PT are
available to the learner, we propose a two-step
learning procedure to perform the risk minimiza-
tion task. We first select α̂ so as to match the mo-
ment constraints as closely as possible and then
reweight each (biased) training observation Zi by
g(Zi, α̂) in the final Empirical Risk Minimization
(ERM) algorithm. We establish a OP(1/

√
n) gen-

eralization bound proving that, remarkably, the
solution to the weighted ERM problem thus con-
structed achieves a learning rate of the same order
as that attained in absence of any sampling bias.
Beyond these theoretical guarantees, numerical
results providing strong empirical evidence of the
relevance of the approach promoted in this article
are displayed.

1. Introduction
In the classic formulation of predictive learning problems,
the goal is to find θ in a parameter space Θ with minimum
risk RP(θ) = EP[`(Z, θ)]. Here Z is a random variable, tak-
ing its values in some measurable spaceZ, with unknown
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distribution P and ` : Z × Θ → R+ is a given loss func-
tion. In order to solve approximately the risk minimization
problem

inf
θ∈Θ
RP(θ), (1)

one assumes that a training dataset Dn = {Z1, . . . , Zn}

composed of n ≥ 1 independent copies of the generic r.v.
Z is available. A natural learning procedure consists in
replacing the unknown risk by its empirical version based
on the Zi’s and solving next

inf
θ∈Θ

1
n

n∑
i=1

`(Zi, θ). (2)

The accuracy of this procedure, referred to as Empirical
Risk Minimization (ERM in abbreviated form), is usually
assessed by establishing upper confidence bounds for the
risk excess of empirical minimizers, that is the difference
between the risk of solutions θ̂n to (2) and the minimum
risk attained over the class Θ, under suitable assumptions
on the loss function ` and the parameter space Θ, see e.g.
(Devroye et al., 1996). Such results offer statistical guaran-
tees regarding the generalization capacity of the predictive
rule encoded by the learned parameter θ̂n, when applied to a
new/test observation Ztest with distribution P.

The usual validity framework for ERM crucially relies on
the assumption that the distributions of the random variables
involved in the training and test/prediction stages are the
same. However, this assumption is now highly arguable in a
wide variety of situations. Whereas, in the recent past, data
collection was expensive and still performed by means of
carefully elaborated experimental designs through surveys
and questionnaires, practitioners have more and more often
poor control over the information acquisition process in the
Big Data era. The massive datasets captured by connected
devices (e.g. IoT sensors) or collected via the Internet may
be in significant part corrupted, or non-representative of the
target population. For instance, as recently hotly discussed
and debated (see e.g. (Wang et al., 2019)), certain facial
recognition systems may be trained on public databases, pos-
sibly very different from the statistical population to which
they will be applied when deployed. In other words, the data
available for predictive learning may frequently stem from
a source distribution PS that differs from the distribution of
interest PT , referred to as the target distribution here. One
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may refer to (Quionero-Candela et al., 2009) for an account
of the different types of sampling biases or dataset shifts
occurring frequently in practice.

In this paper, we consider risk minimization problems in
presence of selection/sampling bias. They are now the sub-
ject of much attention in the literature, see e.g. (Bolukbasi
et al., 2016), (Zhao et al., 2017) or (Liu et al., 2016), and can
be viewed as specific transfer learning problems, cf (Pan
and Yang, 2010) or (Weiss et al., 2016), insofar as the key
idea is to find/approximate a suitable transformation of the
source distribution PS so that relevant information can be
transferred from the training dataset to the test population.
Most contributions documented in the literature focus on
the situation where two samples are observed, one drawn
from PS and another one from PT . In particular, two very
popular transfer-learning algorithms have been proposed in
this specific case: the Kullback Leibler Information Estima-
tion Procedure (KLIEP) in (Sugiyama et al., 2007; 2008)
and the Kernel Mean Matching (KMM) in (Huang et al.,
2007), see also (Gretton et al., 2009). As instances from the
target distribution are available to learn a predictive rule, the
task performed by these algorithms essentially consists of
data augmentation: the reweighted source sample is merely
viewed as a tool to increase the size of the target sample.

Here, focus is on a more challenging problem, correspond-
ing to many practical situations, where statistical learning
must be based on a single sample drawn from PS , combined
with appropriate assumptions about the relation between dis-
tributions PS and PT . While it has been seldom considered
in transfer learning, see however (Laforgue and Clémençon,
2019; Vogel et al., 2020), this setup has proved useful for
various problems in Statistics. It is for instance used in
the literature devoted to denoising tasks, where one aims
at recovering the distribution of variables that are observed
with some corrupting noise. It is generally assumed that
uncorrupted observations are not available so that the dis-
tribution of interest has to be inferred from either one or
several samples of noisy observations, based on structural
assumptions on the nature of the noise, see e.g. (Chen et al.,
2011; Kato and Sasaki, 2019; Kato et al., 2019).

In order to overcome the lack of data drawn from the target
distribution PT , two crucial assumptions are made in the
present paper. First, the modelling we propose concerns
the “link” function between PT and PS : we assume that
PT is absolutely continuous w.r.t. PS and that the Radon-
Nykodim derivative dPT /dPS (z) belongs to a parametric
family G. This connects the framework we develop for
learning from biased data to semi-parametric statistics, see
e.g. (Gilbert et al., 1999) or (Zhang, 2000): as a matter
of fact, even if the elements of class G are supposed to be
characterized by a parameter α in A ⊂ Rp with p ≥ 1, no
parametric assumption is made on the class Θ encoding

the decision rule candidates. While tractable, our approach
offers a great flexibility: as will be shown in the subsequent
analysis, miss-specified models G can be handled as well.
Second, we assume that we have access to several moments
under PT , or estimators thereof. This situation is rather
common in practice, as a result of privacy constraints in
particular. For instance, in countries where national cen-
suses are conducted, only socio-economic information at
the population level is made available to the public. The in-
formation furnished by Internet providers is another relevant
example: those providers allow users to download freely
summary statistics on queries made on the web worldwide
but the knowledge of individual-level search data remains
confidential.

Using both assumptions, the learning methodology we pro-
pose is close in spirit to the so-called calibration method
in survey sampling (Deville and Särndal, 1992; Deville,
2000; Guggemos and Tillé, 2010) or its analogue in the
econometrics literature (Imbens and Lancaster, 1994). It
consists in solving a reweighted version of the ERM prob-
lem based on the Zi’s, using some auxiliary information,
namely known moments from PT . It is implemented in two
steps. First, the link function dPT /dPS (z) is learned via a
generalized-method-of-moments approach, see e.g. (Hansen,
1982). Each (biased) training observation Zi drawn from PS

can be next reweighted by g(α,Zi) using functions g(., α)
in G and one searches for a minimizer in G of the distance
between the reweighted empirical moments and the known
moments from PT . We establish nonasymptotic concentra-
tion guarantees for this estimator, see Proposition 1. Sec-
ond, the learned link function is then used to construct a
reweighted version of the ERM problem (2). Considering
a minimizer of the reweighted empirical risk θ̂, we finally
prove a nonasymptotic generalization bound which controls
the gap between RPT (θ̂) and infθ∈Θ RPT (θ), see Theorem 1.

The paper is organized as follows. Section 2 presents the
theoretical framework for statistical learning based on bi-
ased training data considered throughout the article. The
algorithmic approach we propose is described in section
3, together with a rate bound analysis proving its accuracy.
For illustration purpose, experimental results are displayed
in section 4 and some concluding remarks are collected in
section 5. The proofs of the main results are sketched in
the Appendix section, while additional technical details are
deferred to the Supplementary Material.

2. Theoretical Framework
In this section we present at length the framework we con-
sider for statistical learning in presence of sampling bias and
introduce the main notations of the paper. We also describe
the semi-parametric approach we develop in the subsequent
analysis and state the assumptions required to extend Em-
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pirical Risk Minimization with statistical guarantees in the
form of nonasymptotic generalization bounds. As described
in the Introduction, PS and PT are two probability measures
on a measurable spaceZ, referred to as the source and target
distributions respectively. Here and throughout, the target
distribution is assumed to be absolutely continuous w.r.t.
the source distribution, by ||h||∞ is meant the sup norm of
any bounded function h : Z → R, the space Rq, q ≥ 1, is
equipped with the usual Euclidean norm ||.||, the unit sphere
is denoted by Sq−1 = {u ∈ Rq : ||u|| = 1} and the Dirac mass
at any point x by δx.

Assumption 1. (Domination) The probability measure PT

is absolutely continuous with respect to the probability mea-
sure PS . The corresponding Radon-Nikodym derivative is
denoted by

w : z ∈ Z 7→
dPT

dPS
(z). (3)

Remark 1. (Comparison with existing works) Having in
mind the generic decomposition Z = (Y, X) with Y a label
we would like to infer from a feature vector X, our frame-
work encompasses the so-called covariate shift model where
P(y | x) is fixed and P(x) is allowed to vary. It also covers the
question tackled in (Vogel et al., 2020): the authors consider
a classification problem where only the class probabilities
(of labels) can differ across source and target and the prob-
ability of observing a positive label under PT is assumed to
be known. In this very specific case, the ratio dPY

T /dPY
S (y)

is partly known and the problem boils down to estimating
the class probabilities under the source distribution. Com-
paring our work to (Laforgue and Clémençon, 2019) is also
instructive. Their setup differs from ours: instead of having
several biased samples at our disposal with known bias-
ing functions, we assume knowledge of several moments
under the target and stipulate a parametric model for the
transfer/likelihood function. The framework we develop is
more adapted to certain practical situations, when learn-
ing from socio-demographic/economic data for instance, as
discussed in Remark 2.

As formulated in the Introduction section, the goal pursued
is to approximate a solution θ in Θ to the minimization prob-
lem (1) with P = PT , based on i.i.d. training data Z1, . . . ,Zn

drawn from the distribution PS , a priori different from PT .
Notice that under Assumption 1, the risk minimization prob-
lem (1) rewrites

inf
θ∈Θ
EPS [w(Z)`(Z, θ)] . (4)

In the (unrealistic) situation where the Radon-Nikodym
derivative w is known, one can solve the following weighted
Empirical Risk Minimization problem:

inf
θ∈Θ

1
n

n∑
i=1

w(Zi)`(Zi, θ). (5)

By means of a direct application of the contraction principle,
a generalization bound for the excess of PT -risk of solutions
to (5) can be easily established, showing that the same learn-
ing rate as that attained in the case where PS = PT , i.e.
OP(1/

√
n), is achieved, see Lemma 1 in (Vogel et al., 2020).

Transfer learning with marginal constraints. In practice,
the weight function w(z) is unknown. The approach we
develop here is of plug-in type. An estimator ŵ of w based
on some auxiliary information is first constructed and a
version of (5), where w is replaced with ŵ is next solved. To
make such a strategy tractable, we assume that the weight
function w belongs to a parametric class.

Assumption 2. (Parametric link function) LetA ⊂ Rp be
Borel-measurable and let g : Z×A → R+ be a measurable
function such that ||g||∞ = supα∈A ||g(·, α)||∞ < +∞ and
such that sup(α1,α2)∈A×A |g(z, α1) − g(z, α2)|/||α1 − α2|| ≤ L
for some L < +∞. The function w belongs to the class
G := {g(·, α) : α ∈ A}.

Among the numerous parametric models that can be con-
sidered in practice, the class below shall serve as a running
example in this section. To the best of our knowledge, the
class presented in Example 1 has not be investigated for
estimating Radon derivatives and is thus a nice complement
to existing approaches which model w as the exponential
of some (semi-)parametric function, see e.g. (Gilbert et al.,
1999; Zhang, 2000).

Example 1. (Quadratic parametrization) Let z ∈ Z 7→
W(z) be a measurable function mapping Z to the set of
p × p symmetric positive matrices. We define:

GW :=
{
g(·, α) = αT W(·)α : α ∈ Rp

}
.

The map z 7→ W(z) can be chosen based on some prior infor-
mation about the form of the true Radon-Nikodym derivative
w. As a simple example, we could pick W(z) as a diagonal
matrix with diagonal entries equal to positive-valued func-
tions of z, which capture different characteristics of w, e.g.
lightness/heavyness of the tails, occurrence of multiple local
extrema, possible irregularities.

In the case where Assumption 2 is satisfied, there exists at
least one element α∗ ∈ A such that w(·) = g(·, α∗). Observe
that, for this α∗, the relation EPS [g(Z, α∗)] = 1 necessarily
holds true. However, this relation is far from characterizing
fully α∗ and w in general, in the sense that many elements in
A and then many elements in G may satisfy it. This issue is
all the more acute as the classG grows richer. Having access
to extra relations linking PS and PT is therefore crucial to
build a criterion which is able to tell how plausible distinct
values in A are. To design such a criterion, we assume
that some extra features of the target distribution PT are
accessible. More precisely we suppose that the following
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quantities are known

Ml := EPT [ml(Z)], l = 1, . . . , d, (6)

as well as the supposedly PT -integrable functions ml :
Z → R, l ∈ {1, . . . , d}. If w(·) = g(·, α∗), the relation
EPS [g(Z, α∗)ml(Z)] = Ml is satisfied for every 1 ≤ l ≤ d.

Remark 2. (Macro-information about the target pop-
ulation) The assumption that quantities of the form
(M1, . . . , Md) or estimators thereof can be put at the
learner’s disposal is realistic in many practical situations.
In the open data era, national statistical agencies increas-
ingly enable access to a wealth of macro-level summary
statistics on numerous topics (e.g. average wage, household
composition, health status, life expectancy). For privacy rea-
sons, the micro-level data behind those summary statistics
is kept secret by national agencies. For instance, the InFuse
portal of the Office for National Statistics in the United
Kingdom, or the Quickfacts interface of the US Census
Bureau provide macro-information at fairly disaggregated
geographical levels (county-level and below in the US). In
many fields, exhaustive data collection cannot be conducted
at a very high frequency due to the substantial costs induced
by this collection. On the other hand, cheap internet surveys
allow to collect a huge quantity of data but there is gener-
ally little or even no control of the responding population.
This highlights the importance of the design of statistical
learning methods capable of exploiting biased microeco-
nomic surveys combined with the extra-information brought
by macro-level surveys.

A single theoretical index that incorporates all the accessible
information on PT can be built:

Ψ∞ : α 7→ Ψ∞(α) =
∣∣∣∣∣∣EPS

[
g(Z, α)m(Z) −M

] ∣∣∣∣∣∣, (7)

with m(Z) = (1,m1(Z), . . . ,md(Z))T and M = (1, . . . ,Md)T .
The transfer criterion Ψ∞ is always positive and equal to
zero if and only if α satisfies all the constraints aforemen-
tioned. When w ∈ G, there exists at least one element in
α∗ ∈ A such that Ψ∞(α∗) = 0. Attention should be paid to
the fact that minimization of the criterion is relevant even
in the miss-specified case where w < G. In this context, it
may happen that there is no α ∈ A such that all the con-
straints are satisfied. However, the closer Ψ∞(α) to zero, the
more plausible g(·, α). As discussed at length in the Supple-
mentary Material, the analysis carried out in Section 3 can
be extended to this situation, at the price of an additional
approximation term in the generalization bound.

The identifiability assumption below rules out some scenar-
ios that are difficult to handle from a theoretical point of
view.

Assumption 3. (Uniqueness) There exists a unique α∗ ∈ A
such that Ψ∞(α∗) = min

α∈A
Ψ∞(α).

Combined with the last point of Assumption 2 (i.e w ∈ G),
Assumption 3 ensures that w is the only element in G that
satisfies all the moment constraints on which Ψ∞ is based.
We say that w is well-identified by the moment constraints
considered. We maintain this hypothesis throughout the
paper to simplify the analysis while conveying the main
ideas. In the Supplementary Material, we study the more
general case where several minimizers of Ψ∞ may exist
and discuss the implications in terms of identification of
w. Existence of a minimizer of Ψ∞ can be checked in
many situations. This is the case for instance when Ψ∞ is
continuous onA and eitherA is compact, orA = Rp and
Ψ∞ is coercive (i.e lim||α||→+∞Ψ∞(α) = +∞).

Example 2. (Quadratic parametrization, bis) We denote
by || · || the operator norm on matrices, that is ||W || =

sup||x||=1 ||Wx||. When G = GW , the map Ψ∞ is continuous
and attains its minimum on A as long as EPS [ ||W(Z)|| ] <
+∞ and EPS [ ||W(Z)|| |ml(Z)| ] < +∞ for every 1 ≤ l ≤ d.
This map is also coercive since EPS [W(Z)] is symmetric
and strictly positive (see the Supplementary Material for
a proof). Unfortunately Ψ∞(α1) = Ψ∞(α2) does not imply
α1 = α2, so that uniqueness of the minimizer of Ψ∞ does not
hold in general. We can however uniquely recover g(·, α∗)
under additional assumptions, for instance when W(z) is
diagonal for every z ∈ Rm and d = p − 1. Since w ∈ GW ,
it is enough to solve Ψ∞(α)2 = 0 which is equivalent to
EPS [αT W(Z)αm(Z)] = M. Letting α̃ := (α2

1, . . . , α
2
p)T ,

this can be rewritten Γα̃ = M, where Γ is a p × p ma-
trix with first line equal to EPS

[
diag

(
W(Z)

)]T , and second
to last lines equal to (EPS

[
ml(Z)diag

(
W(Z)

)]T )p−1
l=1 . We con-

clude that α̃ = Γ−1M as long as Γ is invertible. We can set
α∗ = (

√
α̃1, . . . ,

√
α̃p)T and remark that we can uniquely

identify g(·, α∗) = αT
∗W(·)α∗.

3. Semi-Parametric Transfer Learning
In this section, the algorithmic approach we propose to
solve the learning task described in the previous section
is detailed and a rate bound analysis is next carried out,
providing generalization guarantees for the predictive rules
built this way.

3.1. A Two-Stage Learning Approach

Here we present the extension of the ERM methodology we
promote for statistical learning based on a biased training
dataset. It is assumed that auxiliary information about the
target population is available to the learner in the form of
a vector of PT -integrals of known functions ml(z). The
learning procedure of plug-in type is implemented in two
steps that are summarized in Fig. 1. One first minimizes
over A a statistical counterpart of the transfer criterion
Ψ∞(α), obtained by replacing the source distribution PS in

http://infuse.ukdataservice.ac.uk/
https://www.census.gov/quickfacts/
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(7) with its empirical version based on the Zi’s, namely

Ψn(α) =
∣∣∣∣∣∣∣∣1n

n∑
i=1

g(Zi, α)m(Zi) −M
∣∣∣∣∣∣∣∣, α ∈ A. (8)

The minimizer α̂ thus obtained is next used to form a
reweighted version of the ERM problem (Rw-ERM in ab-
breviated form), where each observation Zi is weighted by
g(Zi, α̂). This can be seen as a surrogate to (5).

Attention should be paid to the fact that the link function
g(., α̂) computed in the first step of the procedure sketched
above can be used for additional learning tasks, involving
other decision spaces and/or loss functions.

Remark 3. (Ease of implementation) Popular implementa-
tions of ERM-like learning procedures such as scikit-learn
(Pedregosa et al., 2018) support a weight option which al-
lows to replace the empirical risk (1/n)

∑n
i=1 `(Zi, θ) with

(1/n)
∑n

i=1 ωi`(Zi, θ) when specifying a list of weights (ωi)n
i=1.

In practice, minimizing the objective function (10) for a
given ERM task can thus be done by feeding the weight
option of existing algorithms with the weights

(
g(Zi, α̂)

)n
i=1

stemming from (9). At a more theoretical level, solving (10)
amounts to replacing the canonical empirical distribu-
tion (1/n)

∑n
i=1 δZi in the ERM procedure with the mea-

sure (1/n)
∑n

i=1 g(Zi, α̂)δZi . We may also re-normalized the
weights to 1 to obtain a true probability distribution.

Weighted ERM through Semi-Parametric Transfer

Input: Biased training dataset {Z1, . . . , Zn}, func-
tion m(z), parameter M.

1 Transfer criterion minimization. Estimate the α-
parameter

α̂ ∈ arg min
α∈A

Ψn(α). (9)

2 Weighted ERM. Minimize the resulting
reweighted empirical risk

θ̂ ∈ arg min
α∈Θ

1
n

n∑
i=1

g(Zi, α̂)`(Zi, θ). (10)

Output: (α̂, θ̂)

Figure 1. The Rw-ERM Algorithm

In the subsequent analysis, we focus on the statistical per-
formance of the predictive rules empirically defined by Rw-

ERM. The design of practical algorithms (e.g. based on
gradient descent) for computing approximately minimizers
of the transfer and reweighted empirical risk is beyond the
scope of the subsequent analysis. A detailed account of
the optimization techniques used in the experiments dis-
played in Section 4 is however given in the Supplementary
Material.

3.2. Main Results - Generalization Bounds

Just like for the implementation, two stages are required
to establish generalization guarantees for the Rw-ERM
methodology. As a first go, we show that the parameter
α̂ produced in the first step of the algorithm is close to
the optimal value α∗. Additional technical assumptions are
required for this purpose. To obtain a concentration inequal-
ity on α̂, it is first crucial to describe the “richness’ of the
class of functions {g(·, α)m(·) : α ∈ A}. For this purpose,
we consider the Rademacher complexity defined by

En(A) := Eσ

sup
α∈A

∣∣∣∣∣∣
∣∣∣∣∣∣1n

n∑
i=1

σig(Zi, α)m(Zi)

∣∣∣∣∣∣
∣∣∣∣∣∣
 ,

where σ1, . . . , σn are independent Rademacher variables,
independent from the Zi’s.

Assumption 4. There exist two constants K1,K2 > 0 such
that

sup
1≤l≤d+1

|g(z, α)ml(z)| ≤ K1 and EP⊗n
S

[En(A)] ≤ K2/
√

n.

Assumption 5. There exist constants ε,R, c > 0 such that
(i) ∀α ∈ A, ||α − α∗|| > R ⇒ Ψ∞(α) > ε
(ii) ∀(v, t) ∈ Sp−1 × [−R,R], Ψ∞(α∗ + tv) ≥ c|t|.

Remark 4. Let us comment on the above assumptions. As-
sumption 4 is introduced to control the distance between Ψn

and Ψ∞ uniformly overA and with large probability. Its first
requirement allows us to resort to the Bousquet-Talagrand
inequality (Boucheron et al., 2013)[Theorem 12.5], and its
second requirement is a high-level restriction on the com-
plexity of our model. Many concrete examples of functional
classes satisfy this second requirement. We illustrate this in
the Supplementary Material, where we give simple primitive
conditions on A and g to ensure EP⊗n

S
[En(A)] ≤ K2/

√
n.

Assumption 5.(i) implies that the minimum of the function
Ψ∞ (which is zero) cannot be arbitrarily approached by a
sequence of parameters (αi)i≥1 that do not converge to α∗.
Assumption 5.(ii) rules out situations where Ψ∞ is almost
flat around its global minimizer. In the Supplementary Ma-
terial, we give simple sufficient conditions in terms of the
Hessian of Ψ2

∞.

Under the above assumptions, the functions Ψn and Ψ∞
reach their minimum roughly at the same point, up to a term
of order 1/

√
n, with high probability.
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Proposition 1. Let α̂ ∈ arg min Ψn(α). Under Assump-
tions 1 to 5, for every δ ∈ (0, 1) there exists C(δ) < +∞ and
nδ,ε such that for every n ≥ nδ,ε,

PP⊗n
S

(
||α̂ − α∗|| >

2C(δ)
c
√

n

)
≤ δ. (11)

The constant C(δ) depends only on δ, K1, K2 and d.

Proposition 1 provides theoretical guarantees on the first
step (9) of our algorithm. The constants involved in its
formulation are described in the Technical proofs and the
Supplementary Material. More precisely, the bound (11)
controls the level of error incurred when replacing α∗ with
α̂ and is instrumental in deriving our main result, namely
Theorem 1. Proposition 1 may be of independent interest
as it provides insight into the non-asymptotic behavior of a
class of GMM problems (Generalized Method of Moment).
In our setting, the GMM criterion is the functional Ψn we
seek to minimize.

With Proposition 1 in hand, we are in a position to state a
theoretical result that guarantees the generalization capac-
ity of the minimizer of the weighted ERM problem (10).
For this, we define the Rademacher complexity, this time
associated to the class {`(·, θ) : θ ∈ Θ}:

En(Θ) := Eσ

sup
θ∈Θ

∣∣∣∣∣∣∣1n
n∑

i=1

σi`(Zi, θ)

∣∣∣∣∣∣∣
 .

We now state our main theorem, which ensures the solution
to (10) is close to the true risk with high probability.
Theorem 1. Suppose that ||`||∞ := supθ∈Θ ||`(·, θ)||∞ < +∞

and Assumptions 1 to 5 hold. Let δ ∈ (0, 1). Then, there
exist C(δ) and nδ,ε (defined in Proposition 1) such that for
every n ≥ nδ,ε with probability at least 1 − δ

RPT (̂θ) − inf
θ∈Θ
RPT (θ)

≤ 4L||`||∞
C(δ/2)
c
√

n
+ 4||g||∞EP⊗n

S
[En(Θ)]

+ ||g||∞||`||∞


√

2 ln(2/δ)
n

+
2 ln(2/δ)

3n

 . (12)

This theorem shows that, remarkably, the same learning rate
as that attained if training observations sampled from the
target data generating process were available is achieved
by the Rw-ERM method. The generalization bound can be
decomposed into two terms. The first one, which depends
on C(δ/2), stems from Proposition 1 and quantifies the
error between g(·, α̂) and w(·), while the second one comes
from a stochastic control of (5). For completeness, notice
finally that under standard regularity assumptions on the
class {`(·, θ) : θ ∈ Θ}, the complexity term EP⊗n

S
[En(Θ)] is of

order O(1/
√

n).

4. Numerical Experiments
In this section, we present two numerical experiments which
complement the previous theoretical analysis. We start with
a simulated dataset where we design both the source and
target distributions. We then turn to a more realistic frame-
work: we use the Life Expectancy Dataset and create some
distributional shifts on the observations.

Artificial data. The simulation scheme is as follows. We
consider a regression model with features XS = (XS

1 , X
S
2 )T

and outcome YS . To form the feature vector, we indepen-
dently draw XS

1 ∼ N(0, 1) and XS
2 ∼ Γ(2, 1). The outcome

variable is generated as

YS = 0.5(c1XS
1 + c2XS

2 + c3XS
1 XS

2 ) + ε,

where ε ∼ N(0, 1) ⊥⊥ (XS
1 , X

S
2 ). The target distribution is

then defined through the following Radon derivative:

w(x1, x2, y) =
dPT

dPS
(x1, x2, y) = αT

∗W(x1, x2, y)α∗,

where α∗ = (1, 1, 2)T and W(x1, x2, y) = Diag(x2
1, 4x2

2, 2y2).
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Figure 2. Histograms of the densities of the samples (nobs =

100, 000). In blue: source. In orange: target.

Notice that this seemingly simple model already displays
striking differences between the source and the target distri-
butions. As depicted in Figure 2, the unimodal distributions
of XS

1 and YS turn into bimodal densities while the density
of the second feature is shifted to the right.

Starting from a sample of size nobs (ZS
i )nobs

i=1 drawn in PS ,
we seek to learn a regressor which generalizes well under
PT implementing our algorithm given by (9) and (10). We
assume we know two marginal moments under PT , namely
EPT [X1] and EPT [X2] (these two quantities can be computed
from the data generating process described above). To es-
timate α∗, we implement a gradient descent algorithm to
minimize Ψnobs . To avoid getting trapped in potential local
minima, we rerun the descent algorithm nboot times using a
bootstrapping rationale presented in the Supplementary Ma-
terial. Among the sequence (α(b))nboot

b=1 thus constructed, we
select arg minα∈(α(b))nboot

b=1
Ψnobs (α

(b)) as our final estimator α̂.
In the last step, we train several regression-type algorithms

https://www.kaggle.com/kumarajarshi/life-expectancy-who
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(OLS, SVR, RF) on (Zi)
nobs
i=1 with weights (g(Zi, α̂))nobs

i=1 . In
parallel, we train those regression-type algorithms on the
same training sample, but without weights, and on another
sample of size nobs drawn from PT . We finally evaluate the
performance of these three approaches through their MSE
score computed on ntest new observations drawn from PT .
We repeat the whole procedure nrep times. Table 1 presents
the mean and standard error of the MSE of the algorithms
under consideration for the following choices of parameters:
nobs = 10, 000, ntest = 500, nrep = 100 and nboot = 100.

Table 1. Performance evaluation on simulated data using MSE.

Algorithm Rw-ERM(PS ) ERM(PT ) ERM(PS )

OLS 3.8 ± 0.4 3.8 ± 0.4 6.3 ± 0.7
SVR 1.5 ± 0.5 1.2 ± 0.3 2.8 ± 0.8
RF 1.7 ± 0.2 1.6 ± 0.2 2.5 ± 0.4

No matter the ERM task carried out (i.e OLS, SVR or RF),
we remark that the predictive accuracy of our new procedure
(Rw-ERM(PS )) is almost as good as that of an ERM trained
on unbiased data (ERM(PT )). On the other hand, using PS

without reweighting to build a regressor (ERM(PS )) does
not generalize well under PT .

Experimental results on the Life Expectancy Dataset.
Let us now consider the slightly more realistic situation
where we do not have access to the weight function g(α∗, z).
We use the Life Expectancy Dataset and only keep the Adult
Mortality Rate (x1) and the Alcohol Consumption (x2) fea-
tures in order to predict the Life Expectancy (y) output. We
drop the observations containing a missing value and nor-
malize the resulting sample (of size 2,735) whose empirical
distribution serves as the target. The data are divided into
two groups: G1 containing 90% of the data (nG1 = 2, 462)
and G2 containing the rest (nG2 = 273). G2 corresponds
to the test set. The source sample is artificially built from
G1 with the use of a stratified sampling procedure. We first
partition G1 thanks to a grid on the two-dimensional space
spanned by the Adult Mortality Rate and the Life Expectancy
variables, and we assign a probability weight pi j to each box
Bi j. Then, a source observation is created by selecting a box
Bi j with probability pi j and drawing uniformly at random an
element of G1 ∩ Bi j. Figure 3 provides a heatmap represen-
tation of this procedure: each box Bi j is associated with its
probability to be sampled in the source representation (left-
hand graph), and with the true proportion of observations it
contains in the target representation (right-hand graph).

Using this stratified sampling process, we build a sam-
ple of nG1 source observations. We then run our two-
step procedure on this sample using the parametric class
{g(z, α) = αT Diag(x2

1, y
2)α, α ∈ R2} for the first step, and

the OLS and SVR algorithms for the second step. We com-
pare the MSE performance of our approach with the MSE
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Figure 3. Heatmap representation of the stratified sampling proce-
dure.

performances of the same machine learning algorithms, re-
spectively trained without weights on the same source sam-
ple and on the initial sample G1 – whose empirical law is
roughly equal to the target distribution. The corresponding
scores are displayed in Table 2.

Table 2. Performance evaluation on real data using MSE.

Algorithm Rw-ERM(PS ) ERM(PT ) ERM(PS )

OLS 0.50 ± 0.08 0.45 ± 0.07 0.71 ± 0.09
SVR(0.01) 0.71 ± 0.19 0.40 ± 0.07 0.83 ± 0.11
SVR(0.1) 0.39 ± 0.08 0.35 ± 0.07 0.50 ± 0.09
SVR(1) 0.39 ± 0.08 0.34 ± 0.07 0.37 ± 0.07

In the OLS case, our approach seems to be efficient: the
MSE is very close to the one obtained when training di-
rectly on the target, whereas an unweighted training on the
source performs poorly. The SVR algorithm is run for three
different values of the parameter C (0.01, 0.1 and 1). This
corresponds to an increasing amount of complexity in the
model learned during the second step of our algorithm. In
contrast, the complexity of the first step corresponds to the
quality of the chosen parametric class and remains constant.
This could explain why the performance of our method
draws nearer to that of naive ERM(PS ) as C becomes larger.
We conjecture that a solution to alleviate this issue would
be to increase the complexity of the first step, by choosing a
higher-dimensional parametric class for instance.

5. Conclusion
We considered the problem of building a machine learning
algorithm when the training data at hand stems from a bi-
ased version of the target distribution we wish to generalize
on. We placed ourselves in the context where we do not
have access to individual observations sampled from the
target, but where some of its moments are at our disposal, a

https://www.kaggle.com/kumarajarshi/life-expectancy-who
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frequently encountered framework when dealing with sensi-
tive data. We proposed a flexible semi-parametric approach
(Rw-ERM) to leverage this auxiliary knowledge, which can
be decomposed into two steps: 1) an appropriate link func-
tion in a parametric class is first learned by minimizing an
empirical criterion involving the known moments, 2) based
on the former, a weighted version of the ERM procedure is
next performed. Under natural assumptions on our model,
we provide non-asymptotic guarantees on this procedure,
revealing that the learning rate achieved by Rw-ERM is
of the same order as that attained when training a learning
algorithm directly on the target. We also provided prelim-
inary experimental results illustrating the relevance of the
procedure. Let us finally mention some exciting future lines
of investigation. A first interesting question concerns the
choice of the parametric class: given some a priori knowl-
edge on the shape of the link, are there some natural choices
to make? In another direction, our approach could be ex-
tended in a non-parametric fashion, where the link function
is estimated directly using flexible learning algorithms with
loss given by the empirical transfer criterion Ψn.

Technical Proofs
The proofs of the results stated in Section 3 are sketched
below. We start with the proof of Proposition 1 followed by
that of Theorem 1. For the sake of completeness, we state
two additional lemmas which are instrumental in obtain-
ing our results. The proofs of these lemmas together with
all additional details are postponed to the Supplementary
Material.

Proof of Proposition 1

The proof of Proposition 1 first consists in introducing for
every δ ∈ (0, 1)

Ωδ,n =

{
sup
α∈A

∣∣∣∣Ψn(α) − Ψ∞(α)
∣∣∣∣ ≤ C(δ, n)

√
n

}
.

On the event Ωδ,n, the functions Ψn and Ψ∞ are uniformly
close. Combining this fact with Assumption 5, it is then pos-
sible to prove that the inequality ||α̂ − α∗|| ≤ C(δ, n)/(c

√
n)

holds deterministically on the event Ωδ,n. Therefore, the
demonstration essentially boils down to obtaining the fol-
lowing lemma, whose proof is postponed to the Supplemen-
tary Material.

Lemma 1. Let δ ∈ (0, 1). Under Assumption 4, with proba-
bility at least 1 − δ

sup
α∈A

∣∣∣∣Ψn(α) − Ψ∞(α)
∣∣∣∣ ≤ C(δ, n)

√
n

,

where C(δ, n) is an explicit quantity given in the proof
which depends only on δ, n, K1, K2 and d that satisfies
supn≥1 C(δ, n) < +∞.

Assuming Lemma 1 is proved, let us give more details on the
approach we have just described. Let δ ∈ (0, 1). We place
ourselves on the event Ωδ,n. In order to lighten notation, we
introduce

t := C(δ, n)/
√

n.

Let α̂ ∈ arg min Ψn(α). We claim that ||α̂ − α∗|| ≤ R. Indeed,
if one had ||α̂−α∗|| > R, then one would have that Ψ∞(α̂) > ε
by Assumption 5.(i). Since we placed ourselves on the
event Ωδ,n, we would then have the following lower bound
Ψn(α̂) ≥ Ψ∞(α̂) − t > ε − t. The latter would contradict the
fact that Ψn attains its minimum at α̂, since Ψn(α∗) ≤ t and
since t < ε − t for large enough n. More precisely, the latter
inequality is true whenever n ≥ nδ,ε := 4 supn≥1 C(δ, n)2/ε2.

Therefore there exists some v ∈ Sp−1 and some λ0 ∈ [0,R]
such that α̂ = α∗ + λ0v. This prompts us to introduce the
functions:  fn(λ) := Ψn(α∗ + λv),

f∞(λ) := Ψ∞(α∗ + λv),

which are well-defined for every λ ∈ [0,R].

0

t

f∞

0 2t
c− 2t

c
λ20

fn

λ10

2t

λ30λmin λmax

Figure 4. In red: the function f∞. In blue: the function fn, which
attains its minimum at λ1

0, λ2
0 and λ3

0. The plain gray curves corre-
sponds to the translations by t of f∞. They delimit the area to which
the function fn belongs on the event Ωδ,n. The heavy black line is
the function λ 7→ c|λ|, the lower bound on f∞ given by Assumption
5.(ii) and the dashed black line corresponds to its translation by
−t. The points that are the most distant from 0 where the function
fn could attain its minimum are λmin and λmax, in magenta. These
reals satisfy −2t/c ≤ λmin and λmax ≤ 2c/t under Assumption 5.(ii):
the worst situation corresponds to f∞(λ) = c|λ|, in which case fn

could possibly attain its minimal value at 2t/c (or −2c/t) which is
the abscissa of the (green) point of intersection between the curve
y = t and y = cx − t (or y = −cx − t).

Finally, we claim that λ0 ≤
2t
c . Indeed, if one had

λ0 > 2t
c , then minα∈AΨn(α) = Ψn(α̂) = fn(λ0) > t

by Assumption 5.(ii), which would contradict the fact
that α̂ ∈ arg min Ψn(α) since Ψn(α∗) ≤ t. See Figure
4 for an illustration. Hence, on the event Ωδ,n for every
n ≥ nδ,ε, ||α̂ − α∗|| ≤ 2t/c = (2C(δ, n))/(c

√
n). We set

C(δ) := supn≥1 C(δ, n) to conclude. �

Proof of Theorem 1

To avoid space-consuming formulas, we introduce the two
following notations for the reweighted risk and its empirical
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counterpart: 
Rα(θ) := EPS [g(Z, α)`(Z, θ)],

Rαn (θ) := 1
n

n∑
i=1

g(Zi, α)`(Zi, θ).

We remark that for every θ ∈ Θ, RPT (θ) = Rα∗ (θ) so that

RPT (θ̂) − inf
θ∈Θ
RPT (θ) = Rα∗ (θ̂) − inf

θ∈Θ
Rα∗ (θ) =: (I)

Let θ∗ be such that Rα∗(θ∗) = infθ∈Θ Rα∗(θ). Using that
Rα̂n (θ̂) − Rα̂n (θ∗) ≤ 0 by definition of θ̂, we can deduce that

(I) ≤ 2 sup
θ∈Θ

∣∣∣Rα̂n (θ)−Rα∗n (θ)
∣∣∣ + 2 sup

θ∈Θ

∣∣∣Rα∗n (θ)−Rα∗ (θ)
∣∣∣. (13)

Using Assumption 2, boundedness of ` and Equation (11),
we can bound the first term with probability at least 1 − δ/2
as follows

2 sup
θ∈Θ

∣∣∣Rα̂n (θ) − Rα∗n (θ)
∣∣∣ ≤ 2L||`||∞||α̂ − α∗||

≤ 4L||`||∞
C(δ/2)
c
√

n
. (14)

The second term in (13) can be bounded using Lemma 2
which is proved in the Supplementary Material.
Lemma 2. Let δ ∈ (0, 1). Under Assumption 2 and ||`||∞ <
+∞, with probability at least 1 − δ

sup
θ∈Θ

∣∣∣Rα∗n (θ) − Rα∗ (θ)
∣∣∣ ≤4||g||∞EP⊗n

S
[En(Θ)]

+ ||g||∞||`||∞

√
2 ln(1/δ)

n

+
2||g||∞||`||∞ ln(1/δ)

3n
.

We apply Lemma 2 with δ/2 instead of δ. This ends the
proof. �
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