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ABSTRACT
In medical imaging, most of the image registration methods im-

plicitly assume a one-to-one correspondence between the source and
target images (i.e., diffeomorphism). However, this is not necessarily
the case when dealing with pathological medical images (e.g., pres-
ence of a tumor, lesion, etc.). To cope with this issue, the Metamor-
phosis model has been proposed. It modifies both the shape and the
appearance of an image to deal with the geometrical and topological
differences. However, the high computational time and load have
hampered its applications so far. Here, we propose a deep residual
learning implementation of Metamorphosis that drastically reduces
the computational time at inference. Furthermore, we also show that
the proposed framework can easily integrate prior knowledge of the
localization of topological changes (e.g., segmentation masks) that
can act as spatial regularization to correctly disentangle appearance
and shape changes. We test our method on the BraTS 2021 dataset,
showing that it outperforms current state-of-the-art methods in the
alignment of images with brain tumors.

Index Terms— Metamorphosis, Image registration, Deep learn-
ing, Brain, Tumors.

1. INTRODUCTION

Image registration has many applications in medical imaging, such
as statistical analysis, modality fusion, surgery planning and follow
up. Most of the methods assume that the two images have the same
topology (i.e., same number of anatomical components) thus looking
for a diffeomorphism [1, 2]. However, in some studies one needs
to align images characterized by a different number of anatomical
components, like a healthy image and an image with a tumor [3].

One of the first strategies to deal with a difference in topology
between source and target images was the cost function masking,
where the lesion was excluded when computing the image similar-
ity [4]. However, when the lesion is too big, the deformation in the
masked zone might be very distorted. To cope with that, geometric
metamorphosis [5] adds a specific deformation to the masked area,
but it works only when the lesion/tumor is present in both source and
target images. Another strategy, when one wants to register two im-
ages with and without tumor, is to first model the growth of the tumor
in the healthy image by using a biophysical model [6, 7], and then do
the registration. This strategy deals with the topological difference,
since the images now contain the same number of components, but
it requires a user initialization, extensive computations to estimate
the model parameters, and they are specific to a particular kind of
tumor. In [8], authors use a similar but inverse perspective where,
instead of adding a tumor to a healthy image, they remove the patho-
logical region by synthesizing a quasi-normal image via low-rank
approaches. This approach can effectively recover tumor regions,

but at the same time distort or blur the healthy regions. Further-
more, it is a statistical technique that needs lesions to be homoge-
neously (and randomly) distributed across the population [8], which
is not the case for all kinds of lesions or tumors (e.g., glioblastoma).
With a similar perspective, inpainting techniques have also been pro-
posed [9]. However, they may produce inaccurate or unreal images
when dealing with large tumors or lesions. Metamorphosis [10] is
a more generic approach that offers theoretical guarantees to tackle
both shape and appearance differences. It consists in repetitively ap-
plying (together) infinitesimal shape and appearance deformations to
the source image. To the best of our knowledge, there is no clinical
application of this method and a recent implementation [11] indi-
cates that it is very time consuming.

Recently, motivated by faster computation time at inference,
several deep learning approaches have been developed for image
registration. Neural networks are trained on a database of image
pairs and not only for a fixed pair of images [12]. The training is
thus very time consuming but this type of methods is much faster at
inference time than previous methods that need to optimize a func-
tional for every pair of images. Similarly, deep learning can also be
used to align images with different topology. In [13], authors pro-
posed a Metamorphic (variational) Auto-Encoder (MAE) to modify
both the geometry and the appearance of an image at the same time.
However, this method may result in poor disentanglement, where the
intensity changes can actually modify the shape of the input image.

Inspired by [14], we propose a ResNet-based [15] implemen-
tation of Metamorphosis which overcomes all previous limitations.
Our contributions are:

• We use a residual deep network [15] to solve the system of dif-
ferential equations of Metamorphosis (see Eq. 3 next).

• Our method can be used: 1) to optimize an energy between two
paired images, or 2) in a learning-based scheme where we use a
training set of source images and one fixed target image.

• We introduce a local regularization that consists in limiting the
intensity changes to a pre-specified zone (segmentation mask).
We show that this produces a better disentanglement between
shape and appearance changes.

• We evaluate our method on a synthetic shape dataset and on the
BraTS 2021 dataset [16].

2. METHOD

Mathematical formulation. Let Ω ⊂ Rd be a bounded domain,
with d ∈ {2, 3}. Let V be a Reproducible Kernel Hilbert space
(RKHS) with kernel K of vector fields with support Ω and T times
continuously differentiable, where T ∈ N∗. Let I be a gray scale
image defined as a square integrable and differentiable function I :
Ω → R. The aim of Metamorphosis is to modify a source image I



so that it perfectly aligns with a target image J . The model joins dif-
feomorphic deformations with additive intensity changes. Similarly
to [10, 11], the evolution of the image I at time t ∈ [0, 1] is:

∂tIt = vt · It + µ2zt = −〈∇It, vt〉+ µ2zt s.t. I0 = I (1)

where vt · It implies that It is deformed by an infinitesimal vector
field vt ∈ V and zt : Ω → R is the additive part corresponding to
the infinitesimal intensity variation (called the residual image or mo-
mentum). The hyperparameter µ2 ∈ R+ balances the intensity and
geometric changes. As in [11], we cast the metamorphic registration
as an inexact matching problem minimizing the cost function:

E =
1

2
||I1 − J ||22 + λ[

∫ 1

0

||vt||2V + ||µzt||22dt] (2)

where the first term is the classical L2 data term (please note that
other data terms could be used as well) and the second term,
weighted by λ, is the regularization. It is composed of the total
geometric and intensity energy of the deformation, respectively. As
shown in [11], the geodesic equations for Metamorphosis are:

vt = −K ∗ (zt∇It)
∂tzt = −∇ · (ztvt)
∂tIt = −〈∇It, vt〉+ µ2zt

(3.a)
(3.b)

(3.c)

with ||vt||2V = 〈zt∇It,K∗(zt∇It)〉, whereK is a Gaussian kernel.
From this system of equations, we can notice that vt is completely
defined by zt and It, thus making zt the only unknown. The momen-
tum zt has therefore a double role. It represents the additive intensity
variation and it is also the parameter of the deformation. This eases
the computation but at the same time it makes the disentanglement
between shape and intensity variations more difficult (see Fig. 3).
Inspired by [14, 17], we propose to use a residual neural network
(ResNet) to find the solution of this system. We take advantage of
the similarity between ResNets and the numerical solutions of PDEs
using Euler’s method, given an initial value, to solve Eq. 3.b. Indeed,
the numerical integration of Eq. 3.b, using discrete time steps t, is:

zt+1 = zt −
1

T
∇ · (ztvt) for t = i/(T − 1) , i ∈ 0, .., T − 1 (4)

where T is the number of steps. By replacing the divergence with a
neural network, we obtain a ResNet:

zt+1 = zt +
1

T
fθt(zt, It) (5)

where fθt is modeled as a convolutional layer followed by an acti-
vation function (Leaky ReLU) and two other convolutional layers.
Compared with Eq. 3.b, vt is replaced by It because vt is a function
of It (and zt). The network is built as a sequence of T convolu-
tion blocks fθt . At each time step t, zt+1 is computed using Eq. 5.
Subsequently, vt+1 is calculated directly with Eq. 3.a and one de-
termines It+1 by applying the geometric transformation induced by
vt and adding the residuals zt as in Eq. 3.c. The architecture of the
model is detailed in Fig. 1.

Optimization setting. The proposed method can be used in two
different contexts: optimization or learning-based. In the former,
one wants to compute the transformation between two fixed images.
In this case, the back-propagation algorithm is repetitively applied
to minimize the following equation until convergence:

EO(θ, z0) =
1

2
||IT − J ||22 +

λ

T

T−1∑
t=0

[||vt||2V + µ2||zt||22] (6)

Fig. 1. Architecture of the proposed method.

The parameters to optimize are the weights of the neural network θ
and the initial residuals z0. We use Adam optimizer with a learning
rate of 10−3. In this context, we have empirically measured that the
first layers are similar to the divergence in Eq. 3.b: their L1 distance
is small (between 0 and 1) and the Pearson’s correlation coefficient is
around 0.8. However, this is not the case for the last layers, where the
L1 distance is high (around 40) and the correlation is close to 0. Fu-
ture research will dive more into that, trying to understand whether
the use of a ResNet may give more generic and/or well adapted re-
sults.

In the learning-based setting, the goal is to compute the trans-
formations between every image of a training dataset of N images
and a fixed target image. The optimized parameters are the same as
in the previous context, the difference is that from one iteration to
the other, the source image is not the same. Therefore, one needs to
minimize the following energy EL(θ, z0):

N∑
n=1

[
1

2
||InT − J ||22 +

λ

T
[

T−1∑
t=0

||vnt ||2V + µ2(||z0||22 +

T−1∑
t=1

||znt ||22)]

]
(7)

where n is the index of image In in the dataset. Please note that
the learning setting is possible only because we use a neural network
in Eq.3.b. The ResNet learns the optimal network parameters θ and
initial residuals z0 to align the entire distribution of source images
onto a (fixed) target image. Once the network is trained, it can be
used to register any image of the same type as those in the training
set to the target image. Differently from the optimization setting,
this allows for the registration of a high number of images in a very
short time since the inference time of the ResNet is definitely lower
compared to the optimization of Eq. 6 (less than one second vs one
minute for images of size 200×200). This is particularly important,
for instance, when one needs to normalize or align a large set of
images to a common template for a statistical analysis.

Local regularization. The main inconvenience with Metamor-
phosis is that it is hard to control the disentanglement between shape
and appearance. For instance, a trivial solution would be to set
the overall geometrical deformation function to the identity (no ge-
ometrical change) and the overall appearance deformation map to
J − I0. In that case, the L2 distance between the deformed im-
age and J would be 0 but it would not be a satisfactory result since
homologous structures should be matched using only geometric de-
formations whereas appearance and topological changes (i.e., new
components) should be taken into account by the intensity modifica-
tions. The disentanglement can be controlled by tuning the hyper-
parameters µ and λ. However, finding the right ones is a difficult
task and they are different for each setting. If they are not correctly
chosen, the appearance map could, for instance, modify the shape of
the image, thus distorting the results and their interpretations.

To improve the control of the disentanglement, we introduce a



local regularization which consists in limiting the region where the
intensities can be modified (e.g. a tumor). To do so, we define such
a region as α ⊂ Ω. We introduce a mask m0 where m0(x) = 1 if
the pixel x ∈ α and 0 otherwise. During the deformation, the shape
of the tumor will be modified, therefore, the mask must undergo the
same deformation. Hence, we have ∂tmt = vt ·mt. The transfor-
mation of the image is then: ∂tIt = vt · It + µ2mtzt. Using this
equation and ||√mtzt||22 as regularization term for zt, we obtain the
same geodesic Equations 3.a and 3.b.

3. EXPERIMENTS

Datasets. We first evaluate the effectiveness of the method on a
synthetic dataset of 2000 images of size 200 × 200. It is built from
an image of a white “C” on a black background. Each image of the
dataset is generated by applying a random elastic deformation to the
“C” image. The target image associated with this dataset is a “C”
that has been cut in the middle, as shown in Fig. 2.

The second dataset is BraTS 2021 [16] comprising 4 MR modal-
ities and the associated tumor segmentation image for 1251 brains
with tumor. For each patient, we select the same slice of the T1
modality and crop it to obtain an image of size 208× 208. We ran-
domly pick 40 images from the dataset to form an evaluation set.
The target image associated with this dataset is the linear MNI152
template [18]. To show that our model also works with other modali-
ties, we select a slice from the T1 contrast enhanced (T1ce) modality
of two different patients. We extract one slice outside the tumor and
the other one exhibiting part of the tumor (see Fig. 3). We use the
segmentation of the tumor as mask for the local regularization.

Results All experiments with our model have been computed us-
ing T = 20 and λ = 10−6. The effectiveness of the method is first
evaluated on the synthetic dataset. For comparison, we select op-
timization based methods: LDDMM [2] and cost function masking
[4], and learning based methods: Voxelmorph [12] and Metamorphic
auto-encoders (MAE) [13]. They are compared with our optimiza-
tion and learning based method respectively. Voxelmorph and our
learning model are trained with the “C” dataset as source and the
fixed target in Fig. 2. The source image in Fig. 2 is not included in
the training set. MAE works the other way around, the source image
is fixed and the target changes. Therefore, we create a dataset of im-
ages made of elastic deformations of the target image in Fig. 2 and
train MAE on this dataset. Similarly, the target image in Fig. 2 is
not included in the training set. Thus, the three learning methods are
comparable for the couple of images in Fig. 2. The visual and quan-
titative results show that, in both contexts, our method outperforms
the others. As shown by the arrows, our model can effectively deal
with the topological change and correctly aligns the remaining part.

As already discussed, disentanglement between shape and ap-
pearance is hard to control. To illustrate this, we show the defor-
mations between two T1ce images for several values of µ without
regularization in Fig. 3. For µ = 0.035, there is almost no ge-
ometrical deformation of the source, yet the final image is really
close to the target. This indicates that µ is too big since all differ-
ences have been removed only by the appearance changes. For the
lower values of µ: 0.015 and 0.025, the shape deformation is better
but still unsatisfactory. As pointed out by the red arrow, the ventri-
cles of the shape deformation image are not aligned with the target
ones. However, the appearance deformation is also unsatisfactory
because the tumor has not fully disappeared on both deformations.
This shows that finding the optimal parameters to properly align two
images without regularization might be hard and time-consuming.
By contrast, when using local regularization with the same µ values

Fig. 2. Registration between Source and Target images for LD-
DMM [2], Cost Function Masking (CFM) [4], ours in an opti-
mization setting, Voxelmorph [12], Metamorphic Auto-Encoders
(MAE) [13] and ours in a learning context. Plots refer to the ab-
solute value of the difference between the corresponding output and
the target. SSD refers to the sum of squared differences. Top and bot-
tom lines show the optimization and learning based methods, respec-
tively. Arrows point to the topological difference between Source
and Target image.

(here we only show µ = 0.025), the model is able to properly align
the two images. The shape deformation image, where we only de-
form the image without adding the intensity changes, shows that the
ventricles have been correctly deformed. In the total deformation
image, where we consider both geometric deformations and inten-
sity changes, the tumor has disappeared. Hence, with the proposed
local regularization, shape and appearance are properly disentangled
and the method is more robust to the choice of µ, since the results
do not vary much when changing it.

Fig. 3. Comparison of the deformation between two T1ce images
with and without local regularization. The Shape def. line only
shows the geometrical deformation of the source, while Total def.
also includes the estimated appearance changes. The tumor segmen-
tation is used as mask m0 for the local regularization.

Eventually, to show a potential application of the method in a
clinical setting, we align a set of T1 images onto the MNI template.



Fig. 4. Deformation of a T1 image onto the MNI atlas.

An example is shown in Fig. 4. To evaluate the quality of the align-
ment, we segment the ventricles of the deformed image and compute
the Dice score with the reference segmentation of the ventricles in
the MNI atlas (see Table 1). As segmentation algorithm, we trained
a U-Net model on 2D slices from the OASIS dataset [19]. Reference
segmentations were obtained using FreeSurfer. The trained U-Net
showed an average Dice score of 0.91 on the validation set. We com-
pare our method, with and without local regularization (µ = 0.015),
against cost function masking [4] and Voxelmorph [12]. The pres-
ence of the tumor mainly modifies the shape of the ventricles (mass
effect), but not their intensity. All methods should therefore correctly
match the ventricles using only geometric transformations. For this
reason, when using our methods, we compute the Dice score on the
shape deformation images and not on the total deformation images.
In Table 1, we also show the SSD and inference time. Results clearly
show that our method with local regularization better aligns the ven-
tricles than the other methods and has the best SSD. This indicates
that taking into account the topological changes during the deforma-
tion, rather than just masking them out or ignoring them, improves
the alignment of homologous components between the two images.

Method SSD Dice Inference Time (s)
CFM 167± 68 69.1± 22.4 55± 1.2
Voxelmorph 187± 73 63.4± 22.6 0.01±8e-4
Ours w/o reg (learn.) 220± 20 65.4± 20.7 0.15± 0.003
Ours w/ reg (learn.) 161± 16 69.8± 15.2 0.16± 0.009
Ours w/ reg (opt.) 135 ± 45 71.9 ± 19.5 59± 1.2

Table 1. Quantitative evaluation for Cost Function Masking (CFM),
Voxelmorph and our method with and without regularization. learn.
(respectively opt.) indicates a learning context (respectively opti-
mization context). Results were computed on a test set of 40 pa-
tients. Best results in bold.

4. CONCLUSION

This paper proposes a deep residual learning implementation of
Metamorphosis and adds a local regularization to improve the shape
and appearance disentanglement. Qualitative and quantitative results
on BRATS dataset show the effectiveness of the method. Moreover,
the model can be used in an optimization or learning context, the
latter offering very fast computation time during inference.
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