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Abstract

We consider the classic supervised learning problem where a continuous non-negative
random label Y (e.g. a random duration) is to be predicted based upon observing a random
vector X valued in Rd with d ≥ 1 by means of a regression rule with minimum least
square error. In various applications, ranging from industrial quality control to public
health through credit risk analysis for instance, training observations can be right censored,
meaning that, rather than on independent copies of (X,Y ), statistical learning relies on
a collection of n ≥ 1 independent realizations of the triplet (X, min{Y, C}, δ), where
C is a nonnegative random variable with unknown distribution, modelling censoring and
δ = I{Y ≤ C} indicates whether the duration is right censored or not. As ignoring censoring
in the risk computation may clearly lead to a severe underestimation of the target duration
and jeopardize prediction, we consider a plug-in estimate of the true risk based on a Kaplan-
Meier estimator of the conditional survival function of the censoring C given X, referred
to as Beran risk, in order to perform empirical risk minimization. It is established, under
mild conditions, that the learning rate of minimizers of this biased/weighted empirical risk
functional is of order OP(

√
log(n)/n) when ignoring model bias issues inherent to plug-in

estimation, as can be attained in absence of censoring. Beyond theoretical results, numerical
experiments are presented in order to illustrate the relevance of the approach developed.

Keywords: Censored data, empirical risk minimization, U -processes, statistical learning
theory, survival data analysis.

1. Introduction

Covering a wide variety of practical applications, distribution-free regression can be considered
one of the flagship problems in statistical learning. In the most standard setup, (X,Y )
is a random pair defined on a certain probability space with (unknown) joint probability
distribution P , where the output Y is a real-valued square integrable random variable (r.v.)
and X models some input information, valued in Rd, supposedly useful to predict Y . In this
context, one is interested in building a (measurable) function f : Rd → R minimizing the
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(expected quadratic) risk

RP (f) = E
[
(Y − f(X))2

]
, (1)

which is finite as soon as the r.v. f(X) is square integrable. Obviously, the minimizer of
(1) is the regression function f?(X) = E[Y | X]. As the distribution of (X,Y ) is unknown
in practice, the Empirical Risk Minimization paradigm (ERM in abbreviated form, see e.g.
Györfi et al. (2002)) suggests considering solutions f̂n of the minimization problem, also
referred to as least squares regression, minf∈F R̂n(f), where R̂n(f) is a statistical estimate
of the risk RP (f) computed from a training sample Dn = {(X1, Y1), . . . , (Xn, Yn)} of
independent copies of (X,Y ). In general the empirical version

R̂n(f) =
1

n

n∑
i=1

(Yi − f(Xi))
2 , (2)

is considered. This boils down to replacing P in the risk functional RP (·) with the empirical
distribution of the (Xi, Yi)’s. The class F of predictive functions is supposed to be of
controlled complexity (e.g. of finite VC dimension), while being rich enough to contain
a reasonable approximant of the minimizer of RP , f?(x). In a framework stipulating in
addition that the random variables Y and f(X), f ∈ F , are sub-Gaussian, ERM is proved
to yield rules with good generalization properties, see e.g. Györfi et al. (2002); Bartlett
et al. (2005); Lecué and Mendelson (2016) (notice, however, that, in heavy-tail situations,
alternative strategies are preferred, refer to Lugosi and Mendelson (2016) for instance).

In many applications such as industrial reliability, see Mann et al. (1974), or clinical trials,
the r.v. Y to be predicted represents a duration, e.g. the lifespan of a manufactured component
or the time to recovery of sick patients, and it is far from uncommon in survival analysis that
the data at disposal to learn a predictive rule are not composed of independent realizations
(X1, Y1), . . . , (Xn, Yn) of distribution P but of observations (X1, Ỹ1, δ1), . . . , (Xn, Ỹn, δn),
where the observed durations are of the form

Ỹi = min{Ci, Yi} with i ∈ {1, . . . , n},

the random variables Ci modelling a possible right censoring, and the δi are binary variables
indicating whether censoring has occurred for each duration. Of course, other types of
censoring (e.g. left/interval/progressive censoring) can be encountered in practice and
result in partially observed durations. Since the results established in this paper can be
straightforwardly extended to a more general framework, focus is here on the right censoring
case. Whereas the asymptotic theory of statistical estimation based on censored data is very
well documented in the literature (see e.g. Fleming and Harrington (1991); Andersen et al.
(1993) and the references therein), the issues raised by censoring in statistical learning has
received much less attention and it is the major purpose of this article to investigate how
ERM can be extended to this setup with sound generalization guarantees.

As the empirical risk (2) cannot be computed directly from the data available, we rely
on the inverse of the probability of censoring weighted (IPCW) approach, see Gerds et al.
(2017) for a recent review. In that, we build first a plug-in (biased) estimator of the risk
(1) by means of the Beran estimator of the conditional survival function of the censoring
(Beran, 1981; Dabrowska, 1989; van Keilegom and Veraverbeke, 1996) and minimize next the
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resulting risk estimate, referred to as Beran risk and that can be interpreted as a weighted
version of the empirical risk process based on the observations. The asymptotic behaviour of
such weighted empirical risk has been first considered in the seminal contributions of Stute
(1993, 1996) and refined recently in Lopez (2011); Lopez et al. (2013).

In this paper, more in the spirit of the popular statistical learning theory of empirical
risk minimization, nonasymptotic maximal deviation bounds for this risk functional, much
more complex than a basic empirical process due to the strong dependency exhibited by the
terms averaged to compute it, are established by means of linearization techniques combined
with concentration results pertaining to the theory of U -processes. We prove that, under
appropriate conditions, minimizers of the Beran risk proposed have good generalization
properties, achieving learning rate bounds of order OP(

√
log(n)/n) when ignoring the model

bias impact on the plug-in estimation step, the same as ERM in absence of any censoring.
Beyond this theoretical analysis, illustrative numerical results are also displayed, providing
strong empirical evidence of the relevance of the approach promoted. They reveal in
particular that, even if the estimator of the conditional survival function plugged is only
moderately accurate, Beran risk minimizers significantly outperform approaches ignoring
censoring. Eventually, we point out that some of the results established in this paper have
been preliminarily presented in an elementary form at the 2018 NeurIPS Machine Learning
for Healthcare workshop (ML4HEALTH), see Ausset et al. (2018).

The rest of the paper is organized as follows. The framework we consider for statistical
learning based on censored training data is detailed in section 2, where notions pertaining
to survival data analysis involved in the subsequent study are also briefly recalled and a
nonasymptotic uniform bound for the Beran estimator of the conditional survival function
of the censoring is also stated. In section 3, the statistical version of the expected quadratic
risk we propose, based on the Beran estimator previously studied, is introduced and the
performance of its minimizers is analysed. Illustrative numerical results are displayed in
section 4, while several concluding remarks are collected in section 5. Technical proofs are
postponed to the appendices.

2. Background - Preliminaries

In this section, we first describe at length the probabilistic setup considered in this paper
and recall basic concepts of censored data analysis, which the subsequent analysis relies on.
Next, we establish a nonasymptotic bound for the deviation between the conditional survival
function of the random censoring and its Beran estimator under adequate smoothness
assumptions. Here and throughout, the indicator function of any event E is denoted by
I{E}, the Dirac mass at any point x by δx. When well-defined, the convolution product
between two real-valued Borelian functions on Rd g(x) and w(x) is denoted by (g ∗ w)(x) =∫
x′∈Rd g(x− x′)w(x′)dx′. The left-limit at s > 0 of any càdlag̀ function S on R+ is denoted

by S(s−) = limt↑s S(t).

2.1 The Statistical Framework

In this paper, we consider a pair (X,Y ) of random variables defined on the same probability
space (Ω,A,P), with unknown joint distribution P and where Y , representing a duration,
takes positive values only and X models some information valued in Rd, d ≥ 1, a priori
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useful to predict Y . We assume that X’s marginal distribution has a density g(x) w.r.t.
Lebesgue measure on Rd. We are concerned with building a prediction rule f : Rd → R+

with minimum expected quadratic risk RP (f), see Eq. (1), based on a training dataset
Dn = {(X1, Ỹ1, δ1), . . . , (Xn, Ỹn, δn)} composed of n ≥ 1 independent realizations of the
random triplet (X, Ỹ , δ), where Ỹ = min{Y, C}, C is a positive r.v. defined on (Ω,A,P)
and δ = I{Y ≤ C} indicates whether the duration is (right) censored (δ = 0) or not (δ = 1).
The following hypothesis is required in the present study.

Assumption 1 (Conditional independence) The random variables Y and C are con-
ditionally independent given the input X and we have Y 6= C with probability one.

Naturally, many other types of censoring can be encountered in practice. However, since the
goal of the present paper is to explain the main ideas to apply the ERM principle to censored
data rather than dealing with the problem at the highest level of generality, we restrict
our attention to the type of right random censoring introduced above. Though simple, it
covers many situations. Addressing the problem in a more complex probabilistic framework,
where Y and C are not conditionally independent given X anymore for instance, will be the
subject of future research. The assumption stipulating that {Y = C} is a zero-probability
event is quite general, insofar as it allows considering situations where Y and/or C are
discrete variables. Under conditional independence, it is obviously satisfied when the r.v. Y
is continuous.

Easy to state but difficult to solve, the statistical learning problem we consider here
is of considerable importance. In a wide variety of applications, the input information
is of increasing granularity and described by a random vector of very large dimension d,
while (censored) data are progressively becoming massively available. Machine-learning
techniques are thus expected to complement traditional approaches, based on statistical
modelling, in order to produce more flexible/accurate predictive models based on censored
data. Incidentally, we point out that the problem under study can be viewed as a very
specific type of transfer learning problem, see e.g. Pan and Yang (2010) insofar as, due to
the censoring, the distribution of the training/source data is not that of the test/target
data. However, the source domain coincides here with the target one and the predictive task
(regression) remains the same.

Weighted empirical risk. Discarding censored observations to evaluate the risk of a
candidate function f(x) would lead to the quantity

R̄n(f) =

n∑
i=1

δi

(
Ỹi − f(Xi)

)2
/

n∑
i=1

δi, (3)

with 0/0 = 0 by convention, which is clearly a biased estimate of RP (f) in general, since,
by virtue of the strong law of large numbers, it converges to E[(Y − f(X))2 | Y ≤ C] with
probability one. One may easily check that the minimizer of this functional is given by

f̄∗(X) = E[Y I{Y ≤ C} | X]/P{Y ≤ C | X},
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which significantly differs from f∗(X) in general. Observing that, by means of a straightfor-
ward conditioning argument, one can write the risk as

RP (f) = E

[
δ(Ỹ − f(X))2

SC(Ỹ− | X)

]
, (4)

where SC(u | x) = P{C > u | X = x} denotes the conditional survival function of the
random right censoring given X, we propose to estimate the risk (1) by computing first a
nonparametric estimator ŜC(u | x) of SC(u | x) and by plugging it next into (4), so as to
obtain

R̃n(f) =
1

n

n∑
i=1

δi(Ỹi − f(Xi))
2

ŜC(Ỹi− | Xi)
, (5)

which approximates the unknown quantity whose expectation is equal to (4)

1

n

n∑
i=1

δi(Ỹi − f(Xi))
2

SC(Ỹi− | Xi)
, (6)

the conditional survival function of C given X being itself unknown. Observe that the
risk estimate (5) can be viewed as a weighted version of the sum of the observed squared
errors (Ỹi− f(Xi))

2, just like (3) except that the i-th weight is not δi/
∑

j≤n δj anymore but

δi/ŜC(Ỹi− | Xi). In the terminology of survival analysis, the weighted empirical risk (5) is
usually referred to as an IPCW (Gerds et al., 2017) estimate and a natural strategy to learn
a predictive function in the censored framework described above then consists in solving the
minimization problem

inf
f∈F

R̃n(f), (7)

over an appropriate class F . In Rotnitzky and Robins (1992) or Section 3.3 in van der Laan
and Robins (2003), a parametric estimator (Cox, 1972) of SC(Y | X) is used to infer the
risk. However, such an approach is naturally limited by well-known misspecification issues,
inherent in the choice of the parametric model. In van der Laan and Robins (2003); Rubin
and van der Laan (2007), the misspecification problem is alleviated by the use of a doubly
robust loss which allows for misspecification of one of the models (either SC or else ST ) and
improves in addition the efficiency of the procedure. This has been further investigated in
Molinaro et al. (2004); Steingrimsson et al. (2016, 2019) , where different methodologies
are proposed to build classification trees. The use of the Kaplan-Meier estimator (Kaplan
and Meier, 1958) for SC(u | x) has been considered in several papers (Stute, 1993, 1996;
Bang and Tsiatis, 2002; Kohler et al., 2002). Even if the censoring model is free from any
parametric modelling, the assumptions required to ensure consistency are quite strong as
the distribution of C is supposed to be independent from X, see Stute (1996) for more
details. In particular, the weights used are independent from X. To overcome the previous
restrictions, the Beran estimator (Beran, 1981), which is a kernel smoothing version of
the Kaplan-Meier estimate (see the next section), can be employed instead of the Cox or
the Kaplan-Meier estimators. Such an approach is promoted and studied in Lopez (2011);
Lopez et al. (2013). When using the Beran approach to estimate SC(u | x), as detailed
in the next subsection, the risk functional (5) is referred to as the Beran risk throughout
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the article. Based on accuracy results for kernel-based Beran estimators of the conditional
survival function SC(· | x) such as those subsequently presented, the performance of solutions
of (7) is investigated in the next section. We point out that, as highlighted in section 4,
alternative inference strategies for conditional survival function estimation can be considered.
For simplicity, here we restrict our attention to kernel-smoothing techniques, although the
analysis carried out can be extended to other nonparametric methods (e.g. partition-based
techniques, nearest neighbours).

Our results are therefore comparable to those of Lopez (2011), as both studies are
concerned with the Beran risk, relaxing in particular the restrictive assumption on the
dependence between C and X used in Stute (1993, 1996). In Lopez (2011), an asymptotic
representation of the estimation error is established when the input variable is univariate
(d = 1). An extension with a single index model is considered in Lopez et al. (2013). The
proof technique is based on the asymptotic equicontinuity of the empirical process and
imposes strong conditions on the bandwidth choice, e.g. nh3 →∞ (see Theorem 3.3 in Lopez
(2011) and Theorem 3.1 in Lopez et al. (2013)). The (nonasymptotic) analysis carried out in
the present paper is quite different and based on two steps: 1) the risk estimate is linearized
and 2) concentration results for generalized U -processes are used to describe its fluctuations
uniformly over the class of predictive functions considered (see e.g. Clémençon and Portier
(2018)). Notice additionally that the approach we adopt to establish nonasymptotic rate
bounds requires weaker conditions, i.e. namely nh2d/| log(hd)| → ∞ in the d-dimensional
case.

Integration domain. As any (conditional) survival function, SC(y | x) vanishes as y tends
to infinity. In order to avoid dealing with the asymptotic behaviour of the conditional survival
function of the censoring and stipulating decay rate assumptions for its tail behaviour, in
the analysis carried out in section 3 we restrict the study of the prediction problem to a
(borelian) domain K ⊂ R+ × Rd such that SC(y | x) stays bounded away from 0 on it and
consider the risk

RP,K(f) = E

δ
(
Ỹ − f(X)

)2

SC(Ỹ− | X)
I{(Ỹ , X) ∈ K}

 , (8)

as well as its empirical counterpart

1

n

n∑
i=1

δi(Ỹi − f(Xi))
2

SC(Ỹi− | Xi)
I{(Ỹi, Xi) ∈ K}. (9)

As discussed at length below, the present analysis distinguishes itself from previous
works, relying on the IPCW approach as well, in several respects. First, the problem of
regression (in presence of censoring) is tackled here from the angle of prediction, not as the
problem of estimating the conditional expectation f∗ with minimum L2(µX)-error, denoting
X’s marginal distribution by µX . Although an estimator of Beran’s type of C’s conditional
survival function given X is involved in the empirical risk construction as explained above,
the goal pursued here is to ensure that the predictor f̃n obtained by solving (7) has a small
excess risk RP (f̃n)−RP (f∗) with large probability. As will be discussed in detail in the next
section, establishing such nonasymptotic guarantees for statistical learning in the censored
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context, in the form of generalization bounds, yields technical difficulties, which are far
from straightforward to overcome, when avoiding the simplifying assumption, hardly met in
practice, that the output variable Y is independent from the r.v. C modelling the censoring
mechanism (see Assumption 1, offering a much more realistic framework for regression based
on censored training data).

In contrast, we derive in this article sound theoretical results, providing nonasymptotic
guarantees for the risk minimizers by jointly estimating the intrinsic loss and the censoring
mechanism.

2.2 Preliminary Results

In this subsection, we briefly recall the Beran approach to estimate a (conditional) survival
function by means of a kernel smoothing procedure and state a uniform bound for the
deviations between the conditional survival function of C given X and its Beran estimator,
involved in statistical learning framework developed in the next section for distribution-
free censored regression. As shall be discussed below, this result refines those obtained in
Dabrowska (1989) and Du and Akritas (2002), which are of similar nature, except that they
are related to the estimation of the conditional survival function of the duration Y given
X, denoted by SY (u | x) = P{Y > u | X = x}, rather than that of the conditional survival
function of the censoring C given X. Define the conditional integrated hazard function of
the right censoring C given X

ΛC(u | x) = −
∫ u

0

SC(ds | x)

SC(s− | x)
, (10)

and the conditional subsurvival functions H(u | x) = P{Ỹ > u | X = x} and H0(u | x) =
P{Ỹ > u, δ = 0 | X = x} for u ≥ 0 and x ∈ Rd. As we have (under Assumption 1),
H0(du | x) = SY (u− | x)SC(du | x) and H(u− | x) = SY (u− | x)SC(u− | x), we obtain

ΛC(u | x) = −
∫ u

0

H0(ds | x)

H(s− | x)
.

Here, we propose to build an estimate of ΛC(u | x) by plugging into formula (10) Nadaraya-
Watson type kernel estimates of the conditional subsurvival functions and derive from it an
estimator of SC(u | x). Of course, alternative estimation techniques can be considered for
this purpose. Throughout the paper, K : Rd → R+ is a symmetric bounded kernel function,
i.e. a bounded nonnegative Borelian function, integrable w.r.t. Lebesgue measure such that∫
K(x)dx = 1, K(x) = K(−x) for all x ∈ Rd, see Wand and Jones (1994). We assume it lies

in the linear span of functions w, whose subgraphs {(s, u) : w(s) ≥ u}, can be represented
as a finite number of Boolean operations among sets of the form {(s, u) : p(s, u) ≥ ζ(u)},
where p is a polynomial on Rd×R and ζ an arbitrary real-valued function. This assumption
guarantees that the collection of functions

{K((x− ·)/h) : x ∈ Rd, h > 0},

is a bounded VC type class, see Giné et al. (2004), a property that will be useful to establish
our results. Although very technical at first glance, this hypothesis is very general and
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is satisfied by kernels of the form K(x) = ζ(p(x)), p being any polynomial and ζ any
bounded real function of bounded variation (see Nolan and Pollard (1987)) or when the
graph of K is a pyramid (truncated or not). For any bandwidth h > 0 and x ∈ Rd, we set
Kh(x) = K(h−1x)/hd. Based on the kernel estimators given by

Ĥ0,n(u, x) =
1

n

n∑
i=1

I{Ỹi > u, δi = 0}Kh(x−Xi), (11)

Ĥn(u, x) =
1

n

n∑
i=1

I{Ỹi > u}Kh(x−Xi), (12)

ĝn(x) =
1

n

n∑
i=1

Kh(x−Xi), (13)

define the conditional subsurvival function estimates

Ĥ0,n(u | x) =
Ĥ0,n(u, x)

ĝn(x)
and Ĥn(u | x) =

Ĥn(u, x)

ĝn(x)
,

as well as the (biased) estimators of ΛC(u | x) and SC(u | x)

Λ̂C,n(u | x) = −
∫ u

0

Ĥ0,n(ds | x)

Ĥn(s− | x)
, (14)

ŜC,n(u | x) =
∏
s≤u

(
1−∆Λ̂C,n(s | x)

)
, (15)

with ∆Λ(t) = Λ(t)−Λ(t−), which are classically referred to as the conditional Nelson-Aalen
and Beran estimators (Dabrowska, 1989). Let b > 0 and define the set

Γb =
{

(y, x) ∈ R+ × Rd : SY (y|x) ∧ SC(y|x) ∧ g(x) > b
}
,

which is supposed to be non-empty. On this set, one may guarantee that Ĥ0,n(y, x) and
Ĥ0,n(y, x) are both away from 0 with high probability, which permits the study of the
fluctuations of (15). In addition, the mild and standard smoothness assumption below is
required in the analysis to control the estimation bias.

Assumption 2 For all u ∈ R+, the functions x 7→ H(u | x), x 7→ H0(u | x) and x 7→ g(x)
are twice continuously differentiable on Rd with all partial derivatives bounded by L.

The result stated below provides a uniform bound for the deviation between SC(u | x)
and its estimator (15).

Proposition 1 Suppose that Assumptions 1 and 2 are fulfilled. Then, there exist constants
M1 > 0, M2 > 0 and h0 > 0 depending on b, L and K only such that, for all ε ∈ (0, 1), we
have with probability greater than 1− ε:

sup
(t,x)∈Γb

|ŜC,n(t | x)− SC(t | x)| ≤M1 ×

{√
| log(hd/2ε)|

nhd
+ h2

}
,

as soon as h ≤ h0 and nhd ≥M2| log(hd/2ε)|.

8



Empirical Risk Minimization under Random Censorship

The technical proof is given in the Appendix section (refer to the latter for a description
of the constants M1, M2 and h0 involved in the result stated above). A similar result, for
the conditional survival function of Y given X, is proved in Dabrowska (1989), see Theorem
2.1 therein. Observe also that choosing h = hn ∼ n−1/(d+4) yields a rate bound of order
OP(

√
log(n)/n4/(d+4)).

Prediction vs Estimation. Finally, we emphasize that conditional density/expectation
estimation is not the goal we pursue here, the regression framework considered in the next
section having to do with prediction, i.e. the construction of a predictive rule f̃n(X) from
censored training data with ’good’ predictive capacity. The learning procedure we investigate
in this article consists in minimizing a plug-in estimation of the risk (4) and consequently
involves the nonparametric estimator (15), the accuracy of the prediction is measured by the
excess risk, not by the estimation error E[(f̃n(X)− f∗(X))2]. This contrasts with estimation
techniques, which consist in forming directly an estimator of the conditional expectation
f∗(X) under specific (smoothness) assumptions. In addition, we point out that alternative
flexible (local averaging) methods could be naturally used to compute estimators of H0(u, x),
H(u, x) and g(x) and consequently estimators of SC(u | x) and ΛC(u | x), including k-nearest
neighbours, decision trees or random forest. However, whereas the accuracy of nonparametric
estimators based on kernel smoothing under appropriate smoothness hypotheses can be
rather easily studied, it is much less convenient to establish rates for estimators produced
by tree-based techniques for example (one generally prefers to investigate estimators built
by means of variants, involving ’random splitting’ for instance, quite different from the
algorithms used in practice). For this reason, the predictive performance of extensions of the
statistical learning approach under study, based on estimators of SC(t | x) built by means of
tree-based techniques, are studied from an empirical angle only in this article, see section 4
for further details.

3. Generalization Bounds for Kaplan-Meier Risk Minimizers

It is the purpose of this section to investigate the excess of risk (8) related to a domain
K ⊂ R+ × Rd of minimizers f̃n(x) of the Kaplan-Meier risk (9) over a class F of predictive
functions that is of controlled complexity (see the technical assumptions below), while being
rich enough to yield a small bias R(f∗) − R(f̄∗), denoting RP,K(·) by R(·) for simplicity
throughout the present section. We consider here the situation where, for all i ∈ {1, . . . , n},
the estimate of the quantity SC(Ỹi | Xi) plugged into (6) is obtained by evaluating the kernel
smoothing estimator of SC(y | x) investigated in subsection 2.2 and based on the subsample
{(Xj , Ỹj , δj) : 1 ≤ j ≤ n, j 6= i} at (y, x) = (Ỹi, Xi). The corresponding versions of the
kernel estimators (11), (12), (13) and those of (14) and (15) are respectively denoted by

Ĥ
(i)
0,n(y | x), Ĥ

(i)
n (y | x), ĝ

(i)
n (x), Λ̂

(i)
C,n(y | x) and Ŝ

(i)
C,n(y | x). This yields the leave-one-out

estimator of the risk of any candidate f

R̃n(f) =
1

n

n∑
i=1

δi(Ỹi − f(Xi))
2

Ŝ
(i)
C,n(Ỹi− | Xi)

I{(Ỹi, Xi) ∈ K},
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Ausset, Clémençon and Portier

that is well-defined on the event
⋂n
i=1{Ŝ

(i)
C,n(Ỹi− | Xi) > 0}. As we clearly have

R(f̃n)− inf
f∈F

R(f) ≤ 2 sup
f∈F

∣∣∣R̃n(f)−R(f)
∣∣∣ ,

the key of the analysis is the control of the fluctuations of the process {R̃n(f)−R(f) : f ∈ F}.
Slightly more generally, we establish below a uniform deviation bound for processes of type

Zn(ϕ) =

 1

n

n∑
i=1

δiϕ(Ỹi, Xi)

Ŝ
(i)
C,n(Ỹi− | Xi)

− E [ϕ(Y,X)] , ϕ ∈ Φ,

where the indexing class Φ fulfills the following property allowing us to control the fluctuations

of the pseudo-variables Ŝ
(i)
C,n(Ỹi− | Xi), as in Proposition 1.

Assumption 3 There exists a domain K ⊂ Γb such that ϕ(y, x) = 0 as soon as (y, x) /∈ K
for all ϕ ∈ Φ.

Equipped with these notations, observe that R̃n(f) − R(f) = Zn(ϕ) when ϕ(Y,X) =
(Y − f(X))2I{(Ỹ , X) ∈ K}.

Linearization. Whereas in the standard regression framework or in classification ERM
can be straightforwardly studied by means of maximal deviation inequalities for empirical
processes, the form of the process {Zn(ϕ) : ϕ ∈ Φ} of interest is very complex since the
terms averaged in (5) are obviously far from being independent due to the presence of the
plugged leave-one-out estimators of the quantities SC(Ỹi− | Xi). The subsequent analysis
is all the more technically difficult that, in contrast to most works devoted to statistical
censored data analysis (see subsection 2.1 for more details), the simplifying assumption,
unrealistic in many situations in practice, that Y and C are independent is avoided here, cf
Assumption 1. Our approach to the study of the fluctuations of the process Zn consists in
linearizing the statistic Zn(ϕ), i.e. approximating Zn(ϕ) by a standard i.i.d. average in the
L2-sense, as stated in the next proposition. In order to make this decomposition explicit,
further notations are needed. We set, for all i ∈ {1, . . . , n},

â(i)
n (t | x) =−

∫ t

0

c(u | x)

H(u, x)

(
Ĥ

(i)
0,n(du, x)−H0(du, x)

)
+

∫ t

0

c(u | x)

H(u, x)2

(
Ĥ(i)
n (u, x)−H(u, x)

)
Ĥ

(i)
0,n(du, x),

b̂(i)n (t | x) =−
∫ t

0

c(u | x)

H(u, x)2Ĥ
(i)
n (u, x)

(
Ĥ(i)
n (u, x)−H(u, x)

)2
Ĥ

(i)
0,n(du, x)

−
∫ t

0

(
Ŝ

(i)
C,n(u− | x)− SC(u− | x)

)
SC(u | x)

∆̂(i)
n (du | x),

where

∆̂(i)
n (du | x) = Λ̂

(i)
C,n(du | x)− ΛC(du | x),

c(u | x) =
SC(u− | x)

SC(u | x)
.

10



Empirical Risk Minimization under Random Censorship

Equipped with these notations, we can now state the following result.

Proposition 2 (KM risk decomposition) Suppose that Assumptions 1, 2 and 3 are
fulfilled. There exist constants h0 > 0 and M1 > 0 that depends on b, L and K only such
that

(i) for any n ≥ 2 and ε ∈ (0, 1), provided that h ≤ h0 and nhd ≥ M1| log(hd/2ε)|, the
event

En
def
=
⋂
i≤n

{
∀(t, x) ∈ K, Ŝ

(i)
C,n(t, x) ≥ b/2 and Ĥ(i)

n (t, x) ≥ b3/2
}
,

occurs with probability greater than 1− ε;

(ii) for all ϕ ∈ Φ and n ≥ 2, we have on the event En:

Zn(ϕ) = Ln(ϕ) +Mn(ϕ) +Rn(ϕ),

where

Ln(ϕ) =
1

n

n∑
i=1

(
δi

ϕ(Ỹi, Xi)

SC(Ỹi | Xi)
− E

[
δ
ϕ(Ỹ , X)

SC(Ỹ | X)

])
,

Mn(ϕ) = − 1

n

n∑
i=1

δiϕ(Ỹi, Xi)
â

(i)
n (Ỹi | Xi)

SC(Ỹi | Xi)
,

Rn(ϕ) =
1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

−b̂(i)n (Ỹi | Xi) +

(
SC(Ỹi | Xi)− Ŝ(i)

C,n(Ỹi | Xi)
)2

SC(Ỹi | Xi)Ŝ
(i)
C,n(Ỹi | Xi)

 .

The proof is given in the Appendix section. Observe that the term Ln(ϕ) is a basic
centred i.i.d. sample mean statistic and its uniform rate of convergence 1/

√
n can be recovered

by applying maximal deviation bounds for empirical processes under classic complexity
assumptions such as those stipulated below, whereas the term Mn(ϕ) is more complicated,
since it involves multiple sums. It is dealt with by means of results pertaining to the theory
of U -processes (de la Peña and Giné, 1999), by showing that it can be decomposed as
Mn(ϕ) = L′n(ϕ) + R′n(ϕ), the sum of a linear term and a second-order term. The term
Rn(ϕ) +R′n(ϕ) is a remainder term (second order) and shall be proved to be negligible with
respect to Ln(ϕ) + L′n(ϕ).

The theory of U -processes is used next to describe the uniform behaviour of Mn +Rn.
Such concentration results are also used in Clémençon et al. (2008) and Papa et al. (2016) in
simpler situations, where the residuals take the form of a degenerate U -statistic. In our case,
due to the presence of a leave-one-out estimate of the survival function, the U -processes that
arise do not have all their diagonal terms (e.g., the sum indexes 1 ≤ i, j ≤ n are restrained
to i 6= j). This is of particular interest because results dealing with U -processes are in most
cases stated for such sums (see Lemma 7 and Corollary 8 in the Appendix section) and,
more importantly, removing diagonal terms improves the estimation accuracy by reducing
the bias (see also Delyon and Portier (2016), remark 4).

To obtain uniform concentration inequalities over the function class Φ, it is standard
(Nolan and Pollard, 1987; Giné and Guillou, 2001) to assume the following type of control
on the complexity of the class.

11
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Assumption 4 The set Φ of real-valued functions on R+ × Rd is a bounded VC type of
class with parameter (A, v) and constant envelope MΦ.

The formal definition of VC classes is given in the Appendix section. By means of these
assumptions, the following result, proved in the Appendix section, describes the order of
magnitude of the fluctuations of the process Zn.

Proposition 3 Suppose that Assumptions 1-4 are fulfilled. There exist constants h0, M1,M2

and M3 that depend on (A, v), MΦ, L, K and b only, such that, for all n ≥ 2 and ε ∈ (0, 1),
the event

sup
ϕ∈Φ
|Zn(ϕ)| ≤M1

(√
log (M2/ε)

n
+
| log(εhd/2)|

nhd
+ h2

)
,

occurs with probability greater than 1− ε provided that h ≤ h0, nh2d ≥M3| log(εhd)|.

The risk excess probability bound stated in the following theorem shows that, remarkably,
minimizers of the Kaplan-Meier risk attain the same learning rate as that achieved by classic
empirical risk minimizers in absence of censoring, when ignoring the model bias effect induced
by the plug-in estimation step (cf choice of the bandwidth h).

Theorem 4 Suppose that Assumptions 1-4 are fulfilled. There exist constants h0, M1,M2

and M3 that depend on (A, v), MΦ, L, K and b only, such that, for all n ≥ 2 and ε ∈ (0, 1),
the event

|R(f̃n)−R(f?)| ≤M1

(√
log (M2/ε)

n
+
| log(εhd/2)|

nhd
+ h2

)
,

occurs with probability greater than 1− ε provided that h ≤ h0, nh2d ≥M3| log(εhd)|.

The proof is a direct application of Proposition 3. A similar bound for the expectation
of the risk excess of minimizers of the empirical Kaplan-Meier risk can be classically derived
with quite similar arguments, details are left to the reader. We finally point out that, given
that Proposition 3 holds true for a fairly general class of functions Φ, the guarantees provided
by Theorem 4 can be naturally extended to more general risk measures than that defined by
the quadratic loss.

4. Numerical Experiments

Beyond the theoretical generalization guarantees established in the previous section, we
now examine at length the performance of the predictive approach proposed in the context
of regression based on censored data from an empirical perspective. We present various
experiments using both synthetic and real data, and compare it to alternative methods
documented in the survival analysis literature standing as natural competitors. As shall
be seen below, the experimental results obtained provide strong empirical evidence of the
relevance of the Kaplan-Meier empirical risk minimization approach described in section 2
and analysed theoretically in section 3. All the experiments and figures displayed in this
article can be reproduced using the code available at https://github.com/aussetg/ipcw.

12
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4.1 Experimental Setup

Before presenting and discussing the numerical results obtained, we first describe the experi-
mental schemes used here to investigate the predictive capacity of the learning procedure
under random censoring previously studied.

4.1.1 Data Generative Models

In all the synthetic experiments we have carried out, the generation of the data is based either
on the proportional hazard model of Cox and Oakes (1984) or else on the accelerated time
failure model of Buckley and James (1979); both commonly used for parametric modelling
and statistical estimation of conditional survival functions in the censored setup. Samples
of the triplet (Ỹ , δ,X) are obtained by specifying the marginal distribution of X, as well
as the conditional distribution of (Y,C) given X. For simplicity, the input r.v. X is here
uniformly distributed on the unit square [0, 1]d, for d ∈ {2, 4, 8}. Only the results for d = 4
are presented below, while those obtained for d ∈ {2, 8} are available through the link
mentioned above.

Cox Model. The first survival model we use to simulate synthetic data stipulates that

SY (y | x) = exp
(
− exp

(
βTx

)
y
)

and SC(y | x) = exp
(
− exp

(
βTCx

)
y
)
, (16)

where β and βC are parameters in Rd. Given X, the conditional distribution of Y is
thus exponential with parameter exp(βTX), while that of C is exponential with parameter
exp(βTCX).

Accelerated Failure Time Model (AFT). The second generative model we considered
assumes that

log(Y ) = −βTX + ε0 and log(C) = −βTCX + ε1, (17)

where the r.v. ε0 (respectively ε1) is independent from X. Different accelerated failure time
models can thus be generated, depending on the distributions D0 and D1 chosen for ε0

and ε1. Three distributions have been used: Normal (N) with mean and variance (3/2, 1),
Laplace (L) with location and scale (1, 1) and Gamma (G) with shape and scale (0, 1).
Denoting by AFT(D0, D1) the model such that (ε0, ε1) ∼ D0⊗D1, the variants AFT(N,N),
AFT(N,L) and AFT(N,G) have been simulated. Since the results obtained for these AFT
models are quite similar to those based on the Cox model, only the latter are presented
below. We refer to the link aforementioned for a description of the results based on the data
generated through the AFT models.

Parameters β and βC . In the Cox and AFT models, the level of censoring can be tuned
by carefully choosing the parameters β and βC . In order to guarantee that the censoring is
informative, we use the following parametrization:

βT =
[ dd/2e︷ ︸︸ ︷
1 · · · 1 0 · · · 0

]
,

βTC = λ
[
1 0 1 0 1 · · ·

]
,

where the tuning parameter λ > 0 controls the level of censoring 1− p with p = P{Y ≤ C}
and u ∈ R 7→ due is the ceiling function. For a targeted censoring level p, the parameter λ
can be empirically determined so that

∑n
i=1 δi ' np.

13
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4.1.2 Plugged estimator of the conditional survival function SC(· | x)

The estimate of the risk (9) one seeks to minimize is partly determined by the choice of
the estimator ŜC(· | x) of SC(· | x) plugged into it. We consider for ŜC the kernelized
Kaplan-Meier estimator (15), in its standard version denoted by ŜKern

C (· | x) and in its leave-

one-out version as well, denoted by Ŝ
(i) Kern
C (· | x). We denote by ŜKM

C (·) the Kaplan-Meier

estimator of C’s (unconditional) survival function, which can be seen as the limit of ŜKern
C

when h→∞ and yields the Kaplan-Meier risk considered in Stute (1995). In addition, we

used Ŝ
(i) KNN
C (· | x), the estimator obtained by replacing the kernel smoothing involved in (9)

by a nearest neighbour averaging, in a leave-one-out fashion. Finally, we also considered
ŜRF
C , the survival random forest estimator proposed in Ishwaran et al. (2008). From each

estimator of SC , one computes a plug-in estimation of the risk:

IPCW
n∑
i=1

δi
(Ỹi − f(Xi))

2

ŜKern
C (Ỹi|Xi)

IPCW LoO
n∑
i=1

δi
(Ỹi − f(Xi))

2

Ŝ
(i) Kern
C (Ỹi|Xi)

IPCW Forest
n∑
i=1

δi
(Ỹi − f(Xi))

2

ŜRF
C (Ỹi|Xi)

IPCW Stute
n∑
i=1

δi
(Ỹi − f(Xi))

2

ŜKM
C (Ỹi)

IPCW KNN
n∑
i=1

δi
(Ỹi − f(Xi))

2

Ŝ
(i) KNN
C (Ỹi|Xi)

IPCW Oracle
n∑
i=1

δi
(Ỹi − f(Xi))

2

SC(Ỹi|Xi)

Naive
n∑
i=1

(Ỹi − f(Xi))
2 Observed

n∑
i=1

δi(Ỹi − f(Xi))
2.

(18)

The naive and observed empirical risks introduced above correspond to strongly biased
estimators of the true risk (1) of course. Note that the normalizing constant is ignored here,
insofar as it has no impact on the empirical risk minimizer. However, when estimating the
true risk itself, it is necessary to correctly normalize the previous quantities in order to
obtain complete case estimators. A point of comparison is the oracle risk

Oracle
1

n

n∑
i=1

(Yi − f(Xi))
2,

i.e. the empirical risk in absence of any censoring (i.e. when all the Yi’s are observed). For
each risk, a prediction rule f̃?n is built by (approximately) minimizing it over a certain class
F . The results are depicted in Fig.1 for various sizes of the (censored) training sample
and different censoring levels, the prediction error being evaluated by means of a test
(uncensored) sample of size 5000: learning a predictive function by minimizing an IPCW
estimator (here IPCW LoO) of the risk always outperforms naive alternatives, the gain in
predictive performance naturally becoming more pronounced as the level of censoring 1− p
increases. Unsurprisingly, when most of the points are observed (i.e. p→ 1), all methods
reach roughly the same error, all the losses in (18) being equal for p = 1, as depicted by
Fig.2. Notice also in Fig.2 that the IPCW estimator performs best compared to the naive
methods for a moderate level of censoring. This can be explained by the fact that in absence
of censoring the methods are equivalent and when censoring reaches a very high level, there
is not enough data to estimate reliably the IPCW weights. Of course, the phenomenon is

14
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exaggerated in the present example, as the training set is of size 1000: with a censoring
level of 90%, only 100 observations are then available for the conditional estimation of the
weights.

200 500 1000 2000 200 500 1000 2000 200 500 1000 2000

10

15

p = 0.75 p = 0.5 p = 0.25

Number n of training samples.

E[
(Y
−
f̃
? n
(X

))
2
] IPCW LoO

Naive
Observed

Figure 1: Prediction error E[(Y − f̃?n(X))2] for data generated by the Cox model (16), when
minimization is performed over the class of affine predictive rules.

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

10

15

20

p

E[
(Y
−
f̃
? n
(X

))
2
] IPCW LoO

Naive
Observed

Figure 2: Prediction error E[(Y − f̃?n(X))2] for data generated by the Cox model (16) with
n = 1000, when minimization is performed over the class of affine predictive rules.

Truncation of the estimator ŜC(· | x). In the theoretical analysis carried out in the
previous section, we placed ourselves on a restricted set Γb. However, in practice, we employ
a truncation approach by simply removing the last jump of the estimated survival function.
For instance, ŜKern

C (y|x) is taken as∏
Ỹi≤y

Ỹi<maxj: δj=0 Yj

(
1−∆Λ̂C,n(Ỹi | x)

)
. (19)

Observe that, although it is not a survival function anymore, it is still a relevant estimator.
This alleviates possible difficulties caused by the frequent edge case where the last individual
is observed (δ = 1), since, in the case where (15) is used, we have then δn/ŜC(Ỹn | Xn) =∞.
Of course, it would have been possible to decide to force a restriction on Γb by considering
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the flooring max(b, ŜC,n(y | x)) rather than ŜC,n(y | x). However, b then becomes an
hyperparameter of the procedure that has to be tuned by the practitioner. In the survival
analysis literature, it is common to consider the restricted mean survival time, the conditional
distribution of the restricted variable min(Y, τ) being easier to learn than that of Y ; see
e.g. Royston and Parmar (2011) or Steingrimsson et al. (2016, 2019); Steingrimsson and
Morrison (2020). In this case the conditional survival function of the restricted variable is
equal to the truncated conditional survival function of Y . Our approach therefore consists
in using the restricted mean censoring time as the target for the weights in order to reduce
the noise. We evaluated truncation of the survival function and flooring by comparing the
predictive performance attained by the rule learnt from data generated by means of the

Cox model, when choosing successively ŜKern
C , Ŝ

(i) Kern
C and Ŝ

(i) KNN
C for ŜC . As depicted by

Fig. 3 for the specific case where ŜC = Ŝ
(i) Kern
C (and this remains true in the other cases), a

wrong choice for b may have serious consequences, while the truncation approach of Eq. (19)
consistently produces good results. Consequently, the truncated version is always used in
the following experiments.

100 200 300 500 1000 100 200 300 500 1000 100 200 300 500 1000
10

15

20

p = 0.75 p = 0.5 p = 0.25

Number n of training samples.

E[
(Y
−
f̃
? n
(X

))
2
]

0 0.001 0.1 0.3 0.5 Truncation

Figure 3: Prediction error E[(Y − f̃?n(X))2] when F is the class of affine functions, choosing
the IPCW LoO risk estimator and the Cox model (16) for generating the data. The curves
correspond to different floors b and to the truncation approach of (19).

Calibration of ŜC(· | x). In order to fully specify the estimator ŜC(· | x), it may be
necessary to choose specific hyperparameters. Without censoring, and therefore without
having to resort to the IPCW approach, one would select the various hyperparameters by
way of a cross-validation; this approach is, however, impossible in our case as the loss itself
is unknown and only estimated, worse any modification of the parameters of ŜC results in a
modification of the estimator of the loss we wish to minimize. One possible solution is to
rely on a surrogate loss i.e. an auxiliary loss that we are able to compute exactly and on

which a cross-validation is therefore possible. For ŜKern
C and Ŝ

(i) Kern
C , we consider m̂h(x) the

nonparametric kernel regression of Ỹ w.r.t. X, known as the Nadaraya-Watson estimator,
and the surrogate loss E[|Ỹ − m̂h(X)|2] which is then minimized using cross-validation with
respect to h. In this way, a value for the bandwidth parameter h∗cv is obtained and might

be used in ŜKern
C and Ŝ

(i) Kern
C . This approach is also easily applied to set the number of
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neighbours involved in Ŝ
(i) KNN
C . As a close relative of the task of estimating SC , the previous

regression loss is a good candidate for the surrogate cross-validation.

In the specific case of Ŝ
(i) Kern
C and Ŝ

(i) KNN
C , we experimentally studied the impact of

the choice of h and k on the prediction performance E[(Y − f̃?n(X))2]. The results for the

specific case of Ŝ
(i) Kern
C are given in Fig. 4 and demonstrate the need to be over-conservative

rather than under-conservative in the choice of these hyperparameters. In our experiments,

100 200 300 500 1000 100 200 300 500 1000 100 200 300 500 1000
10

12

14

16

p = 0.75 p = 0.5 p = 0.25

Number n of training samples.

E[
(Y
−
f̃
? n
(X

))
2
]

0.1 1.0 5.0 10.0 20.0 50.0

Figure 4: Prediction error E[(Y − f̃?n(X))2] for varying bandwidth h, with F a random forest
model, IPCW LoO estimator of SC , and data following the Cox model (16).

choosing h at least equal to the value h∗cv obtained by minimizing the surrogate, and up to 5
times this value, is a safe choice. Consequently, we use h = 5h∗cv in the following experiments.
For ŜRF

C , given the large number of hyperparameters, the default parameters selected by the
package’s authors have been used.

4.2 Experimental Results based on Synthetic Data

We now present the results obtained from the data generated by means of the model
previously described.

Risk estimation. While not the focus of the predictive approach studied in this paper,
it is of interest to evaluate the quality of the estimation of E[ϕ(Y,X)], related to a certain
function ϕ, attained by the IPCW method. In order to make computations easier, we
choose to study functionals of the form ϕ(Y,X) = Y exp

(
−XTβ

)
, where Y follows the Cox

model described in Equation (16). In this case E[ϕ(Y,X)] = 1. For a single random dataset
Dn = {(Xi, Yi, δi) : i = 1, . . . , n} of size n, the estimation error is given by

errn =

∣∣∣∣∣∣1− 1

n

∑
(Xi,Yi,δi)∈Dn

δi

ŜC(Ỹi | Xi)
Ỹi exp (−Xᵀ

i β)

∣∣∣∣∣∣ .
Based on M = 100 simulated datasets, we study the distribution of errn for varying sizes
n. We represent the median, 5% and 95% quantiles of errn in Fig. 5 for each survival
estimator. As can be seen in Fig. 5, while the naive uncorrected method results in a poor
approximation of the considered expectation (as expected, since it is strongly biased), the
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Figure 5: Estimation error for the IPCW Risks of (18) compared to the naive method, for
p = 1/4 and data following the Cox model (16).

IPCW reweighting errors converge towards 0. One should pay specific attention to the
particularly good performance of the leave-one-out version of the IPCW estimators. We
also point out that low-bias estimators of SC , such as the Random Forest estimator, can
underperform significantly compared to their high bias counterparts such as the unconditional
Stute estimator. This behaviour is consistent with the observations made in the previous
discussion about calibration. It is illustrated by Fig. 4. We empirically observe that the
IPCW estimator of the risk with oracle weights (i.e. computed from the true conditional
survival function SC(. | x)) may be less accurate than plug-in versions (i.e. computed from
an estimator of the conditional ŜC(. | x)) and exhibits a much higher variance. Intuitively,
this phenomenon can be explained by the fact that the empirical weights governed by the
value 1/SC(Yi|Xi) can grow arbitrarily large for observations in the tail. This phenomenon
is reduced for the estimated version LoO (resp. KNN) because of the truncation (see the
implementation details above) and the over-conservative choice of the bandwidth (resp.
of the number of neighbours). A similar phenomenon occurs for estimated of importance
sampling type, for which the weights appearing in the denominator need to be tuned finely,
see Delyon and Portier (2020).

Predictive performance. In this paper, we are concerned with the predictive task,
rather than risk estimation. Hence, we now focus on the problem of minimizing (1). We
study the prediction error E[(Y − f̃?n(X))2] for the following types of predictive model F :
Support vector Regression (SVR), Random Forests and Linear Regression. Although the
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choices we made are far from being exhaustive, they correspond to tools commonly used by
practitioners.

Following the experimental scheme presented in subsection 4.1 we first generate train
sets of varying size n and test sets of fixed size 5000 according to the data generative models
described in 4.1.1. We then estimate on the train set the weights corresponding to each risk
described in Eq. (18) with hyperparameters chosen using the procedure given in 4.1.2 before
computing f̃?n, the minimizer of the resulting empirical risk over the class F considered. We
finally estimate the prediction error E[(Y − f̃?n(X))2] using the test dataset. Each experiment
is entirely replicated (including the sampling of the train and test sets) 100 times in order
to obtain reliable statistics for the distribution of the true risk of the learning procedure.
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2
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IPCW KNN

IPCW Oracle
IPCW

IPCW LoO

Figure 6: Prediction error E[(Y − f̃?n(X))2] for different estimators of SC using the linear
regression model for data generated by the Cox model (16).

As already observed earlier in Fig. 5, Fig. 6 and Fig. 7 show that the IPCW LoO
predictor systematically outperforms the other predictors in our experiments, no matter the
level of censoring p and across different distributions as can be seen here for the specific case
of the Cox model and the AFT(N,L). Consequently, any further mention of IPCW implicitly
refers to the IPCW LoO version from now on and all subsequent experiments involve the use

of Ŝ
(i) Kern
C . We also underline that these results hold true, no matter the predictive model

F considered, as can be seen by examining Fig. 8 and no matter the underlying distribution,
see Fig. 9. It is noteworthy that the methods are all the most different as the number of
observations in the training set increases. As the conditional estimators become more and
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Figure 7: Prediction error E[(Y − f̃?n(X))2] for different estimators of SC using the linear
regression model for data generated by the AFT(N,L) model (17).

more complex, more and more data are required to differentiate them from the unconditional
versions.
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Figure 8: Prediction error E[(Y − f̃?n(X))2] for the three predictive models (SVR, random
forest and linear regression) using the IPCW LoO for data generated by the Cox model (16).

Finally, we compare variants of popular machine learning methods implementing the
IPCW technique promoted in this paper to standard state-of-the-art procedures from the
survival analysis literature that do not rely on (re-weighted) risk minimization. Such
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Figure 9: Prediction error E[(Y − f̃?n(X))2] for the three predictive models (SVR, random
forest and linear regression) using the IPCW LoO for data generated by the AFT(N,L)
model (17).

techniques include classic statistical methods based on the preliminary estimation of the
survival function, as already mentioned in Section 1 (see e.g. van der Laan and Robins
(2003)), the survival function estimator being next used to estimate the downstream quantity
of interest in a plug-in fashion, provided that the latter can be expressed as an integral
w.r.t. the survival function, just like the conditional mean. An alternative approach, in
the spirit of machine learning methods, consists in designing losses tailored to the censored
regression problem, either through transformation models in Van Belle et al. (2011), or
else by adapting the SVM methodology, as done in e.g. Van Belle et al. (2007); Pölsterl
et al. (2015, 2016). We also include the method of Hothorn et al. (2006) which shares
similarities with the approach investigated in this paper and uses a boosting technique to
optimize a loss reweighted by unconditional Kaplan-Meier weights, as well as the technique
proposed in Ishwaran et al. (2008) that builds a recursive splitting of the feature space X by
maximizing a measure of inter-cluster dissimilarity of the survival functions, the resulting
clusters being then used for downstream tasks such as classification, regression, or quantile
estimation. We compare the predictive performance of ten estimators of the regression
function based on statistical models documented in the survival literature with that of
five predictive functions learned using the IPCW risk minimization approach. The IPCW
versions of the machine learning techniques for regression considered in these experiments,
corresponding to the approach studied in the present article, have been implemented with
Scikit-Learn (Pedregosa et al., 2011), combined with our own implementation of the
LoO IPCW predictor we propose. For the survival machine learning methods mentioned
above, we use the reference implementations of the Scikit Survival package (Pölsterl,
2020). The canonical implementation of Ishwaran and Kogalur (2007) is used for Random
Survival Forest. The default values for the hyperparameters are used in every case. All
experiments are based on n = 200 training observations. Results for all methods can be
found in Table 1. While the undeniable superiority of IPCW methods compared to the
standard survival techniques may appear surprising at first glance. However, keeping in mind
that the performance measure is here the prediction error E[(Y − f̃?n(X))2], it is expected
that directly minimizing an estimator of the prediction error yields better results than
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Ausset, Clémençon and Portier

a two-stage procedure, which consists in estimating first the underlying distribution and
forming next an estimator of its mean.

E[(Y − f̃?n(X))2]

Method p = 0.75 p = 0.5 p = 0.25

S
c
i
k
i
t
S
u
r
v
i
v
a
l

Survival Gradient Boosting 3.19 3.55 3.61
Component-wise Survival Gradient Boosting 3.19 3.87 4.23
Cox Proportional Hazards 7.86 7.61 7.03
Coxnet 7.62 7.39 6.85
Kernel Survival SVM 4.02 3.92 4.13
Survival SVM 4.04 4.09 3.94
Hinge Loss Survival SVM 8.10 8.28 8.09
Minlip Survival SVM 3.27 3.96 4.22
Random Survival Forest 2.01 2.94 2.78

S
c
i
k
i
t
L
e
a
r
n Ridge + IPCW 1.75 1.49 1.24

Kernel Ridge + IPCW 2.07 1.60 1.35
Linear Regression + IPCW 1.81 1.49 1.24
Random Forest + IPCW 1.85 1.57 1.36
SVR + IPCW 1.87 1.66 1.42

Table 1: Performance on the Cox dataset

4.3 Experimental Results based on Real Data

The performance of the IPCW risk minimization approach is now investigated on the TCGA
Cancer data (Grossman et al., 2016) using solely the RNA transcriptomes as informative
variables. All models are trained on n = 8080 patients with a censoring rate of 18%, we
measure on the remaining 1449 observed patients the prediction error, as well as the Harrel
concordance index defined by ∑

Yj≤Yi δjI{f(Xj) > f(Xi)}∑
Yj≤Yi δj

, (20)

which can be seen as an extension of the classical AUC metric for the standard classification
problem to censored data, measuring how well ordered the predicted death times are. Note
that, as a complete case statistic, the same methodology as presented in this paper could
be applied to estimate the AUC type statistic P{f(X1) > f(X2) | Y1 > Y2}, using IPCW
weights. However, because it has been used for evaluating alternative methods, we use the
criterion (20) here in order to facilitate comparisons and avoid to discuss the impact of
specific IPCW approaches to compute the weights. For all the results, we use the IPCW
methodology presented earlier. The Cox proportional hazards model was, however, learned
after variable selection via a Lasso regression so as to augment performance.

We observe from the results in Table 2 that, as expected, the predictors built through
IPCW risk minimization significantly outperform their competitors, including the standard
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Cox model, for the prediction task. The large improvement compared to the Cox approach
may surprise at first but is not unexpected actually, insofar as the seemingly less sophisticated
IPCW approach is specifically designed for the purpose of prediction. By directly minimizing
an estimate of the loss of interest, it naturally achieves a lower test prediction error than that
reached by the traditional two-stage approach in statistics, which consists in estimating first
the distribution and deducing next an estimator of the minimizer of the loss of interest (here,
such an approach would consist in building first an estimator of Y ’s conditional density given
X based on the censored sample and taking next its expectation to form an estimator of
the theoretical minimizer f∗). The Cox estimator only controls the likelihood of the model
without any concern for the predictive performance. In particular, extreme errors are not
penalized in any way while those are hurtful to the overall L2 error. More interestingly, we
see that, while the difference is not as pronounced, the IPCW predictors also outperform
the Cox estimator with respect to the concordance index. Notice incidentally that the
concordance index, as an extension of the Wilcoxon-Mann-Whitney or AUC statistic, is an
empirical criterion that can hardly be optimized directly in practice (using gradient ascent
techniques for instance) because of the nonsmooth character of the pairwise loss function it
involves, see e.g. section 7 in Clémençon et al. (2008), but it is often used for evaluating
performance a posteriori by practitioners. Remarkably, as the IPCW risk minimization
approach can be combined with highly sophisticated learners (such as random forests),
without any modification or increase in complexity, it is possible to significantly increase its
predictive capacity, while edging the standard survival techniques on auxiliary metrics as
well.

IPCW Naive Observed

Method L2 Error (years) Concordance L2 Error C L2 Error C

Cox 18.78 0.6095 – – – –
SVR 2.768 0.563 2.796 0.575 2.795 0.543
Linear Regression 3.193 0.594 4.971 0.557 3.898 0.508
Ridge 3.193 0.594 4.962 0.5573 3.896 0.5077
Kernel Ridge 2.683 0.597 2.704 0.592 2.956 0.513
Random Forest 2.577 0.630 2.636 0.603 2.878 0.542

Table 2: Results of the IPCW approach on the TCGA Cancer data.

5. Conclusion

In the present article, we have presented both theoretical and experimental work on statistical
learning based on censored data. Precisely, we considered the problem of learning a
predictive/regression function when the output variables related to the training observations
are subject to random right censoring under mild assumptions. Following in the footsteps of
the approach introduced in Stute (1995), we studied from a nonasymptotic perspective the
performance of predictive functions built by minimizing a weighted version of the empirical
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(quadratic) risk, constructed by means of the Kaplan-Meier methodology. Learning rate
bounds describing the generalization ability of such predictive rules have been proved, through
the study of the fluctuations of the Kaplan-Meier risk functional, relying on linearization
techniques combined with concentration results for U -processes. These theoretical results
have also been confirmed by various numerical experiments, supporting the approach
promoted. A difficult question, that will be the subject of further research, is the design of
model selection methods (structural risk minimization) to pick automatically the optimal
hyperparameters for the plugged estimator ŜC,n. Indeed, this is far from straightforward,
insofar as changing the hyperparameters or the model modifies the loss that is being
optimized, which makes standard methods such as cross-validation unsuitable.

Appendix A. Concentration inequalities for VC classes and permanence
properties

For completeness, concentration results as well as preservation properties of VC classes,
extensively used in the subsequent proofs, are recalled. For the sake of generality, this
section is independent from the rest of the paper. For a function f : S → R, we define
‖f‖∞ = supx∈S |f(x)| and ‖f‖A = supx∈A |f(x)|.

Concentration inequalities over VC classes. The following concentration inequalities
provide uniform bound on empirical sums over VC classes of functions. We start by recalling
the definition of a VC class.

Definition 5 Let (S,S) be a measurable space. A class F of real-valued functions defined
on S is called VC of parameter (A, v) ∈ (0,+∞)2 and constant envelope UF > 0 if for any
probability measure Q on (S,S) and any ε ∈ (0, 1):

N (F , L2(Q), εUF ) ≤ (A/ε)v,

where N (F , L2(Q), ε) denotes the smallest number of L2(Q)-balls of radius less than ε
required to cover class Φ (covering number), see e.g. Nolan and Pollard (1987) and Giné
and Guillou (2001).

The following inequality for empirical processes over VC classes is stated in Einmahl
and Mason (2000); Giné and Guillou (2001) under various forms. The present version is
taken from Giné and Sang (2010).

Lemma 6 Let ξ1, ξ2, . . . be i.i.d. r.v.’s valued in a measurable space (S,S) and U be a class
of functions on S, uniformly bounded and of VC-type with constant (A, v) and envelope U :
S → R. Set σ2(u) = var(u(ξ1)) for all u ∈ U . There exist constants C1 > 0, C2 ≥ 1, C3 > 0
(depending on v and A) such that ∀t > 0 satisfying

C1σ

√
n log

(
2‖U‖∞
σ

)
≤ t ≤ nσ2

‖U‖∞
,

then

P

{∥∥∥∥∥
n∑
i=1

{u(ξi)− E[u(ξi)]}

∥∥∥∥∥
U

> t

}
≤ C2 exp

(
−C3

t2

nσ2

)
.
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The previous result is extended to the case of degenerated U -processes over VC classes
(Major, 2006, Theorem 2).

Lemma 7 Let ξ1, ξ2, . . . be an i.i.d. sequence of random variables taking their values in a
measurable space (S,S) and distributed according to a probability measure P . Let H be a
class of functions on Sk uniformly bounded such that H is of VC type with constants (A, v)
and envelope G. For any H ∈ H, set σ2(H) = var(H(ξ1, . . . , ξk)) and assume that

∀j ∈ {1, . . . , k}, E[H(ξ1, . . . , ξk) | ξ1, . . . , ξj−1, ξj+1, . . . , ξk] = 0 with probability one.

Then, there exist constants C1 > 0, C2 ≥ 1, C3 > 0 (depending on v and A) such that for
all t > 0 satisfying

C1σ

(
n log

(
2‖G‖∞
σ

))k/2
≤ t ≤ σ

(
nσ

‖G‖∞

)k
,

then

P
{∥∥∥∥ ∑

(i1,...,ik)

H(ξi1 , . . . , ξik)

∥∥∥∥
H
> t

}
≤ C2 exp

(
−C3

1

n

(
t

σ

)2/k
)
,

where
‖G‖2∞ ≥ σ2 ≥ ‖Var(H)‖2H.

The following result is directly derived from that stated above by specifying an appropriate
value of t.

Corollary 8 Let ξ1, ξ2, . . . be an i.i.d. sequence of random variables taking their values in
a measurable space (S,S) and distributed according to a probability measure P . Let H be a
class of functions on Sk uniformly bounded such that H is of VC type with constants (A, v)
and envelope G. For any H ∈ H, set σ2(H) = var(H(ξ1, . . . , ξk)) and assume that

∀j ∈ {1, . . . , k}, E[H(ξ1, . . . , ξk) | ξ1, . . . , ξj−1, ξj+1, . . . , ξk] = 0 with probability one.

Then, there exist constants C1 > 0 , C2 ≥ 1 , C3 > 0 (depending on v and A) such that

P


∥∥∥∥∥∥
∑

(i1,...,ik)

H(ξi1 , . . . , ξik)

∥∥∥∥∥∥
H

≤ t(n, σ, ε)

 > 1− ε,

with

t(n, σ, ε) = σnk/2

(
C1

(
log

(
2‖G‖∞
σ

))k/2
+

(
log(C2/ε)

C3

)k/2)
,

provided that

‖G‖2∞
(
C

2/k
1 log

(
2‖G‖∞
σ

)
+

log(C2/ε)

C3

)
≤ nσ2,

sup
H∈H

σ2(H) ≤ σ2 ≤ ‖G‖2∞.
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VC type classes of functions - Permanence properties. In the subsequent sections,
several results are obtained by applying the concentration bounds recalled above to specific
classes of functions built up from the elements of the class Φ and other functions such
as Kh(x), SC(u | x) or g(x). To show that these specific classes are VC, we rely on the
following lemmas which exhibits situations where the VC type property is preserved, while
controlling the constants (A, v) involved. In what follows the kernel K is assumed to satisfy
the hypotheses introduced in section 2.2.

Lemma 9 (see Nolan and Pollard (1987), Lemma 22, Assertion (ii)) The class {z 7→
K(h−1(x− z)) : x ∈ Rd, h > 0} is a bounded VC class of functions.

The following result is an extension of a result established in the proof of Proposition 8
in Portier and Segers (2018).

Lemma 10 Let (V,W ) be a pair of random variables taking their values in Rq and in Rd
respectively, denote by f0(v |W ) the density of the conditional distribution of the random
variable V given W , supposed to be absolutely continuous w.r.t. Lebesgue measure on Rq.
Let F be a bounded VC class of functions defined on Rq × Rd with parameter (A, v) and
constant envelop UF . The class G = {w ∈ Rd 7→ E[f(V,W ) |W = w] : f ∈ F} is a bounded
VC class of functions with parameter (A, v) and constant envelop UF .

Proof Let Q be a probability measure on Rd. Consider Q̃ the probability measure defined
through

dQ̃(v) =

∫
f0(v|w)Q(dw)dv.

Let ε ∈ (0, 1) and consider the centres f1, . . . , fN of an εUF -covering of the VC class F
with respect to the metric L2(Q̃). Let g ∈ G, i.e., g : w ∈ Rd 7→ E[f(V,W ) |W = w] with f
in F . Define gk = E[fk(V,W ) |W = w], for k = 1, . . . , N . There exists k ∈ {1, . . . , N} such
that ∫

(g(w)− gk(w))2 Q(dw) ≤
∫

E
[
(f(V,W )− fk(V,W ))2 |W = w

]
Q(dw)

=

∫∫
(f(v, w)− fk(v, w))2 f0(v|w) dv Q(dw)

=

∫
(f(v, w)− fk(v, w))2 Q̃(dv) ≤ ε2U2

F ,

using Jensen’s inequality and Fubini’s theorem. Consequently, we have:

N
(
G, L2(Q), εUF

)
≤ N

(
F , L2(Q̃), εUF

)
≤
(
A

ε

)v
.

Since the constant UF is an envelop for the class G, the result is established.
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Lemma 11 Let Ψ be a VC class of functions defined on Rq×Rd with constant envelop U > 0
that satisfies the following Lipschitz property: for all ψ ∈ Ψ, z ∈ Rq, (x, y) ∈ Rd × Rd,

|ψ(z, x)− ψ(z, y)| ≤ κ‖x− y‖.

with κ > 0. Let K : Rd → R be a positive function such that
∫
K(u)du = 1 and vK =∫

‖u‖2K(u)du <∞. The class F = {(z, x) 7→
∫
ψ(z, x− hu)K(u)du : ψ ∈ Ψ, 0 < h ≤ h̃}

is a bounded measurable VC class of functions with constant envelope (κh̃
√
vK + U).

Proof Let 0 < ε ≤ 1 and hk = kεh̃, k = 1, . . . , b1/εc, an (εh̃)-subdivision of the interval (0, h̃].
Let Q be a probability measure on Rq×Rd. For each k, define µk as the probability measure
of the random variable (Z,X − hkU) when (Z,X,U) ∼ Q×K. Let Ψk,j , j = 1, . . . , N be
an εU -cover of the function class Ψ with respect to L2(µk). Let h ∈ (0, h̃] and ψ ∈ Ψ. For
any measurable function f and any k, we have∥∥∥∥∫ f(z, x− hku)K(u)du

∥∥∥∥
L2(Q)

≤ ‖f‖L2(µk).

As a consequence, for each k there exists j such that∥∥∥∥∫ (ψ(z, x− hku)− ψk,j(z, x− hku))K(u)du

∥∥∥∥
L2(Q)

≤ εU.

Besides, from the Lipschitz property, there exists k such that∥∥∥∥∫ (ψ(z, x− hu)− ψ(z, x− hku))K(u)du

∥∥∥∥
L2(Q)

≤ εκh̃
√
vK .

The triangle inequality allows to claim that there exists j and k such that∥∥∥∥∫ (ψ(z, x− hu)− ψk,j(z, x− hku))K(u)du

∥∥∥∥
L2(Q)

= ε(κh̃
√
vK + U).

There are 1/ε×Aε−v such functions Ψk,j meaning that

N
(
F , ‖ · ‖L2(Q), ε(κh̃

√
vK + U)

)
≤ Aε−(v+1),

where (κh̃
√
vK + U) is indeed an envelop for the class F .

We conclude the section by a preservation result for the product and the inverse.

Lemma 12 Suppose that F and G are two VC classes defined on S with parameters (AF , vF )
and (AG , vG) and constant envelops UF and UG, respectively. Then it holds:

(i) The class FG = {fg : f ∈ F , g ∈ G} is VC with parameter (2(AF ∨ AG), vF + vG)
and envelop UFUG.

(ii) In addition, if for all f ∈ F and x ∈ S, f(x) ≥ bF , then the class F−1 = {1/f : f ∈
F , g ∈ G} is VC with parameter (AFUF/bF , vF ) and envelop 1/bF .
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Proof Let 0 < ε ≤ 1 and fk, k = 1, . . . , NF the centers of an (εUF )-covering of F . Similarly,
denote by gk, k = 1, . . . , NG the centers of an (εUG)-covering of G. By applying the operation
(fk ∧ UF) ∨ −UF , we can assume without loss of generality that the fk (resp. gk) are
bounded by UF (resp. UG). Then for any f ∈ F and g ∈ G, there are k ∈ {1, . . . , NF} and
j ∈ {1, . . . , NG} such that

‖fg − fkgj‖ ≤ UG‖f − fk‖+ UF‖g − gj‖ ≤ 2εUGUF ,

which implies that N (FG, L2(Q), 2εUGUF) ≤ (AF/ε)
vF (AG/ε)

vG . Taking ε′ = 2ε gives the
result. For the second point, taking fk ≥ bF , we have

‖f−1 − f−1
k ‖ ≤

1

b2F
‖f − fk‖ ≤

UF
b2F

ε,

and the result follows taking ε′ = (UF/bF )ε.

Appendix B. Integration results

In this section we establish useful bounds related to these quantities: kernel smoothers,
integrals with respect to signed measures, survival functions and hazard functions namely.
This corresponds to Lemmas 13, 14, 15 and 16, respectively. As the previous section, this
section is independent from the rest of the paper.

Lemma 13 Let Ω an open convex subset of Rd. Suppose that f is twice differentiable on Ω
such that the greatest eigenvalue of the Hessian matrix is uniformly bounded by M > 0, then,
if the kernel K is symmetric, i.e., K(u) = K(−u), we have: for all h > 0,

sup
x∈Ω
|(Kh ∗ f)(x)− f(x)| ≤ M

2
h2

∫
‖z‖2K(z)dz.

Proof The proof follows the same lines as the proof of Lemma 11 given in Delyon and
Portier (2020).

Lemma 14 Let θ ∈ (0, 1), h : R+ → [1, ∞[ be Borelian, increasing, with limit 1/θ at +∞
and ν be any signed measure on R+. Then, we have: ∀T > 0, ∀t ∈ [0, T ],∣∣∣∣∫ t

0
hdν

∣∣∣∣ ≤ 2

θ
sup
s∈[0,T ]

∣∣∣∣∫ s

0
dν

∣∣∣∣ .
Proof Recall first the identity

sup
t≥0

∣∣∣∣∫ t

0
dν

∣∣∣∣ = sup
f∈DE

∣∣∣∣∫ fdν

∣∣∣∣ , (21)
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where DE is the space of non-increasing functions valued in [0, 1] and vanishing at infinity
(see e.g. Dudley (1992)). Since h is increasing from 1 to 1/θ, we have for any signed measure
ν (whose restriction to [0, T ] is denoted by ν[0,T ]),∣∣∣∣∫ t

0
hdν

∣∣∣∣ = θ−1

∣∣∣∣∫ t

0
dν + θ

∫ t

0

(
h− θ−1

)
dν

∣∣∣∣ ≤ 2θ−1 sup
f∈DE

∣∣∣∣∫ fdν[0,T ]

∣∣∣∣ .
Then applying (21) we obtain that∣∣∣∣∫ t

0
hdν

∣∣∣∣ ≤ 2

θ
sup
s≥0

∣∣∣∣∫ s

0
dν[0,T ]

∣∣∣∣ =
2

θ
sup
s∈[0,T ]

∣∣∣∣∫ s

0
dν

∣∣∣∣ .

Lemma 15 Let τ > 0. Let S(1) and S(2) be càd-làg non-increasing functions on R+

such that S(1)(0) = S(2)(0) = 1 and S(2)(τ) ≥ θ > 0. For k ∈ {1, 2}, Λ(k)(t) =
−
∫ t

0 S
(k)(du)/S(k)(u−) is the corresponding cumulative hazard function. We have:

‖S(1) − S(2)‖[0,τ ] ≤ 2θ−1‖Λ(1) − Λ(2)‖[0,τ ].

Proof Let t ∈ [0, τ ]. As S(2)(t) > 0, the integration by part argument of Theorem 3.2.3 in
Fleming and Harrington (1991) yields

S(1)(t)− S(2)(t)

S(2)(t)
= −

∫ t

0

S(1)(u−)

S(2)(u)
(Λ(1)(du)− Λ(2)(du)). (22)

Set ∆1(du) = (Λ(1)(du) − Λ(2)(du))/S(2)(u) and apply the integration by parts formula
(refer to page 305 in Shorack and Wellner (2009) for instance) to get

S(1)(t)− S(2)(t)

S(2)(t)
= −

∫ t

0
S(1)(u−)∆1(du) = −S(1)(t)∆1(t) +

∫ t

0
∆1(u)S(1)(du).

Then, as S(2)(t) ≤ 1, we obtain that

|S(1)(t)− S(2)(t)| ≤

(
S(1)(t)|∆1(t)|+ (1− S(1)(t)) sup

u∈[0,τ ]
|∆1(u)|

)
≤ sup

u∈[0,τ ]
|∆1(u)|.

We conclude by using Lemma 14 with dν = d(Λ(1) − Λ(2)) and h = 1/S(2).

Lemma 16 Let 0 < θ1, θ2 < 1 and τ > 0. For k ∈ {1, 2}, define Λ(k)(t) =
∫ t

0 G
(k)(du)/H(k)(u),

where G(k) : [0, τ ]→ [0, β] is càd-làg non-decreasing and H(k) : [0, τ ]→ [θk, 1] is Borelian
non-increasing. Then, we have:

‖Λ(1) − Λ(2)‖[0,τ ] ≤
2

θ1
‖G(1) −G(2)‖[0,τ ] +

β

θ1θ2
‖H(1) −H(2)‖[0,τ ].
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Proof Let t ∈ [0, τ ]. Observe that, by triangular inequality,

∣∣∣Λ(1)(t)− Λ(2)(t)
∣∣∣ =

∣∣∣∣∣
∫ t

0

d(G(1) −G(2))

H(1)
+

∫ t

0

(H(2) −H(1))

H(1)H(2)
dG(2)

∣∣∣∣∣
≤ 2

θ1
‖G(1) −G(2)‖[0,τ ] +

β

θ1θ2
‖H(2) −H(1)‖[0,τ ],

where the bound for the second term on the right hand side is straightforward and that for
the first term can be deduced from the application of Lemma 14 with the measure ν equal
to A 7→

∫
A d(G(1) −G(2)) and the function h equal to 1/H(1).

Lemma 17 Let τ > 0. Let S(1) and S(2) be càd-làg non-increasing functions on R+

such that S(1)(0) = S(2)(0) = 1 and S(2)(τ) ≥ θ > 0. For k ∈ {1, 2}, define Λ(k)(t) =
−
∫ t

0 S
(k)(u−)S(k)(du) and suppose that Λ(k)(t) =

∫ t
0 G

(k)(du)/H(k)(u), where G(k) : [0, τ ]→
[0, β] and H(k) : [0, τ ]→ [θ, 1] are respectively non-decreasing and non-increasing borelian
functions. Then, there exists a constant Cθ,β > 0, depending only on θ and β, such that

sup
t∈[0,τ ]

∣∣∣∣∣
∫ t

0

(
S(1)(u−)− S(2)(u−)

)
S(2)(u)

(
Λ(1)(du)− Λ(2)(du)

)∣∣∣∣∣ ≤
Cθ,β

(
‖H(1) −H(2)‖2[0,τ ] + ‖G(1) −G(2)‖2[0,τ ] + ‖W‖[0,τ ]

)
,

where

W (t) =

∫ t

u=0

∫ u

s=0

S(2)(s−)
(
G(1)(ds)−G(2)(ds)

)
S(2)(s)H(2)(s)

d
(
G(1)(du)−G(2)(du)

)
S(2)(u)H(2)(u)

.

Proof

The proof consists in showing first that there exist constants C1,θ,β and C2,θ,β such that

sup
t∈[0,τ ]

∣∣∣∣∣
∫ t

0

(Ŝ(1)(u−)− S(2)(u−))

S(2)(u)
(Λ(1)(du)− Λ(2)(du))

∣∣∣∣∣ ≤
C1,θ,β(‖G(1) −G(2)‖2[0,τ ] + ‖H(1) −H(2)‖2[0,τ ]) + ‖Π‖[0,τ ], (23)

where

Π(t) =

∫ t

0
∆2(u)∆1(du), ∆2(t) =

∫ t

0
S(2)(u−)∆1(du), ∆1(t) =

∫ t

0
S(2)(u)−1∆(du),

and ∆ = Λ(1) − Λ(2), and next that

‖Π−W‖[0,τ ] ≤ C2,θ,β

(
‖H(1) −H(2)‖2[0,τ ] + ‖G(1) −G(2)‖2[0,τ ]

)
. (24)
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In order to establish (23), we successively apply (22), Fubini’s theorem and the integration
by part formula:

∫ t

u=0
(S(1)(u−)− S(2)(u−))∆1(du)

= −
∫ t

u=0

∫ u−

v=0
S(1)(v−)∆1(dv)S(2)(u−)∆1(du)

= −
∫ t

v=0

(∫ t

u=v
S(2)(u−)∆1(du)

)
S(1)(v−)∆1(dv)

= −∆2(t)

∫ t

0
S(1)(v−)∆1(dv) +

∫ t

0
S(1)(v−)Π(dv)

= −∆2(t)

(
S(1)(t)∆1(t)−

∫ t

0
∆1(u)S(1)(du)

)
+ S(1)(t)Π(t)−

∫ t

0
Π(u)S(1)(du)

≤ 2‖∆2‖[0,τ ]‖∆1‖[0,τ ] + 2‖Π‖[0,τ ]. (25)

From (21), we deduce that ‖∆2‖[0,τ ] ≤ ‖∆1‖[0,τ ] (because S(2)I[0,τ ] belongs to the space DE)
and, from Lemma 14, it follows that ‖∆1‖[0,τ ] ≤ 2θ−1‖∆‖[0,τ ]. Apply next Lemma 16 to
obtain

‖∆2‖[0,τ ]‖∆1‖[0,τ ] ≤
8

θ2

(
4

θ2
‖G(1) −G(2)‖2[0,τ ] +

β2

θ4
‖H(1) −H(2)‖2[0,τ ]

)
.

Combined with (25), this proves (23). For (24), the application of the Taylor expansion

1

x
=

1

a
− (x− a)

a2
+

(x− a)2

xa2
, (26)

yields

d∆ =
d(G(1) −G(2))

H(2)
− (H(1) −H(2))dG(1)

(H(2))2
+

(H(1) −H(2))2dG(1)

(H(2))2H(1)
.

Set c(s) = S(2)(s−)/S(2)(s). It follows that

Π(t) =

∫ t

u=0

∫ u

s=0
c(s)

((
G(1)(ds)−G(2)(ds)

)
H(2)(s)

−
(
H(1)(s)−H(2)(s)

)
G(1)(ds)

H(2)(s)2

+

(
H(1)(s)−H(2)(s)

)2
G(1)(ds)

H(2)(s)2H(1)(s)

)
∆1(du).
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Observe that

Π(t)−W (t) =

−
∫ t

u=0

∫ u

s=0
c(s)

(
G(1)(ds)−G(2)(ds)

)
H(2)(s)

(
H(1)(u)−H(2)(u)

)
G(1)(du)

S(2)(u)H(1)(u)H(2)(u)

+

∫ t

u=0

∫ u

s=0
c(s)

(
H(1)(s)−H(2)(s)

)
G(1)(ds)

H(2)(s)2

(
H(1)(u)−H(2)(u)

)
G(1)(du)

S(2)(u)H(1)(u)H(2)(u)

−
∫ t

u=0

∫ u

s=0
c(s)

(
H(1)(s)−H(2)(s)

)
G(1)(ds)

H(2)(s)2

(
G(1)(du)−G(2)(du)

)
S(2)(u)H(2)(u)

+

∫ t

u=0

∫ u

s=0

(
H(1)(s)−H(2)(s)

)2
G(1)(ds)

H(2)(s)2H(1)(s)
∆1(du) = A+B + C +D.

We next bound each term on the right hand side of the equation above. Successively apply
Lemma 14 and (21) to get∣∣∣∣∣
∫ u

0
c(s)

(
G(1)(ds)−G(2)(ds)

)
H(2)(s)

∣∣∣∣∣ ≤ 2

θ2
sup
u

∣∣∣∣∫ u

0
S(2)(s−)

(
G(1)(ds)−G(2)(ds)

)∣∣∣∣
=

2

θ2
sup
u

∣∣∣∣∫ S(2)(s−)I {s ≤ u}
(
G(1)(ds)−G(2)(ds)

)∣∣∣∣
≤ 2

θ2
‖G(1) −G(2)‖[0,τ ].

Because, for any u ∈ [0, τ ], 1/{S(2)(u)H(1)(u)H(2)(u)} ≤ 1/θ3, we can write

|A| ≤ 1

θ3

∫ t

u=0

∣∣∣∣∣
∫ u

s=0
c(s)

(
G(1)(ds)−G(2)(ds)

)
H(2)(s)

∣∣∣∣∣ ∣∣∣H(1)(u)−H(2)(u)
∣∣∣G(1)(du)

≤ 1

2θ3

∫ t

u=0

{(∫ u

0
c(s)

(
G(1)(ds)−G(2)(ds)

)
H(2)(s)

)2

+
(
H(1)(u)−H(2)(u)

)2
}
G(1)(du)

≤ β
(

2

θ7
‖G(1) −G(2)‖2[0,τ ] + ‖H(1) −H(2)‖2[0,τ ]

)
.

In addition, because for any u ∈ [0, τ ], c(u)/(H(2)(u))2 ≤ 1/θ3 we have: ∀t ∈ [0, τ ],

|B| ≤
(

1

θ3

)2 ∫ t

u=0

∫ t

s=0

∣∣∣H(1)(s)−H(2)(s)
∣∣∣G(1)(ds)

∣∣∣H(1)(u)−H(2)(u)
∣∣∣G(1)(du)

=
1

θ6

(∫ t

s=0

∣∣∣H(1)(s)−H(2)(s)
∣∣∣G(1)(ds)

)2

≤ β2

θ6

∥∥∥H(1) −H(2)
∥∥∥2

[0,τ ]
.
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Define Γ2(t) =
∫ t

0 (G(1)(du) − G(2)(du))/(S(2)(u)H(2)(u)). Applying Fubini’s theorem, we
get

|C| =

∣∣∣∣∣
∫ t

u=0

∫ u

s=0
c(s)

(
H(1)(s)−H(2)(s)

)
G(1)(ds)

H(2)(s)2

(
G(1)(du)−G(2)(du)

)
S(2)(u)H(2)(u)

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

s=0

∫ t

u=s

(
G(1)(du)−G(2)(du)

)
S(2)(u)H(2)(u)

c(s)

(
H(1)(s)−H(2)(s)

)
G(1)(ds)

(H(2)(s))2

∣∣∣∣∣
≤ 1

θ3

∫ t

s=0

{
|Γ2(t)− Γ2(s)| ×

∣∣∣H(1)(s)−H(2)(s)
∣∣∣}G(1)(ds)

≤ 2β

θ3
‖Γ2‖[0,τ ]

∥∥∥H(1) −H(2)
∥∥∥

[0,τ ]
.

Then, using Lemma 14, it follows that

|C| ≤ 2(1/θ3)β(2/θ3)‖G(1) −G(2)‖[0,τ ]‖H(1) −H(2)‖[0,τ ]

≤ (1/θ3)β(2/θ3)(‖G(1) −G(2)‖2[0,τ ] + ‖H(1) −H(2)‖2[0,τ ]).

The last term can be treated by means of Fubini’s theorem. Indeed, because ‖∆1‖[0,τ ] ≤
2(β/θ) and for any u ∈ [0, τ ], 1/{H(2)(u)2H(1)(u)} ≤ 1/θ3, we have

|D| =

∣∣∣∣∣
∫ t

u=0

∫ u

s=0

(
H(1)(s)−H(2)(s)

)2
G(1)(ds)

(H(2)(s))2H(1)(s)
∆1(du)

∣∣∣∣∣
≤
∫ t

s=0

∣∣∣∣∣
(∫ t

u=s
∆1(du)

) (
H(1)(s)−H(2)(s)

)2
G(1)(ds)

H(2)(s)2H(1)(s)

∣∣∣∣∣
≤ 2

θ3
β‖∆1‖[0,τ ]‖H(1) −H(2)‖2[0,τ ]

≤ 4β2

θ4
‖H(1) −H(2)‖2[0,τ ].

Putting all this together, the triangular inequality leads to (24) .

Appendix C. Proof of Proposition 1

We start by establishing 3 useful lemmas, namely Lemma 18, 19 and 20. Then the proof
will follow easily. Define

H0,h(y, x) = E
[
Ĥ0,n(y, x)

]
,

Hh(y, x) = E
[
Ĥn(y, x)

]
.

and

H0(y, x) = H0(y | x)g(x),

H(y, x) = H(y | x)g(x).
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Lemma 18 Under Assumption 2, there exists C0 > 0 depending only on K and L such
that for all h > 0,

sup
(t,x)∈R+×Rd

|H0,h(t, x)−H0(t, x)| ≤ C0h
2,

sup
(t,x)∈R+×Rd

|Hh(t, x)−H(t, x)| ≤ C0h
2.

Proof The proof results from the application of Lemma 13 combined with the smoothness
assumptions stipulated.

Lemma 19 Under Assumption 2, There exist constants M1 > 0 and h0 > 0 depending only
on K and L such that:

P

{
sup

(t,x)∈R+×Rd
|Ĥ0,n(t, x)−H0,h(t, x)| ≤

√
M1| log(εhd/2)|

nhd

}
≥ 1− ε,

P

{
sup

(t,x)∈R+×Rd
|Ĥn(t, x)−Hh(t, x)| ≤

√
M1| log(εhd/2)|

nhd

}
≥ 1− ε,

provided that h ≤ h0 and M1| log(εhd/2)| ≤ nhd.

Proof The exponential inequalities stated above directly result from the application of
Corollary 8 to the uniformly bounded VC-type classes (see Lemma 9 and 12) {(y, x′) ∈
R+×Rd 7→ I{y > u}K((x−x′)/h) : (x, u, h) ∈ Rd×R+×R∗+} and {(y, δ, x′) ∈ R+×{0, 1}×
Rd 7→ I{y > u, δ = 0}K((x − x′)/h) : (x, u, h) ∈ Rd × R+ × R∗+} whose VC constants
are independent from h, with constant envelope ||K||∞, with k = 1 and σ2 = c2

K,Lh
d with

cK,L =
√
L
∫
K2(x)dx. This gives that

P

{
sup

(t,x)∈R+×Rd
|Ĥ0,n(t, x)−H0,h(t, x)| ≤ t

}
≥ 1− ε,

P

{
sup

(t,x)∈R+×Rd
|Ĥn(t, x)−Hh(t, x)| ≤ t

}
≥ 1− ε,

with

t =
cK,L√
nhd

((
1

C3
log

(
C2

ε

))1/2

+ C1

(
log

(
2‖K‖∞
cK,Lhd/2

))1/2
)
,

provided that hd/2cK,L ≤ ||K||∞ and

‖K‖2∞
c2
K,L

(
1

C3
log

(
C2

ε

)
+ C2

1 log

(
2‖K‖∞
cK,Lhd/2

))
≤ nhd.

Since, for any positive numbers a, b, γ, it holds that aγ + bγ ≤ 2γ(a+ b)γ , we find, taking
h0 sufficiently small, that t2 ≤ M̃1| log(εhd/2)|/nhd for some constant M̃1 > 0. Finally, tak-
ing h0 sufficiently small ensures that log(C2)/C3 + C2

1 log(2‖K‖∞/cK,L) ≤ C2
1 log(1/hd/2),
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for any h ≤ h0, which permits to ensure that the previous condition is satisfied whenever
M̃2| log(εhd/2)| ≤ nhd, for some M̃2 > 0. Take M1 = M̃1 +M̃2 to obtain the desired result.

Lemma 20 Suppose that Assumptions 1 and 2 are fulfilled. There exist constants M1 > 0
and h0 > 0 depending only on b, L and K such that:

P
{

inf
(t,x)∈Γb

Ĥn(t, x) ≥ 3b3

4

}
≥ 1− ε,

provided that h ≤ h0 and M1| log(εhd/2)| ≤ nhd.

Proof Define

An =

{
sup

(t,x)∈Γb

|H(t, x)− Ĥn(t, x)| ≤ b3

4

}
.

By virtue of Assumption 1, for any (t, x) ∈ Γb, we have: H(t|x) = SC(t|x)SY (t|x) ≥ b2. As a
consequence of Ĥn(t, x) ≥ H(t, x)− |H(t, x)− Ĥn(t, x)|, An ⊂ {inf(t,x)∈Γb Ĥn(t, x) ≥ 3b3/4}.
Hence we only have to prove that event An occurs with probability 1− ε at least. By virtue
of Lemma 18, as soon as h ≤

√
3b3/(8C0), we have

sup
(t,x)∈Γb

|Hh(t, x)−H(t, x)| ≤ 3b3

8
,

and thus {
sup

(t,x)∈Γb

|Ĥn(t, x)−Hh(t, x)| ≤ 3b3

8

}
⊂ An.

Simply use Lemma 19 to ensure that the event in the left-hand side holds with probability
1− ε whenever M1| log(εhd/2)| ≤ nhd (where M1 now depends on b, L and K) and h ≤ h0.

Now we conclude the proof. We start by using Lemma 20 to get that inf(t,x)∈Γb Ĥn(t, x) ≥
3b3/4 happens with probability 1−ε/3. We suppose that this event is realized in the following.
Let (t, x) ∈ Γb and define

τx = inf{t ≥ 0 : min{SC(t|x), SY (t|x)} > b}.

Observing that the choice of kernel K guarantees that ŜC,n(·|x) is a (random) survival

function, we first apply Lemma 15 with S(1) = ŜC,n(·|x), S(2) = SC(·|x) and θ = b to get:

‖ŜC,n(·|x)− SC(·|x)‖[0,τx] ≤ (2/b)‖Λ̂C,n(·|x)− ΛC(·|x)‖[0,τx]. (27)

Applying Lemma 16 with Λ(1)(u) = ΛC(u | x) = −
∫ u

0 H0(ds, x)/H(s−, x), Λ(2)(u) =

Λ̂C,n(u | x) = −
∫ u

0 Ĥ0,n(ds, x)/Ĥn(s−, x), β = 1, θ1 = b3 ≤ H(s, x), θ2 = 3b3/4 (because
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inf(t,x)∈Γb Ĥn(t, x) ≥ b3/4), next yields∣∣∣Λ̂C,n(·|x)− ΛC(·|x)
∣∣∣
[0,τx]

≤ 2

b3
‖Ĥ0,n(·, x)−H0(· | x)g(x)‖[0,τx] (28)

+
4

3b6
‖Ĥn(·, x)−H(· | x)g(x)‖[0,τx].

Combining (27) and (28), using Lemma 18 and taking the supremum over x such that
g(x) > b, we obtain that, the following bound holds true:

sup
(t,x)∈Γb

|ŜC,n(t | x)− SC(t | x)|

≤ 4

b4
sup

(t,x)∈Γb

|Ĥ0,n(t, x)−H0(t, x)|+ 8

3b7
sup

(t,x)∈Γb

|Ĥn(t, x)−H(t, x)|

≤ 4

b4
sup

(t,x)∈Γb

|Ĥ0,n(t, x)−H0,h(t, x)|+ 4

b4
C0h

2 +
8

3b7
sup

(t,x)∈Γb

|Ĥn(t, x)−Hh(t, x)|+ 8

3b7
C0h

2.

(29)

Lemma 19 with the probability level ε/3 allows us to bound the 2 previous random terms.
Combined with the union bound (with 3 events having probability smaller than ε/3), permits
claiming that with probability greater than 1− ε:

sup
(t,x)∈Γb

∣∣∣ŜC,n(t | x)− SC(t | x)
∣∣∣ ≤ 4

b4

(
1 +

2

3b3

)C0h
2 +

√
M1

∣∣log(εhd/2)
∣∣

nhd

 ,

provided that (to apply Lemma 19) h ≤ h0 and nhd ≥ M1| log(3εhd/2)|. Examining the
different terms and taking h0 small enough lead to the stated result.

Appendix D. Proof of Proposition 2

Proof of (i): Observe that: ∀i ∈ {1, . . . , n},

sup
(t,x)∈K

|Ĥ(i)
0,n(t, x)− Ĥ0,n(t, x)| ≤ 2||K||∞/((n− 1)hd), (30)

sup
(t,x)∈K

|Ĥ(i)
n (t, x)− Ĥn(t, x)| ≤ 2||K||∞/((n− 1)hd). (31)

The result follows from the union bound and that each of these events

B(1)
n :=

⋂
i≤n

{
∀(t, x) ∈ K, Ĥ(i)

n (t, x) ≥ b3/2
}
,

B(2)
n :=

⋂
i≤n

{
∀(t, x) ∈ K, Ŝ

(i)
C,n(t, x) ≥ b/2

}
,

has probability 1− ε/2 under the mentioned condition on (n, h). Apply Lemma 20 to choose
(n, h) such that with probability 1− ε/2,

inf
(t,x)∈K

Ĥn(t, x) ≥ 3b3/4.
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Using (31) and the triangle inequality, we get that B(1)
n has probability 1 − ε/2 provided

that 2||K||∞/((n− 1)hd) ≤ b3/4.

Suppose that event B(1)
n is realized. The same reasoning as that used in the proof

of Proposition 1 (see (27),(28),(29)), with S(1)(·) = SC(·|x), S(2)(·) = S
(i)
C,n(·|x), β = 1,

θ1 = b3 and θ2 = b3/2 (as B(1)
n is realized), combined with the triangular inequality, yields:

∀i ∈ {1, . . . , n},

sup
(t,x)∈K

|Ŝ(i)
C,n(t|x)− SC(t|x)| ≤

4

b4

(
sup

(t,x)∈K
|Ĥ(i)

0,n(t, x)− Ĥ0,n(t, x)|+ sup
(t,x)∈K

|Ĥ0,n(t, x)−H0(t, x)|

)

+
4

b7

(
sup

(t,x)∈K
|Ĥ(i)

n (t, x)− Ĥn(t, x)|+ sup
(t,x)∈K

|Ĥn(t, x)−H(t, x)|

)
.

We further assume that (
4

b4
+

4

b7

)
2||K||∞/((n− 1)hd) ≤ b/4,

which is realized whenever h0 is small enough and M1, appearing in the condition nhd ≥
M1| log(hd/2ε)|, is large enough. From K ⊂ Γb and (30)-(31), it results that{

sup
(t,x)∈K

∣∣∣Ĥ0,n(t, x)−H0(t, x)
∣∣∣ ≤ b5

32

}⋂{
sup

(t,x)∈K

∣∣∣Ĥn(t, x)−H(t, x)
∣∣∣ ≤ b8

32

}

is included in the set B(2)
n . Following the treatment of (29), it is easy to see that the latter

event occurs with probability 1− ε/2 whenever h ≥ h0 is small enough (for the bias) and
nhd ≥M1| log(hd/2ε)|.

Proof of (ii). We suppose that the event En is realized. For all i ∈ {1, . . . , n}, recall that

Λ̂
(i)
C,n(du | x) = −

Ĥ
(i)
0,n(du, x)

Ĥ
(i)
n (u−, x)

, ∆̂(i)
n = (Λ̂

(i)
C,n − ΛC),

and that c(s | x) = SC(s− | x)/SC(s | x). It results from Theorem 3.2.3 in (Fleming and
Harrington, 1991, page 97) that

Ŝ
(i)
C,n(t | x)− SC(t | x)

SC(t | x)
=

−
∫ t

0
c(u | x)∆̂(i)

n (du | x)−
∫ t

0

(Ŝ
(i)
C,n(u− | x)− SC(u− | x))

SC(u | x)
∆̂(i)
n (du | x).
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The Taylor expansion (26) gives that

∆̂(i)
n (du | x) =

(Ĥ
(i)
0,n(du, x)−H0(du, x))

H(u, x)
−

(Ĥ
(i)
n (u, x)−H(u, x))Ĥ

(i)
0,n(du, x)

H(u, x)2

+
(Ĥ

(i)
n (u, x)−H(u, x))2Ĥ

(i)
0,n(du, x)

H(u, x)2Ĥ
(i)
n (u, x)

,

which implies that

Ŝ
(i)
C,n(t | x)− SC(t | x)

SC(t | x)
= â(i)

n (t | x) + b̂(i)n (t | x), (32)

where

â(i)
n (t | x) = −

∫ t

0

c(u | x)

H(u, x)
(Ĥ

(i)
0,n(du, x)−H0(du, x))

+

∫ t

0

c(u | x)

H(u, x)2
(Ĥ(i)

n (u, x)−H(u, x))Ĥ
(i)
0,n(du, x),

b̂(i)n (t | x) = −
∫ t

0

c(u | x)

H(u, x)2Ĥ
(i)
n (u, x)

(Ĥ(i)
n (u, x)−H(u, x))2Ĥ

(i)
0,n(du, x)

−
∫ t

0

(Ŝ
(i)
C,n(u− | x)− SC(u− | x))

SC(u | x)
∆̂(i)
n (du | x).

Now, using (26), we obtain that: ∀ϕ ∈ Φ,

Zn(ϕ) =
1

n

n∑
i=1

δi ϕ(Ỹi, Xi)

Ŝ
(i)
C,n(Ỹi | Xi)

− E

[
δ
ϕ(Ỹ , X)

SC(Ỹ | X)

]
=

1

n

n∑
i=1

{
δi

ϕ(Ỹi, Xi)

SC(Ỹi | Xi)
− E

[
δ
ϕ(Ỹi, Xi)

SC(Ỹ | X)

]}

− 1

n

n∑
i=1

δiϕ(Ỹi, Xi)

 Ŝ(i)
C,n(Ỹi | Xi)− SC(Ỹi | Xi)

S2
C(Ỹi | Xi)


+

1

n

n∑
i=1

δiϕ(Ỹi, Xi)
(SC(Ỹi | Xi)− Ŝ(i)

C,n(Ỹi | Xi))
2

S2
C(Ỹi | Xi)Ŝ

(i)
C,n(Ỹi | Xi)

.

Then, using (32), we retrieve the expected terms

Zn(ϕ) = Ln(ϕ) +Mn(ϕ) +Rn(ϕ),

which proves (ii).
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Appendix E. Proof of Proposition 3

The proof is based on the decomposition stated in Proposition 2, combined with the lemmas
below that permit to control each term involved in it. Their proofs are given in the next
section of the Appendix.

The term Ln(ϕ) is a basic i.i.d. (centred) average. As shown in the lemma stated below,
its uniform fluctuations can be controlled by standard results in empirical process theory.

Lemma 21 Suppose that the hypotheses of Proposition 3 are fulfilled. Then, for any
ε ∈ (0, 1), we have with probability at least 1− ε:

sup
ϕ∈Φ
|Ln(ϕ)| ≤

√
M1 log(M2/ε)

n
,

provided that n ≥ M1 log(M2/ε), where M1 > 0 and M2 > 1 are constants depending
on (A, v), K, MΦ, and b only.

We now turn to the term Mn(ϕ). Observe it can be decomposed as

Mn(ϕ) = Vn,1(ϕ) +Bn,1(ϕ) + Vn,2(ϕ) +Bn,2(ϕ)

where

Vn,1(ϕ) =
1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

∫ Ỹi

0

c(u | Xi)

H(u,Xi)2

(
Ĥ(i)
n (u,Xi)−Hh(u,Xi)

)
Ĥ

(i)
0,n(du,Xi),

Bn,1(ϕ) =
1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

∫ Ỹi

0

c(u | Xi)

H(u,Xi)2
(Hh(u,Xi)−H(u,Xi)) Ĥ

(i)
0,n(du,Xi),

Vn,2(ϕ) = − 1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

∫ Ỹi

0

c(u | Xi)

H(u,Xi)

(
Ĥ

(i)
0,n(du,Xi)−H0,h(du,Xi)

)
,

Bn,2(ϕ) = − 1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

∫ Ỹi

0

c(u | Xi)

H(u,Xi)
(H0,h(du,Xi)−H0(du,Xi)) .

Next we treat the bias terms Bn,1 and Bn,2.

Lemma 22 Under the assumptions of Proposition 3, for any ε ∈ (0, 1), we have, with
probability 1− ε:

sup
ϕ∈Φ
|Bn,1(ϕ)| ≤M1h

2,

sup
ϕ∈Φ
|Bn,2(ϕ)| ≤M1h

2,

provided that n ≥M2| log(hd/2ε)|, where M1 > 0, M2 > 0 depend only on MΦ, K, L and b.
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Now we consider Vn,1(ϕ). For simplicity, we set Kij = Kh(Xi −Xj) for 1 ≤ i, j ≤ n.
We have:

Vn,1(ϕ) =
1

n(n− 1)

∑
(i,j)
i 6=j

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

× 1Ỹj≤Ỹi
(1− δj)Kijc(Ỹj | Xi)

H(Ỹj , Xi)2

(
Ĥ(i)
n (Ỹj , Xi)−Hh(Ỹj , Xi)

)
=

1

n(n− 1)2

∑
(i,j,k)
i 6=j,i6=k

vi,j,k(ϕ)

= V ′n,1(ϕ) + V ′′n,1(ϕ),

where, for all 1 ≤ i, j, k ≤ n,

vi,j,k(ϕ) =
δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)
1Ỹj≤Ỹi

(1− δj)Kijc(Ỹj | Xi)

H(Ỹj , Xi)2

(
1Ỹk>ỸjKik −Hh(Ỹj , Xi)

)

and

V ′n,1(ϕ) =
1

n(n− 1)2

∑
(i,j,k)

i 6=j,i6=k,j 6=k

vi,j,k(ϕ),

V ′′n,1(ϕ) =
1

n(n− 1)2

∑
(i,j)
i 6=j

vi,j,j(ϕ).

The lemma stated below provides a uniform bound for V ′′n,1(ϕ).

Lemma 23 Under the assumptions of Proposition 3, we have, with probability 1:

sup
ϕ∈Φ

∣∣V ′′n,1(ϕ)
∣∣ ≤ M1

nhd

where M1 > 0 depends only on MΦ, K, L and b.

We now consider V ′n,1(ϕ). Set Zk = (Xk, Ỹk, δk) for k ∈ {1, . . . , n}. It can be decomposed
as follows:

V ′n,1(ϕ) =
n− 2

n− 1

{
U

(1)
n,1(ϕ) + U

(2)
n,1(ϕ) + U

(3)
n,1(ϕ) + L′n(ϕ)

}
,
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with

U
(1)
n,1(ϕ) =

1

n(n− 1)(n− 2)

∑
(i,j,k)

i 6=j,i6=k,j 6=k

{
vi,j,k(ϕ)− E[vi,j,k(ϕ)|Zj , Zk]−

E[vi,j,k(ϕ)|Zi, Zk] + E[vi,j,k(ϕ)|Zk]
}
,

U
(2)
n,1(ϕ) =

1

n(n− 1)

∑
(j,k)
j 6=k

{E[vi,j,k(ϕ)|Zj , Zk]− E[vi,j,k(ϕ)|Zk]} ,

U
(3)
n,1(ϕ) =

1

n(n− 1)

∑
(i,k)
i 6=k

{E[vi,j,k(ϕ)|Zi, Zk]− E[vi,j,k(ϕ)|Zk]} ,

L′n(ϕ) =
1

n

∑
k

E[vi,j,k(ϕ)|Zk],

where i, j and k always denote pairwise distinct indexes, the varying amounts of indexes
in the summations being the results of the successive marginalizations necessary to obtain
degenerate U -processes. Observe that, for all ϕ ∈ Φ and pairwise distinct indexes i, j and k
in {1, . . . , n}, we have with probability one:

E[vi,j,k(ϕ) | Zi, Zj ] = E[vi,j,k(ϕ) | Zi] = E[vi,j,k(ϕ) | Zj ] = 0.

The quantities U
(k)
n,1(ϕ), k ∈ {1, 2, 3} are thus degenerate U -statistics of degree 3, 2 and

2 respectively, whereas L′n(ϕ) is a basic (centred) i.i.d. average. The following result is
essentially proved by applying Corollary 8, once the complexity assumptions related to
the classes of kernels involved in the definition of these degenerate U -processes have been

established. It shows that the terms U
(k)
n,1(ϕ)’s are uniformly negligible.

Lemma 24 Suppose that the hypotheses of Proposition 3 are fulfilled. There exist constants
M1, M2 and h0 depending on (A, v), MΦ, L, K and b only, such that for any ε ∈ (0, 1),
each of the following events holds true with probability at least 1− ε:

sup
ϕ∈Φ
|U (1)
n,1(ϕ)| ≤

(
M1| log(εhd/2)|

nhd

)3/2

,

sup
ϕ∈Φ
|U (2)
n,1(ϕ)| ≤ M1| log(εhd/2)|

nhd
, (33)

sup
ϕ∈Φ
|U (3)
n,1(ϕ)| ≤ M1| log(εhd/2)|

nhd
,

as soon as h ≤ h0 and M2| log(εhd)| ≤ nh2d.

Maximal deviation inequalities for the L′n(ϕ) can be obtained by means of classical
results in empirical process theory, like for Ln(ϕ).
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Lemma 25 Suppose that the hypotheses of Proposition 3 are fulfilled. Then, for any
ε ∈ (0, 1), we have with probability at least 1− ε:

sup
ϕ∈Φ
|L′n(ϕ)| ≤

√
M1 log(M2/ε)

n
,

as soon as M2| log(εhd)| ≤ nh2d and h ≤ h0 where h0, M1 > 0 and M2 > 1 are constants
depending on (A, v), K, MΦ, L and b only.

The two preceding lemmas combined with the union bound directly yield the following
result.

Corollary 26 Suppose that the hypotheses of Proposition 3 are fulfilled. There exist con-
stants M1, M2, M3 and h0 depending on (A, v), MΦ, L, K and b only such that for
any ε ∈ (0, 1), we have with probability greater than 1− ε:

sup
ϕ∈Φ

∣∣V ′n,1(ϕ)
∣∣ ≤M1

√ log(M2/ε)

n
+
| log(εhd/2)|

nhd
+

(
| log(εhd/2)|

nhd

)3/2
 ,

as soon as h ≤ h0, M3| log(εhd)| ≤ nh2d.

We next deal with the term Vn,2(ϕ).

Lemma 27 Suppose that the hypotheses of Proposition 3 are fulfilled. There exist constants
M1, M2, M3 and h0 depending on (A, v), MΦ, L, K and b only such that for any ε ∈ (0, 1),
we have with probability greater than 1− ε:

sup
ϕ∈Φ
|Vn,2(ϕ)| ≤M1

(√
log(M2/ε)

n
+
| log(εhd/2)|
nhd/2

)
,

as soon as h ≤ h0, M3| log(εhd/2)| ≤ nhd.
Finally, we consider the residual Rn(ϕ). Recall first that, for all ϕ ∈ Φ, we have

Rn(ϕ) = R′n(ϕ) +R′′n(ϕ), where

R′n(ϕ) = − 1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)
b̂(i)n (Ỹi | Xi),

R′′n(ϕ) =
1

n

n∑
i=1

δiϕ(Ỹi, Xi)

(
SC(Ỹi | Xi)− Ŝ(i)

C,n(Ỹi | Xi)
)2

S2
C(Ỹi | Xi)Ŝ

(i)
C,n(Ỹi | Xi)

.

Each of the quantities, R′n(ϕ) and R′′n(ϕ), is treated separately. We start with R′′n(ϕ).

Lemma 28 Suppose that the assumptions of Proposition 3 are satisfied. Then, for all
ε ∈ (0, 1), we have with probability greater than 1− ε

sup
ϕ∈Φ

∣∣R′′n(ϕ)
∣∣ ≤M1

(
| log(εhd/2)|

nhd
+

1

(nhd)2
+ h4

)
,

as soon as h ≤ h0 and M2| log(εhd/2)| ≤ nhd, where M1 and M2 are nonnegative constants
depending on K, L, MΦ and b only.
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We now state a uniform bound for R′n(ϕ).

Lemma 29 Suppose that the assumptions of Proposition 3 are satisfied. Then, for all
ε ∈ (0, 1), we have with probability greater than 1− ε

sup
ϕ∈Φ

∣∣R′n(ϕ)
∣∣ ≤M1

(
|log(εhd/2)|

nhd
+

√
|log(εhd/2)|
(nhd)3/2

+
1

nhd
+

1

(nhd)2
+ h2

)
,

as soon as h ≤ h0 and M2| log(εhd/2)| ≤ nhd, where M1 and M2 are nonnegative constants
depending on K, L, MΦ and b only.

Now we can conclude the proof of Proposition 3 by gathering each of the previous results.
First note that they all are valid under the condition that h ≤ h0 and M1| log(εhd/2)| ≤ nhd
and n ≥ M2 log(M3/ε). By taking h0 small enough, the last requirement is no longer
necessary. In addition, if nhd > 1 and | log(εhd/2)| > 1 we guarantee that | log(εhd/2)|/nhd ≥
1/nhd ≥ 1/(nhd)2 and | log(εhd/2)|1/2 ≤ | log(εhd/2)|3/2, leading to√

| log(εhd/2)|
(nhd)3/2

≤

(
| log(εhd/2)|

nhd

)3/2

≤ | log(εhd/2)|
nhd

.

Using this manipulation, we obtain the stated result.

Appendix F. Intermediary Results

Here we prove lemmas involved in the argument of Proposition 3’s proof. Recall that, under
the assumptions stipulated: ∀(t, x) ∈ K,

H(t, x) ≥ b3, SC(t | x) ≥ b, c(t | x) ≤ 1/b, Hh(t | x) ≤ L. (34)

F.1 Proof of Lemma 21

The proof is a direct application of Corollary 8 to the i.i.d. sequence {(Xn, Ỹn, δn) : n ≥ 1}
and the class of functions

(x, u, δ) ∈ K × {0, 1} 7→ δϕ(u, x)

SC(u | x)
,

indexed by (ϕ, h) ∈ Φ×]0, h0]. The previous class is of VC type in virtue of Lemma 12. We
choose σ = ‖G‖∞ = 2MΦ/b, the bound obtained for Ln(ϕ) is simply

(2MΦ/b)n
−1/2

((
C2

1 log (2)
)1/2

+

(
log(C2/ε)

C3

)1/2
)

≤ (4MΦ/b)n
−1/2

(
C2

1 log (2) +
log(C2/ε)

C3

)1/2

,

where the constants C1, C2, C3 are the ones of Corollary 8. Easy manipulations give the
result.
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F.2 Proof of Lemma 22

Taking the supremum of each element in the sum we find that

|Bn,1(ϕ)| ≤ MΦ

b8
sup

(u,x)∈K
|Hh(u, x)−H(u, x)| sup

(u,x)∈K
|Ĥ(i)

0,n(u, x)|.

An appeal to Lemma 18, Lemma 19 combined with (30) gives the first result. Concering
Bn,2, we write

|Bn,2(ϕ)| ≤ MΦ

b
sup

(t,x)∈K

∣∣∣∣∫ t

0

c(u | x)

H(u, x)
(H0,h(du, x)−H0(du, x))

∣∣∣∣ .
Because for any signed measure ν on R+ and any measurable function f with total variation
at most 1 vanishing at infinity, we have (Dudley, 1992),

|
∫
f(u) ν(du)| ≤ sup

t∈R
|
∫ t

0
ν(du)|,

we conclude that

|Bn,2(ϕ)| ≤M sup
(u,x)∈K

|H0,h(u, x)−H0(u, x)|.

where M > 0 depends only on L, b and MΦ. Conclude by using the bound given in Lemma
18.

F.3 Proof of Lemma 23

Observe that, for i 6= j, we have

vi,j,j(ϕ) = − δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)
I{Ỹj ≤ Ỹi}

(1− δj)Kijc(Ỹj | Xi)

H(Ỹj , Xi)2
Hh(Ỹj , Xi).

It follows from (34) that

|vi,j,j(ϕ)| ≤ MΦ

b8
‖K‖∞h−dL,

and since V ′′n,1(ϕ) is a sum over n(n− 1) such terms divided by n(n− 1)2 we get the stated
bound.

F.4 Proof of Lemma 24

We will use the expression

vi,j,k(ϕ) = wi,j,k(ϕ)KikKij − E[wi,j,k(ϕ)KikKij | Zi, Zj ]

with

wi,j,k(ϕ) =
δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)
I{Ỹj ≤ Ỹi}

(1− δj)c(Ỹj | Xi)

H(Ỹj , Xi)2
I{Ỹk > Ỹj}.
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Using (34), we have that

|wi,j,k| ≤
MΦ

b8
. (35)

Recall that E[vi,j,k(ϕ) | Zi, Zj ] = E[vi,j,k(ϕ) | Zi] = E[vi,j,k(ϕ) | Zj ] = 0. As a result, the

quantities U
(k)
n,1(ϕ), k ∈ {1, 2, 3} are degenerate U -statistics of degree 3, 2 and 2 respectively.

For this reason we can apply Corollary 8 to each of them as soon as their respective kernels

are shown to form VC classes. The kernel of h2dn(n− 1)2U
(1)
n,1 is

h2d{vi,j,k(ϕ) − E [vi,j,k(ϕ)|Zj , Zk] − E [vi,j,k(ϕ) | Zi, Zk] + E [vi,j,k(ϕ) | Zk]}.

Lemma 10 and Corollary 17 in Nolan and Pollard (1987) implies that it is of VC type
with constant envelop 8MΦ/b

8‖K‖2∞ as soon as {vi,j,k(ϕ)} is of VC type with envelop
MΦ/b

8‖K‖2∞. The later is true in virtue of Lemma 9 and Lemma 12. The same arguments

implies that the kernels of {h2dn(n− 1)U
(2)
n,1(ϕ)} and {h2dn(n− 1)U

(3)
n,1(ϕ)} are of VC type

with the constant envelop 4MΦ/b
8‖K‖2∞. In what follows we specify, for each U

(k)
n,1(ϕ), the

value of σ to use in the application of Corollary 8.

The bound for U
(1)
n,1(ϕ). Observe that

E
[(
h2dwi,j,k(ϕ)KikKij

)2
]
≤
(
MΦ

b8

)2

E

[
K

(
X1 −X2

h

)2

K

(
X1 −X3

h

)2
]

≤
(
MΦ

b8

)2

L2c4
Kh

2d.

where c2
K =

∫
K2(x)dx. Since we have a sum of 8 terms in the U -statistics of interest,

h2dn(n − 1)2U
(1)
n,1(ϕ), each having an L2-norm smaller that E[h4dvi,j,k(ϕ)2] (by Jensen’s

inequality), we obtain a bound for the resulting variance (using Minkowski’s inequality),
in 82(MΦ/b

8)2L2c4
Kh

2d. We apply Corollary 8 with k = 3 and a value for σ larger than
the previous bound. We take σ2 = 82(MΦ/b

8)2L2c4
Kh

dhd0 (note that h ≤ h0) and ‖G‖∞ =
8MΦ‖K‖2∞/b8. The conditions are

‖K‖4∞
L2c4

Kh
d
0

(
C

2/3
1 log

(
2‖K‖2∞

hd/2h
d/2
0 Lc2

K

)
+

log(C2/ε)

C3

)
≤ nhd

and
L2c4

Kh
dhd0 ≤ ‖K‖4∞,

where C1, C2 and C3 are the constants in Corollary 8. The latter conditions are indeed of
the type h ≤ h0 and nhd ≥M2| log(εhd/2)|. This gives

sup
ϕ∈Φ
|h2dn(n− 1)2U

(1)
n,1(ϕ)| ≤ M̃1h

d/2n3/2

C1

(
log

(
M̃2

hd/2

))3/2

+

(
log(C2/ε)

C3

)3/2
 ,

where M̃1 and M̃2 are constants depending on MΦ, L, K, b, and h0. To recover the stated
result, one just needs to multiply the previous bound by 1/(n(n− 1)(n− 2)h2d) and to use
similar manipulations as the ones presented at the end of the proof of Lemma 19.
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The bound for U
(2)
n,1(ϕ). In what follows, we use the shortcut E[·|Zi, Zj ] = E[·|i, j]. The

kernel of h2dn(n− 1)U
(2)
n,1(ϕ) is given by

h2d{E[vi,j,k(ϕ)|j, k]− E[vi,j,k(ϕ)|k]}
= h2d{E[wi,j,k(ϕ)KikKij |j, k]− E[wi,j,k(ϕ)KikKij |j]
− E[wi,j,k(ϕ)KikKij |k] + E[wi,j,k(ϕ)KikKij ]}.

By Jensen’s inequality and Minkowski’s inequality, the variance is then smaller than

42h4dE[E[wi,j,k(ϕ)KikKij |j, k]2] ≤ 42h4d(MΦ/b
8)2E [KijKik | j, k]2 .

But we have

E [KijKik | j, k] =

∫
Kh(x−Xj)Kh(x−Xk)g(x)dx

≤ L
∫
K(u)Kh(Xj −Xk + hu)du

≤ LK∗h(Xk −Xj),

where K∗ = K ∗ K and K∗h(u) = K∗(u/h)/hd (note that
∫
K∗(u) du = 1 and ‖K∗‖∞ ≤

‖K‖∞). This implies that

42h4dE
[
E [wi,j,k(ϕ)KikKij |j, k]2

]
≤ 42h4d

(
MΦL

b8

)2

E
[
K∗2jk

]
≤ 42h3d

(
MΦL

b8

)2

Lc2
K∗

where c2
K =

∫
K2(x)dx. The bound (33) is thus obtained by applying Corollary 8 to

h2dn(n− 1)U
(2)
n,1(ϕ) with k = 2 and

σ2 = 42h2dhd0

(
MΦL

b8

)2

Lc2
K∗

‖G‖∞ = 4
MΦ‖K‖∞

b8
.

The bound for U
(3)
n,1(ϕ). Based on conditioning arguments, we have

E[vi,j,k(ϕ)|Zk] = Ak(ϕ)− E[Ak(ϕ)],

where Ak(ϕ) = E[wi,j,k(ϕ)KikKij |k]. We now show that the class of functions{
Zk 7→ hdAk(ϕ) : ϕ∈Φ

}
is a VC class with constant envelop. Define

β1(Zi, Zk) = Kik
δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

β2(Zi, Zk) =

∫
M(Xi + hu, Zi, Zk)K(u)du

M(Xj , Zi, Zk) =

∫
I{u ≤ Ỹi, u < Ỹk}c(u | Xi)

H(u,Xi)2
H0(du | Xj),
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and observe that

E[wi,j,k(ϕ)KikKij |i, k]

= β1(Zi, Zk)E

[
I{Ỹj ≤ Ỹi}(1− δj)c(Ỹj | Xi)

H(Ỹj , Xi)2
I{Ỹk > Ỹj}Kij | i, k

]
= β1(Zi, Zk)E[M(Xj , Zi, Zk)Kij | i, k]

= β1(Zi, Zk)

∫
M(Xi + hu, Zi, Zk)g(Xi + hu)K(u)du,

where we have used Assumption 1 and the fact that H0(du|x) = SY (u−|x)SC(du|x). Because
for any f with total variation at most 1 vanishing at infinity, we have (Dudley, 1992),∣∣∣∣∫ f(u) {H0(du | x)−H0(du | x′)}

∣∣∣∣ ≤ sup
u∈R
|H0(u | x)−H0(u | x′)|

≤ L‖x− x′‖,

where the last inequality is a consequence of Assumption 2. The same holds true for g
in virtue of Assumption 2. Hence, the map M is uniformly Lipschitz with respect to Xj .
Appealing to Lemma 11, we obtain that the kernel hdE[wi,j,k(ϕ)KikKij |i, k] is VC with
constant envelop ‖K‖∞MΦL/b

8. The same holds true for hdAk(ϕ) by Lemma 10. Moreover,
observe that for all (ϕ, h) ∈ Φ×]0, h0], using (35), we have almost surely,

|Ak(ϕ)| ≤ MΦ

b8
E[KijKik|Zk].

Because

E[KijKik|Zk] =

∫∫
Kh(x− y)Kh(x−Xk)g(x)g(y)dxdy

=

∫∫
K(z)Kh(x−Xk)g(x)g(x− hz)dxdz

≤ L
∫
Kh(x−Xk)g(x)

(∫
K(z)dz

)
︸ ︷︷ ︸

1

dx

≤ L2,

it follows that

E[(hdAk(ϕ))2] ≤ h2d

(
MΦL

2

b8

)2

.

Applying Corollary 8 to the kernel hd{Ak(ϕ)−E[Ak(ϕ)]} with k = 1 and ‖G‖ = 2‖K‖∞MΦL/b
8

and σ2 = h2d(MΦL
2/b8)2 yields the bound

sup
ϕ∈Φ
|nhdL′n(ϕ)| ≤ MΦL

2√nhd

b8

(
C1

√
log(2) +

√
log(C2/ε)/C3

)
,
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with probability 1− ε, provided a condition of the type

nh2d ≥M2| log(hdε)|
h ≤ h0.

Straightforward calculations then give the desired result.

F.5 Proof of Lemma 27

For all ϕ ∈ Φ, we first set

wij(ϕ) =
δiϕ(Ỹi, Xi)I{Ỹj ≤ Ỹi}(1− δj)Kijc(Ỹj | Xi)

SC(Ỹi | Xi)H(Ỹj | Xi)

and observe next that

Vn,2(ϕ) = − 1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

∫ Ỹi

0

c(u | Xi)

H(u,Xi)
d
(
Ĥ

(i)
0,n(u,Xi)−H0,h(u,Xi)

)
= − 1

n(n− 1)

∑
i 6=j

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)

×

(
I{Ỹj ≤ Ỹi}(1− δj)Kijc(Ỹj | Xi)

H(Ỹj | Xi)
−
∫ Ỹi

0

c(u | Xi)

H(u,Xi)
dH0,h(u,Xi)

)
= − 1

n(n− 1)

∑
i 6=j
{wij(ϕ)− E[wij(ϕ) | Zj ]}

= U
(1)
n,2(ϕ) + U

(2)
n,2(ϕ),

where

U
(1)
n,2(ϕ) = − 1

n(n− 1)

∑
i 6=j

{
wij(ϕ)− E[wij(ϕ) | Zj ]

− E[wij(ϕ) | Zi] + E[w12(ϕ)]
}
,

(36)

U
(2)
n,2(ϕ) =

1

n

n∑
i=1

{E[wij(ϕ) | Zi]− E[w12(ϕ)]} . (37)

Hence, Vn,2(ϕ) can be decomposed as the sum of a degenerate U -statistic (36) and an i.i.d.
average (37). Note also that, by (34), we have

|wij(ϕ)| ≤ MΦ

b5
Kij .

The bound for U
(1)
n,2(ϕ). In virtue of Lemma 9 and Lemma 12, the collection of kernels of

the degenerate U -statistics{
hdn(n− 1)U

(1)
n,2(ϕ) : (ϕ, h) ∈ Φ×]0, h0]

}
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forms a class of VC type with constants depending only on (v,A), K and h0. In addition,
these terms are all bounded by 4×MΦ‖K‖∞/b5 and we have:

Var
(
hdwij(ϕ)

)
≤
(

4MΦ

b5

)2

hdLc2
K .

It thus results from the application of Corollary 8 with k = 2 and σ2 = 42×
(
MΦ/b

5
)2
hdLc2

K

that, with probability greater than 1− ε

sup
ϕ∈Φ

∣∣∣hdn(n− 1)U
(2)
n,1(ϕ)

∣∣∣ ≤ nhd/2M̃1

(
C1 log

(
M̃2

hd/2

)
+

log (C2/ε)

C3

)
, (38)

where M̃1 and M̃2 depends on MΦ, K, L, b, provided a condition of the type h ≤ h0 and
nhd ≥M2| log(εhd/2)|.

The bound for U
(2)
n,2(ϕ). Following the proof of Lemma 25, the collection of kernels of

U
(2)
n,2(ϕ) is of VC type with constant envelop. Besides, we have, with probability one:

E[wij(ϕ) | Zi] ≤
MΦL

b5
,

and therefore Var (E[wij(ϕ) | Zi]) ≤
(
MΦL
b5

)2
. Applying thus Corollary 8 with k = 1,

σ2 = 4×
(
MΦL/b

5
)2

and ‖G‖∞ = 2×MΦL/b
5, we obtain that, with probability 1− ε,

sup
ϕ∈Φ

∣∣∣nU (2)
n,2(ϕ)

∣∣∣ ≤ C√n
C1

√
log(2) +

√
log(C2/ε)

C3

 , (39)

where C depends on MΦ, K, L, b, provided a condition of the type n ≥ M3| log(M4/ε)|
holds true but this is already implied by h ≤ h0 and nhd ≥M2| log(εhd/2)| whenever h0 is
small. The bound stated in the lemma results from rearranging the bounds (38) and (39).

F.6 Proof of Lemma 28

Use the triangle inequality, (30) and (31) with Lemmas 19 and 18 to get that, with probability
1− ε,

max
i=1,...n

sup
(t,x)∈K

|Ĥ(i)
0,n(t, x)−H0(t, x)| ≤ M̃1

(
1

nhd
+

√
| log(εhd/2)|

nhd
+ h2

)
,

max
i=1,...n

sup
(t,x)∈K

|Ĥ(i)
n (t, x)−H(t, x)| ≤ M̃2

(
1

nhd
+

√
| log(εhd/2)|

nhd
+ h2

)
.

We suppose further that both previous inequalities are realized. Note that under the
mentioned condition on (n, h), it holds that ∀(t, x) ∈ K

inf
i=1,...,n

Ĥ(i)
n (t, x) ≥ b3

2
.
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In a similar fashion as in the proof of Proposition 1 (see (27),(28) and (29)), we apply
Lemma 15 to get that

sup
(t,x)∈K

|Ŝ(i)
C,n(t|x)− SC(t|x)| ≤ (2/b) sup

(t,x)∈K
|Λ̂(i)
C,n(t|x)− ΛC(t|x)|.

Then, we apply Lemma 16, with θ1 = b3, θ2 = b3/2, β = 1, to finally obtain that:
∀i ∈ {1, . . . , n},

sup
(t,x)∈K

|Ŝ(i)
C,n(t|x)− SC(t|x)|

≤ 2

b

(
2

b3
sup

(t,x)∈K
|Ĥ(i)

0,n(t, x)−H0(t, x)|+ 2

b6
sup

(t,x)∈K
|Ĥ(i)

n (t, x)−H(t, x)|

)

≤M1

(
1

nhd
+

√
| log(εhd/2)|

nhd
+ h2

)
,

Hence provided that h ≤ h0 and nhd ≥M2| log(εhd/2)|, we have∣∣R′′n(ϕ)
∣∣ ≤ 2MΦ

b3
sup

(t,x)∈K

∣∣∣SC(t | x)− Ŝ(i)
C,n(t | x)

∣∣∣2 .
F.7 Proof of Lemma 29

Recall first that

R′n(ϕ) = − 1

n

n∑
i=1

δiϕ(Ỹi, Xi)

SC(Ỹi | Xi)
b̂(i)n (Ỹi | Xi),

where

b̂(i)n (t | x) =−
∫ t

0

c(u | x)

H(u, x)2Ĥ
(i)
n (u, x)

(Ĥ(i)
n (u, x)−H(u, x))2Ĥ

(i)
0,n(du, x)

−
∫ t

0

(Ŝ
(i)
C,n(u− | x)− SC(u− | x))

SC(u | x)
∆̂(i)
n (du | x).

and
∆̂(i)
n (du | x) = Λ̂

(i)
C,n(du | x)− ΛC(du | x).

The following argument is based on Lemma 17, stated in section B. Note that, on the event
En, we have: ∣∣∣b̂(i)n (t | x)

∣∣∣ ≤ 2

b10

∫ (
Ĥ(i)
n (u, x)−Hh(u, x)

)2
Ĥ(i)
n (du, x),

+

∣∣∣∣∣∣
∫ t

0

(Ŝ
(i)
C,n(u− | x)− SC(u− | x))

SC(u | x)
∆̂(i)
n (du | x)

∣∣∣∣∣∣
≤ 2

b10
sup

(u,x)∈Γb

∣∣∣Ĥ(i)
n (u, x)−Hh(u, x)

∣∣∣2
+

∣∣∣∣∣∣
∫ t

0

(Ŝ
(i)
C,n(u− | x)− SC(u− | x))

SC(u | x)
∆̂(i)
n (du | x)

∣∣∣∣∣∣ .
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The application of the Lemma 17, with S(2)(u) = SC(u | x), S(1)(u) = Ŝ
(i)
C,n(u | x), β = 1,

θ = b and

Λ(1)(u) = Λ̂
(i)
C,n(u | x) = −

∫ u

s=0

Ĥ
(i)
0,n(ds, x)

Ĥ
(i)
n (s−, x)

,

Λ(2)(u) = ΛC(u | x) = −
∫ u

s=0

H0(ds, x)

H(s−, x)
,

yields,

1

C

∣∣∣∣∣∣
∫ t

0

(
Ŝ

(i)
C,n(u− | x)− SC(u− | x)

)
SC(u | x)

∆̂(i)
n (du | x)

∣∣∣∣∣∣
≤ sup

(u,x)∈Γb

∣∣∣Ĥ(i)
n (u, x)−H(u, x)

∣∣∣2
+ sup

(u,x)∈Γb

∣∣∣Ĥ(i)
0,n(u, x)−H0(u, x)

∣∣∣2
+ sup

(u,x)∈Γb

∣∣∣Ŵ (i)
n (u, x)

∣∣∣ ,
where C > 0 depends on b and Ŵ

(i)
n (t, x) is defined as

∫ t

0

∫ u

0
c(s | x)

(
Ĥ

(i)
0,n(ds, x)−H0(ds, x)

)
H(s, x)

(
Ĥ

(i)
0,n(du, x)−H0(du, x)

)
SC(u | x)H(u, x)

.

Using (30) and (31) combined with Lemma 18 and Lemma 19, we obtain that with probability
at least 1− ε:

sup
(u,x)∈Γb

∣∣∣Ĥ(i)
n (u, x)−H(u, x)

∣∣∣2 + sup
(u,x)∈Γb

∣∣∣Ĥ(i)
0,n(u, x)−H0(u, x)

∣∣∣2
≤M1

(
1

(nhd)2
+
| log(εhd/2)|

nhd
+ h4

)
,

as soon as h ≤ h0 and M2| log(εhd/2)| ≤ nhd. It remains to show that, with probability at
least 1− ε:

max
i∈{1, ..., n}

sup
(u,x)∈Γb

∣∣∣Ŵ (i)
n (u, x)

∣∣∣ ≤M1

(
| log(hd/2ε)|

nhd
+ h2

)
,

as soon as h ≤ h0 and M2| log(εhd/2)| ≤ nhd. We first define Ŵn,1(t, x), for all (t, x) ∈ K,

∫ t

0

∫ u

0
c(s | x)

(
Ĥ0,n(ds, x)−H0(ds, x)

)
H(s, x)

d
(
Ĥ0,n(du, x)−H0(du, x)

)
SC(u | x)H(u, x)
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and notice that, since c(s | x)/(H(s, x)SC(u | x)H(u, x)) ≤ 1/b8 (using (34)), we have by
virtue of (30)

max
i∈{1, ..., n}

sup
(t,x)∈K

∣∣∣Ŵn,1(t, x)− Ŵ (i)
n (t, x)

∣∣∣ ≤ C/(nhd),
where C is a constant depending on b and K only. Let

α1(u, x) = (SC(u | x)H(u, x))−1

∫ u

0
c(s | x)

(H0,h(ds, x)−H0(ds, x))

H(s, x)

and note that

sup
(u,x)∈K

|α1(u, x)| ≤M1 sup
(u,x)∈K

|H0,h(u, x)−H0(u, x)| ≤M2h
2.

We define Ŵn,2(t, x) as∫ t

0

∫ u

0
c(s | x)

(
Ĥ0,n(ds, x)−H0,h(ds, x)

)
H(s, x)

(
Ĥ0,n(du, x)−H0,h(du, x)

)
SC(u | x)H(u, x)

,

we have

Ŵn(t, x) = Ŵn,2(t, x)

+

∫ t

0

∫ u

0
c(s | x)

(
Ĥ0,n(ds, x)−H0,h(ds, x)

)
H(s, x)

(H0,h(du, x)−H0(du, x))

SC(u | x)H(u, x)

+

∫ t

0
α1(u, x)

(
Ĥ0,n(du, x)−H0(du, x)

)
+

∫ t

0
α1(u, x) (H0,h(du, x)−H0(du, x)) .

Applying Fubini’s theorem in the second term, we see that the last three terms are similar.
We give the details only for the second one. We have∣∣∣∣∫ t

0
α1(u, x)(Ĥ0,n(du, x)−H0(du, x))

∣∣∣∣
≤
∫ t

0
|α1(u, x)|(Ĥ0,n(du, x) +H0(du, x))

≤ sup
(u,x)∈K

|α1(u, x)| sup
(u,x)∈K

|Ĥ0,n(u, x) +H0(u, x)|

≤M2h
2 sup

(u,x)∈K
|Ĥ0,n(u, x) +H0(u, x)|

In addition, observe that

Ŵn,2(t, x) = n−2
n∑
i=1

n∑
j=1

vij(t, x)

= n−2
∑
i 6=j

vij(t, x) + n−2
n∑
i=1

vii(t, x)

:= Un(t, x) +Mn(t, x),
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where, for all 1 ≤ i, j ≤ n, we set

vij(t, x) = uij(t, x)− E[uij(t, x)|Zi]− E[uij(t, x)|Zj ] + E[u1,2(t, x)],

uij(t, x) = ξi,j(x)I{Ỹi ≤ t}Kh(Xi − x)Kh(Xj − x),

ξi,j(x) =
δiδjc(Ỹj | x)

SC(Ỹi, x)H(Ỹi, x)H(Ỹj , x)
I{Ỹj ≤ Ỹi}.

Because we have, for all (t, x) ∈ K,

E[v12(t, x)|Z1] = E[v12(t, x)|Z2] = 0,

the collection of random variables

{n2h2dUn(t, x) : (t, x, h) ∈ K×]0, h0]}

is a degenerate U -process of order 2. The related class of kernels is uniformly bounded by
4||K||2∞/b8 and of VC type, by virtue of classic permanence properties recalled in Appendix
A. Observe in addition that

Var
(
h2dv12(t, x)

)
≤ h4d42E[u2

12(t, x)]

≤ h4d

(
4

b8

)2

E[K2
1xK

2
2x]

≤ h2d

(
4

b8

)2

L2c4
K .

Applying Corollary 8 with k = 2 and

σ2 = hdhd0
4

b8
L2c4

K ,

‖G‖∞ = 4
‖K‖2∞

9b8
,

we obtain that, with probability greater than 1− ε,

sup
(t,x)∈K

|Un(t, x)| ≤M1
| log(εhd/2)|

nhd
,

as soon as M2| log(εhd/2)| ≤ nhd and h ≤ h0. Notice now that, for all (t, x) ∈ K, Mn(t, x) =
Ln(t, x) +Rn(t, x), where

Ln(t, x) = n−2
n∑
i=1

{vii(t, x)− E[v11(t, x)]} ,

Rn(t, x) = n−1E[v11(t, x)].
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Observing that, for all (t, x) ∈ K, |h2dv11(t, x)| ≤ 4||K||2∞/b8 and

Var
(
h2dv11(t, x)

)
≤ h4d42E[u2

11(t, x)]

≤ h4d

(
4

b8

)2

E[K4
1x]

≤ hd
(

4

b8

)2

L

∫
K4(x)dx.

Hence, the application of Corollary 8 with k = 1 to the empirical sums {n2h2dLn(t, x) :
(t, x, h) ∈ K×]0, h0]} permits to get that, with probability at least 1− ε,

sup
(t,x)∈K

|Ln(t, x)| ≤ M̃1

√
| log(M̃2/hd/2)|+

√
log(C2/ε)/C3

(nhd)3/2
,

where M̃1 and M̃2 are constants depending on K, b and L. The previous bound is valid
whenever M2| log(εhd/2)| ≤ nhd and h ≤ h0. We also have

n−1E[|v11(t, x)|] ≤ 4n−1E[|u11(t, x)|] ≤ (4/b8)Lc2
K/(nh

d).

This leads to the stated results.
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