N

N

Multi-source Fault Injection Detection Using Machine
Learning and Sensor Fusion

Ritu-Ranjan Shrivastwa, Sylvain Guilley, Jean-Luc Danger

» To cite this version:

Ritu-Ranjan Shrivastwa, Sylvain Guilley, Jean-Luc Danger. Multi-source Fault Injection Detection
Using Machine Learning and Sensor Fusion. Security and Privacy, 1497, Springer International Pub-
lishing, pp.93-107, 2021, Communications in Computer and Information Science, 10.1007/978-3-030-
90553-8__7 . hal-03433855

HAL Id: hal-03433855
https://telecom-paris.hal.science/hal-03433855

Submitted on 15 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://telecom-paris.hal.science/hal-03433855
https://hal.archives-ouvertes.fr

Multi-Source Fault Injection Detection using
Machine Learning and Sensor Fusion

Ritu-Ranjan Shrivastwa 12 [0000—0002-8909-0406]
Sylvain Guilley 12 [0000-0002—-5044-3534]

Jean-Luc Danger

, and
2 [0000—0001—5063—7964]

1 Secure-IC S.A.S., Rennes, FRANCE
{ritu-ranjan.shrivastwa, sylvain.guilley}@secure-ic.com
2 LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, FRANCE

{ritu.shrivastwa, sylvain.guilley, jean-luc.danger}@telecom-paris.fr

Abstract. Fault attacks have raised serious concern with the growing
amount of connected devices. Even a small vulnerability might com-
promise a complete network. It is therefore important to secure all the
devices in the connected architecture. A solution to this problem is pre-
sented in this paper where we provide a hardware framework, called
Smart Monitor, that utilizes a set of sensors (digital or physical) placed
on the chip alongside the security target to be protected. The frame-
work continuously monitors the status of the sensors and its Artificial
Intelligence (AI) core produces two outputs viz. presence of a fault and
type of detected perturbation. The types of attack sources can be elec-
tromagnetic, clock-glitch, laser, temperature, etc. In this work we utilize
Electro-Magnetic (EM) and Clock-Glitch (CG) as sources of fault injec-
tions. Both attacks are performed in multiple settings to increase attack
diversity. The framework is able to detect the presence of an attack with
92% accuracy for mixed or multiple attack sources, and further classify
the type of perturbation with 78% accuracy keeping the false positive
rate at 0%. Overall, this two-stage detection framework is a cost-effective
countermeasure that can be deployed easily in any integrated circuit to
safeguard against multiple fault attacks. The Al core is further evaluated
for consistency in performance on hardware using High Level Synthesis
(HLS), as a proof-of-concept, emulating real-world scenario.

Keywords: Internet of Things (IoT) - Artificial Intelligence (AI) - Ma-
chine Learning (ML) - Threat Detection - Cyber-Protection - Decision

Making Process - Naive Bayes Classifier - Embedded Security - Cyber-
Physical Attacks - High-Level Synthesis (HLS).

1 Introduction

1.1 Motivation

The growth rate of connected devices is on a fast pace and soon the Internet-
of-things might be as huge as the Internet itself. This draws massive attention,

2 R.R. Shrivastwa et al.

in terms of security, towards all the devices that form the nodes of this network
including the end-devices. The breach can be made through these nodes via ac-
tive or passive attacks [26]. Passive attacks include Side-Channel Attacks (SCA)
that is well researched, to break even the complex cryptosystems, where mostly
the device vulnerabilities are exploited to obtain the security parameters [24].
Active (fault) injections like laser, EM, CG, etc. can be performed to disrupt the
normal functions of the device and eventually forcing the system to malfunction
in order to bypass security [3, 11]. Precise attacks can be made to execute tar-
geted operations inside the chips, like skip or replace instructions, to perform
undesired operations [9]. In this paper we focus on the active attacks and provide
a countermeasure that is able to detect multiple such attacks. In other words,
a single solution to detect fault injection attacks from multiple sources on the
same target.

1.2 Owur contribution

We present a two-stage detection framework to detect active fault attacks. This
Machine Learning (ML) based system is able to detect the presence of mul-
tiple types of attack. The first stage reports the presence of an attack and the
next stage predicts its type. ElectroMagnetic Fault Injection (EMFT) and Clock-
Glitch Fault Injection (CGFI) are performed on a chip that runs a standard en-
cryption algorithm. The same chip is also mounted with precise digital sensors
(DS) that are the core components used for the detection. The ML based con-
troller, called Smart Monitor, continuously monitors the statuses of the sensors
and generates two outputs viz. attack status and perturbation type. In this work
we utilize two attack sources, however, other sources can be added to the same
framework. We validate the design using HLS by performing benchmark testing
with the test vectors used to derive the classification results at the software level.

The rest of the paper is organized as follows: Section II provides a back-
ground of Fault Injection attacks and Machine Learning, Section III presents
the entire framework structure and HLS evaluation with hardware performance
and utilization, Section IV provides the results of various stages of detection,
and conclusion in Section V.

2 Background

2.1 Fault Injection attacks

Fault Injection Attacks (FIA) have been around for quite some time and have
been extensively used to cause glitches in the Integrated Circuits (IC) to eventu-
ally extract the secret parameters or cause malfunction to the system. One of the
early fault analysis was done in [3]. Several vulnerabilities exposed due to fault
attacks have been reported along with their countermeasures like in [2] and [4]. A
new class of fault attack was introduced in 2017 by Tang et. al. in [23], known as

Multi-source FI detection using ML and sensor fusion 3

CLKSCREW, where they exposed the vulnerabilities of the energy management
mechanisms, basically the Dynamic Voltage and Frequency Scaling (DVFS), to
break security without the need for physical access to the devices or any equip-
ment to inject fault by overclocking at the software level in ARM processors
thereby compromising the Trusted Execution Environment (TEE). More recent
attacks, targeting the DVFS, have been proposed such as Plundervolt [15] and
VoltJockey [17]. In [7] the authors illustrate the use of Laser fault injection
ease the process of syndrome decoding of code-based public-key cryptosystems.
A background on Electromagnetic and Clock-Glitch fault injections, considered
for this work, is detailed as follows.

Electromagnetic based EMFI has several implications in retrieving secret
data using fault analysis. There have also been works to tamper the control
flow of a program by causing instructions skip [18] with high precision. Another
detailed study of EMFT impact on Instruction Set Architecture (ISA) was done
in [16]. A recent work on the effect of data transfer due to EMFI was done in [12]
with a byte-level precision.

Clock-Glitch based CGFI is relatively easier to perform as compared to
EMFI. The technique can be in temporarily increasing the clock frequency
to either cause some flip-flops to sample their inputs before the new state is
reached [1] or reduce the processor’s time to write a jump address and prevent
the branch execution [14].

2.2 Detecting Fault attacks with Machine Learning

The use of Machine Learning (ML) in the security domain is relatively new.
Major works have been done in the Side Channel Analysis [10,22,25]. In [20],
the authors provide a ML-assisted technique to explore and characterize the
fault attack space and use the knowledge of a known fault attack on a cipher
in understanding new attack instances. Regarding detection of fault attacks, a
recent work [19] is presented that evaluates fault induced leakages from non-
cryptographic peripheral components of a security module, targeting cipher im-
plementations, using a Deep Neural Network (DNN) test. From the defensive
side, while most fault analyses are based on the characterized faults from known
attacks (like [0]), our work is based on a completely different approach of online
identification of attacks using real-time sensors. To the best of the knowledge of
the authors, our work is the premiere in providing a hardware based framework
to dynamically detect FIA from multiple sources.

3 Proposed Methodology and Design Idea

3.1 Digital Sensor

Digital Sensor (DS) is a light weight delay chain unit that can be placed anywhere
on the chip fabric. The DSs have delay chains longer than the critical path and

4 R.R. Shrivastwa et al.

thereby detecting delay faults before they affect the user logic [21] (Fig. 14,
page 189). The Digital Sensor is designed to detect various FIAs, such as clock
glitch, power glitch, underfeeding, heating, laser attack and electromagnetic.
A DS converts all observed stresses into a timing stress for measurement. It
is extremely sensitive to variations in temperature and voltage as well as to
internal activities of the Device-Under-Test (DUT) which makes it a generic
sensor that can detect multiple perturbation types. For a UMC design kit with
28nm HPC (High Performance Computing), with a frequency of 100MHz, each
Digital Sensor is 2.93 kGE (kilo Gate Equivalent), which means 730pm?2 for this
technology node.

3.2 Smart Monitor

Smart Monitor (SM) is a customizable framework that utilizes a fleet of DSs
(aggregating their values) along with the capability of having other physical
precision sensors attached to it to analyze and synthesize appropriate outcome.
The core of the SM is an Al engine that accumulates all the statuses and eval-
uates them to produce a meaningful response. We call this method of using all
sensor data Sensor Aggregation strategy (see Figure 1).

Fault
:

Dso Ds1 Dsz Ds3

Digital Sensor - status aggregation
52-byte status buffer for each 16 digital sensors

sol L L L L 1 1

32 bit

DS status buffer
[size: 13]

32 bt

D8 DSS DSI0 DSIL

32 bit
32 bit
32 bit
32 bit
32 bit
32 bit

Ds12 Ds13 Ds14 Ds1s

True
I 1D Vector([X:208]: 16 x 13 L I-ro ML Model {§} 4
False

Fig. 1: Hlustration of data acquisition from multiple sensors (sensor aggregation)
for EM and CG fault injections and their formatting for ML algorithms

Sensor aggregation is important to prevent single DS saturation, a condition
in which all the status bits are true/high, which cannot determine the differ-
ence between the sources of attacks i.e. the perturbation type, since there is no
resolution left to differentiate. Multiple sensors placed at different locations on
the chip can have varied impacts based on the type of perturbation and, thus,
produce different statuses that can contain information (features) of the attack
type and can be easily learnt by the Al engine. This helps to classify among the
types of attack using a ML classifier.

Multi-source FI detection using ML and sensor fusion 5

3.3 Dataset Information

The EM and CG fault injections are recorded with sixteen Digital Sensors placed
inside a Sakura-G FPGA (Field Programmable Gate Array) board, running a
standard AES algorithm. In each of the sessions for EM and CG data record-
ing, for every setting, traces have been recorded for both the nominal (without
injection) condition and the injected (with fault injection) condition.

A status buffer is associated with each DS. The buffer can store thirteen
sensor values and works as a shifting queue i.e., every time (N cycles, depending
upon the implementation) a new status is pushed on the top of the stack, the
bottom status pops out. The EMFT is performed at four random locations on
the chip surface.

A similar session has been carried for the CG fault injection trace acquisition
with different CG parameters with varying delay between 379 nanoseconds (ns)
to 511 ns with a pulse width of 5 ns, 8 ns and 1.5 ns.

3.4 Machine Learning based evaluation using Two-Stage Detection
Framework

Recall the motive of the evaluation, which is to identify if there is any fault
injection being performed on the DUT. Conventionally, a single sensor (physical
or digital) is enough to detect any kind of unusual activity inside the chip like
in [5] and [13] and produce acceptable accuracy. However, most works have
been conducted on single type of Fault Injection scenarios (like EMFT) and the
detection algorithm relies upon statistical and mathematical models. In this
work, we propose a generic framework that is capable of taking multiple types
of fault injection scenarios as inputs and deduce whether the DUT is in nominal
condition or it is experiencing a fault injection attack attempt. Since the problem
reduces to classification of the state of the DUT, it can easily be modelled on a
ML classification algorithm. The core engine of the framework is, thus, based on
ML algorithms that are trained with example scenarios of nominal and attack
conditions.

Another extended aspect of the proposed framework is in its capability of
predicting the type of attack. The modalities of operation of the two-stage de-
tection framework can be understood from the simple illustration in Figure 2.
The first stage is responsible for detecting the presence of an attack and the
second stage is responsible for detecting the type of the attack. This splitting of
the functionality in two stages keeps the ML models in binary detection mode?
which in turn speeds up the process of injection detection to make the system
more responsive and also gives the user flexibility to disregard the second stage
if not required.

3 The output classes in second stage will be same as the expected number of attack
sources i.e. multi-class classification scenario. However, in our case since we are
utilizing only EMFI and CGFI sources, the second stage can also be served by a
binary classifier.

6 R.R. Shrivastwa et al.

Collect sensor SiacEY
—>» | Detect presence
data
of attack
A
N
¢ Y

STAGE 2 Output perturbation type
Detect perturbation and activate attack specific
type fail-safe mechanism

Fig. 2: Proposed framework’s modalities of operation. A high level control and
data flow diagram of the multi-sourced attack detection with two-stage detector
results.

ML Classification Algorithms The choice of ML classifiers is kept to a mini-
malistic model to enhance latency of detection while maintaining lower footprint
on the silicon fabric for the interests of space and power. The popular binary clas-
sifier for Gaussian data is the Gaussian Naive Bayes Classifier (GNBC). Given
that the sensor data has limited features and does not require non-linear ML
algorithms to form a separation, we proceed with the idea that linear models
such as GNBC and Logistic regression classifier (LRC) might be able to produce
acceptable accuracy. To verify this idea, we perform classification over two linear
and two non-linear ML models. Among the non-linear models we choose the pop-
ular Support Vector Machines (SVM) and a simple Multi-Layered Perceptron
(MLP) neural network.

Modes of evaluation of FIA To describe the detection capabilities (with
scores) of the ML models with the EM and CG fault injection datasets, multiple
modes of evaluation are performed. Primarily, the classifier should be able to
differentiate between nominal and injection classes (labelled as: 0 and 1 respec-
tively). Additionally, the model should be able to detect the source of attack
based on selected features from the training datasets. Since the sensors cur-
rently used have status saturation directly proportional to the strength of the
attack, the problem of classifying the type of attack becomes harder. This is
due to the fact that at highest saturation levels of the sensors, it becomes dif-
ficult to differentiate between the types of attack. This is why we resort to the
sensor-aggregation strategy where multiple sensors are placed at different loca-
tions and, even though some sensors might be saturated, some sensors might not
be. However, there may be a case where even all the sensors get fully saturated,
diminishing the class difference boundary of the attack sources which results in
predicting wrong classes.

Multi-source FI detection using ML and sensor fusion 7

Therefore, we propose the sensor aggregation strategy where we place multi-
ple (in our case 16) sensors across the entire chip. The placement of the sensors
is left upon the discretion of the embedded developer since the critical boundary
can vary from device to device. The sensors are placed randomly on the chip
such as to receive more general statuses and not to localise the sensors to a par-
ticular area on the chip. The status values of the 16 DSs in nominal, clock-glitch
fault injection and electro-magnetic fault injection case is presented in Figure 3.
Please note that each sensor has a buffer depth of 13 which is represented in the
x-axis for all the 16 DSs.

(a) (b}

(d)

Fig. 3: Comparison between states of 16 DSs for nominal as well CGFI and EMFI
cases. The x-axis is the status buffer for each DS. (a) represents the nominal
state of the DSs when no injection is performed, (b) represents the state of the
DSs when CGFT is performed, (c¢) represents the state of the DSs when EMFT is
performed, and (d) represents the difference in values of the DSs from CGFI and
EMFT cases. It can be seen that some DSs behave similarly in both EMFI and
CGFT cases (for example DS12). In case of one DS based system, it would not
have been possible to differentiate between the type of attack. Therefore, sensor
aggregartion provides more features which can be utilized by a classification
algorithm to differentiate between the type of attack.

The classification task is divided into four parts, as mentioned below, and
each of them is inferred separately over the same ML models.

i. Detection of EMFI by performing binary classification between nominal and
injected classes of EMFI dataset

8 R.R. Shrivastwa et al.

ii. Detection of CGFI by performing binary classification between nominal and
injected classes of CGFT dataset

iii. Combining the FI datasets of both EMFI and CGFI and classification be-
tween the combined FI datasets and nominal dataset from both EMFI and
CGFT sessions

iv. Classification between EMFI and CGFI datasets to detect the perturbation
type (by combining both FI datasets and classifying between them)

3.5 Hardware testing of the design using HLS

The performance of the design is validated on hardware. To achieve this, the
authors utilize the HLS methodology for a quick design evaluation with real
digital sensor values on a FPGA. The motivation is to replicate the software
results on the target hardware platform, which is the actual working environment
for the design, by benchmarking with the offline performance. For HLS we use
the Xilinx Vivado HLS 2019.2 tool where the target FPGA is a Digilent Arty
S7-50 board, which is compatible with the Vivado HLS design suite.

Methodology The framework is composed of four main stages and can be
understood from the list below:

i Firstly the training is carried out to train the ML model parameters using
standard software ML frameworks in any high level language (in our case
Python) after which the learnt parameters are extracted.

ii A C/C++ implementation of the design is created from scratch with no
external library support and the ML inference model is initialized with the
learnt parameters extracted at stage i.

iii The C source, along with a testbench written in C to validate the design
performance at simulation level, is used to perform HLS using Vivado HLS
design platform to generate RTL (Register Transfer Level) without any ad-
ditional optimization, such as the usage of HLS pragmas, other than the
ones already integrated in the design flow, thereby having no control upon
the generated HDL (Hardware Description Language) code structure.

iv. The generated RTL is packed into an IP and imported in the Vivado HLX
suite where a controller program is written in Verilog to interface with the
IP. Real DS test dataset for the ML IP is stored in a RAM block which is
used by the controller program to segment and test the IP for classification
accuracy. (please see figure 4.)

Experimental setup The setup is simply composed of a computer connected
to the target FPGA board. The target board, Digilent Arty S7-50, is a Vivado
compatible FPGA board. The design is run at a clock-cycle of 10 nanoseconds
(ns) with on-board clock running at 100 MHz frequency. Other features of the
FPGA include 52,160 logic cells, 8,150 slices, 65,200 Flip-Flops, 2,700 Kbits of
Block RAM, and 120 DSP slices.

Multi-source FI detection using ML and sensor fusion 9

Hardware Performance The test dataset (test vectors) used to validate the
classification accuracy of the ML IP created using HLS is same as used at the
software level in the ML testing phase. Upon evaluation, the classification capa-
bility remains unaltered at the hardware level. The resource utilization report
for the current HLS implementation is shown in Table 1.

Resource Utilization Available |Utilization (%)
LUT 8898 32600 27.29
LUTRAM 266 9600 2.77
FF 8478 65200 13.00
BRAM 1.50 75 2.00
DSP 43 120 35.83
10 6 210 2.86
BUFG 1 32 3.13

Table 1: Post-implementation resource utilization of the FPGA for the whole
design including the controller module and test data

|| = ap_cta
P ap_start

B-RAM Controller Module e testdata_ce0 el
(stores the (responsible for interfacing — dapide ap_return mm—
benchmark with the ML IP and iterating = erresdy testdata_addressO[7:0] .
test data) over the test dataset) op_clk
ap_rst

testdata_q0[31:0] ML IP

Fig. 4: High level block diagram of the test setup with a controller module inter-
facing the ML HLS IP with the benchmark test data stored in a B-RAM

Each DS consumes &~ 400 LUT slices. In this design we chose the minimum
number of DSs required to achieve sensor aggregation and improved accuracy fo
the classification. We use 16 DSs which is approximately 6400 LUT slices. The
SM consumes 8898 LUT slices which is 39% greater than the total consumption
of all the deployed DSs. However, it is to note that the SM design is not optimized
and an optimized design can be similar in area of the total number of DSs
deployed. In terms of throughput, the total number of cycles required to perform
sensor aggregation and one classification, with a DS buffer length of 13 statuses,
is 38275 cycles. It is the first time an online integrable sensor aggregation strategy
and ML based classification for fault injection detection is showcased.

The FPGA test is performed to justify the use-case and establish a proof
of concept. However, the next task would be to optimize the HLS output such

10 R.R. Shrivastwa et al.

that the footprint on the hardware fabric is further reduced and throughput is
enhanced.

4 Results

In this section we present all the results of the four classification categories
at the software level. Table 2 shows the accuracy percentages of the various
classifications performed. Since all the classifications are binary, two datasets are
used for all cases. The attack diversity column of the table refers to the different
conditions in which the data were recorded viz. four chip locations for EMFI
and two different conditions for CGFI. If both the datasets are used for either
classification from nominal condition or between both the attack conditions, the
diversity is indicated as 6. For classification between the types of perturbation
the DS saturation leads to class overlapping and, thus, the ML model tends to
predict incorrect classes.

Classification between| Attack Detection Accuracy (%)

Data A Data B |Diversity|True detection|False Pos.|False Neg.
EMFI Nominal 4 98.51 0 1.49
CGFI Nominal 2 100.00 0 0

*EMFI+CGFI| Nominal 6 91.98 0 8.02

x+xEMFI CGFI 6 77.25 22.74% 0

1This value denotes the percentage of tests where the ML model predicts CGFI for
EMFT cases. This is due to the DS saturation phenomenon explained in Section 3.4.
xStage 1 detection result, *xxStage 2 detection result

Table 2: Detection accuracy of the best performing ML model in various classi-
fication tasks

The evaluation is extended to compare the ML based methods with the
classical sensor threshold based method where a sensor is tuned to set a threshold
value that defines the class boundary. The disadvantage of this method is in
choosing the threshold value, which is often chosen empirically over multiple
test cases, therefore leading to non-generic coarse-tuned setting which may fail
due to lack of sufficient test cases. To overcome this, we train the threshold for
each individual DS and use the collective result to predict the class i.e. if > 8
(half of total number of sensors involved) DSs predict positive, the result is taken
as F1, else nominal. The result comparison and gain of ML method over classical
threshold based method is provided in the following subsections.

4.1 Threshold optimization of every DS

To optimize the thresholds for each DS, the buffer data (13 x4 bytes) is converted
to an average form as shown below in equation 1, where X is the input vector

Multi-source FI detection using ML and sensor fusion 11

(of size 13) and X’ is the vector obtained after the averaging process:
Vi € {0,1,...,12} and,
X ={V;} and X' = {V/}, where,
VI =V;iifi=0, else V/ = (V; + V;_1)/2. (1)

Thereafter the bounds (Lower/Upper for class Zero/One) of both the classes (0:
Non-injection/Nominal, 1:Injection) are calculated by running a linear search
over 80% (similar to training set ratio in ML methods) of the dataset. These
bounds are used as threshold for the test set to detect FI states.

4.2 Classification between EMFI and Nominal condition

The EMFT is performed with a very low power. The aggregated sensor method
enables high precision detection of FI. The detection performance of all the
ML models is shown in Table 3 along with a comparison with the classical
threshold based method. The accuracy fluctuation between the different datasets
corresponds to the DSs’ behavior based on the locality of EMFI.

4.3 Classification between CGFI and Nominal condition

The best performing ML model (GNBC: see Table 3) is chosen for further eval-
uation to maintain symmetry along all the evaluations. Similar comparison of
performance between the ML and Threshold method, shown in Table 4, is made
for the CGFI datasets. The ML method produces 100% accurate predictions
over the test dataset since the FI case produces nearly full saturation in the
DSs’ statuses.

ML Models
Dataset MLP |SVM | LRC |GNBC|Threshold
EM1 94.75 | 92.25 | 81.50 | 97.50 60.92
EM2 95.71 | 92.93 | 88.64 | 97.98 81.17
EM3 98.90 | 98.90 | 90.63 | 99.72 91.23
EM4 100.00{100.00{100.00| 100.00 100.00
Combined(EM1-EM4)| 96.25 | 96.18 | 88.49 | 98.51 82.82

Table 3: Detection accuracy of different ML models over the EMFI datasets.
(EM1-EM4 correspond to the different recording sessions with varying injection
location on the XY plane of the DUT). (Note: All values in the table are in %)

4.4 Classification between combined EMFI and CGFI against
Nominal condition

In this case the attack datasets from both EMFI and CGFI sessions are combined
to form the attack class. Similarly, the nominal class is also created for train-
ing/inference of the binary classifiers. The evaluation is also performed with the

12 R.R. Shrivastwa et al.

Detection Accuracy (%)

Dataset ML (GNBC)| Threshold
CG1 100 98.64
CG2 100 99.27
CG1&CG2 combined 100 98.24

Table 4: Detection accuracy comparison of CGFI between ML and Threshold
methods over CGFI datasets

threshold method and the results are compared as shown in Table 5. The combi-
nation of diverse datasets increases the linear classification complexity manifold
which can be observed from the performances of the ML, and Threshold models
over the hybrid datasets.

Classification Accuracy (%)
of nominal dataset from
Method |EMFI|CGFI| EMFI+CGFI

ML (GNBC)| 98.51 | 100 91.98
Threshold | 82.82 | 98.24 89.36

Table 5: Detection accuracy of FI from nominal case with combined EMFI and

CGFT attack case. (The EMFI and CGFI columns contain results of combined

dataset of all sessions)

4.5 Classification based on attack type between EMFI and CGFI

Finally, for perturbation detection, the results are presented in Table 6. It is
important to note that this classification is performed with just the attack case
(injection datasets only) and the DSs, as mentioned earlier, have linear saturation
directly proportional to attack strength. Thus, in the attack dataset with the
two classes being CGFI and EMFI, the difference is minimal where the linear
classifiers tend to fail in precisely optimizing the separation plane.

Values in %
Method |Accuracy|False Pos.|False Neg.
ML (GNBC)| 77.25 22.75 0
Threshold 39.61 0 60.39
Table 6: Accuracy comparison of perturbation detection between EMFI and
CGFI of ML and Threshold methods

Multi-source FI detection using ML and sensor fusion 13

5 Conclusion

In this work we introduce a two-stage fault injection detection framework for
EMFT and CGFTI while opening doors to more attack sources. Furthermore, we
provide analysis of fault detection for individual attacks of EM and CG while
comparing the ML based model with a classic threshold based method where
the threshold is trained instead of manually choosing a value. The ML model is
evaluated on a FPGA with benchmark testing, using the same test dataset from
the software evaluation, to record the classification accuracy of the ML model
on hardware. The ML model performs very well in detecting individual attacks
with accuracies of 98.51% and 100.00% for EMFI and CGFI respectively, and
92% in detecting both CGFI and EMFI combined. Furthermore, to detect the
perturbation type, classification is performed between CGFI and EMFI fault
dataset only with 77.25% detection accuracy.We finally combine all the methods
to form a two-stage FI detector where the stage one predicts the existence of an
attack when the DSs input can either be nominal, EMFI or CGFI. The second
stage is enabled if the first stage detects an attack and, thus, it predicts the
perturbation type.

References

1. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proceedings of the IEEE 94(2), 370-382 (2006)

2. Barthe, G., Dupressoir, F., Fouque, P.A., Grégoire, B., Zapalowicz, J.C.: Synthesis
of fault attacks on cryptographic implementations. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. pp. 1016—
1027. ACM (2014)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Annual international cryptology conference. pp. 513-525. Springer (1997)

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: International conference on the theory and appli-
cations of cryptographic techniques. pp. 37-51. Springer (1997)

5. Breier, J., Bhasin, S., He, W.: An electromagnetic fault injection sensor using hogge
phase-detector. In: 2017 18th International Symposium on Quality Electronic De-
sign (ISQED). pp. 307-312 (March 2017)

6. Breier, J., Hou, X., Bhasin, S.: Automated Methods in Cryptographic Fault Anal-
ysis. Springer (2019)

7. Cayrel, P.L., Colombier, B., Dragoi, V.F., Menu, A., Bossuet, L.: Message-recovery
laser fault injection attack on the classic mceliece cryptosystem. In: Canteaut, A.,
Standaert, F.X. (eds.) Advances in Cryptology - EUROCRYPT 2021. pp. 438-467.
Springer International Publishing, Cham (2021)

8. Claudepierre, L., Péneau, P.Y., Hardy, D., Rohou, E.: TRAITOR: A Low-Cost
Evaluation Platform for Multifault Injection. In: ASTACCS 2021 - 16th ACM ASTA
Conference on Computer and Communications Security. pp. 1-6. ACM, Virtual
Event Hong Kong, Hong Kong SAR China (Jun 2021)

9. Dottax, E., Giraud, C., Rivain, M., Sierra, Y.: On second-order fault analysis resis-
tance for crt-rsa implementations. In: IFIP International Workshop on Information
Security Theory and Practices. pp. 68-83. Springer (2009)

14

10.

11.
. Menu, A., Bhasin, S., Dutertre, J.M., Rigaud, J.B., Danger, J.L.: Precise spatio-

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

R.R. Shrivastwa et al.

Hospodar, G., Gierlichs, B., De Mulder, E., Verbauwhede, 1., Vandewalle, J.: Ma-
chine learning in side-channel analysis: a first study. Journal of Cryptographic
Engineering 1(4), 293 (2011)

Joye, M., Tunstall, M.: Fault analysis in cryptography, vol. 147. Springer (2012)

temporal electromagnetic fault injections on data transfers. In: 2019 Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC). pp. 1-8. IEEE (2019)
Miura, N., Najm, Z., He, W., Bhasin, S., Ngo, X.T., Nagata, M., Danger, J.: Pll
to the rescue: A novel em fault countermeasure. In: 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC). pp. 1-6 (June 2016)

Moore, S.W., Anderson, R.J., Kuhn, M.G.: Improving smartcard security using
self-timed circuit technology. In: Fourth ACiD-WG Workshop, Grenoble (2000)
Murdock, K., Oswald, D., Garcia, F.D., Van Bulck, J., Gruss, D., Piessens, F.:
Plundervolt: Software-based fault injection attacks against intel sgx. In: Proceed-
ings of the 41st IEEE Symposium on Security and Privacy (S&P’20) (2020)

Proy, J., Heydemann, K., Majéric, F., Cohen, A., Berzati, A.: Studying em
pulse effects on superscalar microarchitectures at isa level. arXiv preprint
arXiv:1903.02623 (2019)

Qiu, P., Wang, D., Lyu, Y., Qu, G.: Voltjockey: Breaching trustzone by software-
controlled voltage manipulation over multi-core frequencies. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. pp.
195-209 (2019)

Riviere, L., Najm, Z., Rauzy, P., Danger, J.L., Bringer, J., Sauvage, L.: High pre-
cision fault injections on the instruction cache of armv7-m architectures. In: 2015
IEEE International Symposium on Hardware Oriented Security and Trust (HOST).
pp. 62-67. IEEE (2015)

Saha, S., Alam, M., Bag, A., Mukhopadhyay, D., Dasgupta, P.: Leakage assessment
in fault attacks: A deep learning perspective. Cryptology ePrint Archive, Report
2020/306 (2020), https://ia.cr/2020/306

Saha, S., Jap, D., Patranabis, S., Mukhopadhyay, D., Bhasin, S., Dasgupta, P.:
Automatic characterization of exploitable faults: a machine learning approach.
IEEE Transactions on Information Forensics and Security 14(4), 954-968 (2018)
Selmane, N., Bhasin, S., Guilley, S., Danger, J.L.: Security evaluation of
application-specific integrated circuits and field programmable gate arrays against
setup time violation attacks. IET Information Security 5(4), 181-190 (December
2011

Swalrilima,tham7 S., Chmielewski, L., Perin, G., Picek, S.: Deep learning-based side-
channel analysis against aes inner rounds. TACR Cryptol. ePrint Arch 2021, 981
2021

£I‘ang,) A., Sethumadhavan, S., Stolfo, S.: {CLKSCREW}: exposing the perils of
security-oblivious energy management. In: 26th {USENIX} Security Symposium
({USENIX} Security 17). pp. 1057-1074 (2017)

Taouil, M., Aljuffri, A., Hamdioui, S.: Power side channel attacks: Where are we
standing? In: 2021 16th International Conference on Design & Technology of Inte-
grated Systems in Nanoscale Era (DTIS). pp. 1-6. IEEE (2021)

Zaid, G., Bossuet, L., Dassance, F., Habrard, A., Venelli, A.: Ranking loss: Maxi-
mizing the success rate in deep learning side-channel analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems pp. 25-55 (2021)

Zankl, A., Seuschek, H., Irazoqui, G., Gulmezoglu, B.: Side-channel attacks in the
internet of things. In: Research Anthology on Artificial Intelligence Applications
in Security, pp. 2058-2090. IGI Global (2021)

https://ia.cr/2020/306

	Multi-Source Fault Injection Detection using Machine Learning and Sensor Fusion

