
HAL Id: hal-03433816
https://telecom-paris.hal.science/hal-03433816

Submitted on 18 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of a Laser-induced Instructions Replay Fault
Model in a 32-bit Microcontroller

Vanthanh Khuat, Jean-Max Dutertre, Jean-Luc Danger

To cite this version:
Vanthanh Khuat, Jean-Max Dutertre, Jean-Luc Danger. Analysis of a Laser-induced Instructions
Replay Fault Model in a 32-bit Microcontroller. 2021 24th Euromicro Conference on Digital System
Design (DSD), Sep 2021, Palermo, Italy. pp.363-370, �10.1109/DSD53832.2021.00061�. �hal-03433816�

https://telecom-paris.hal.science/hal-03433816
https://hal.archives-ouvertes.fr

Analysis of a Laser-induced Instructions Replay
Fault Model in a 32-bit Microcontroller

Vanthanh Khuat∗‡, Jean-Max Dutertre† and Jean-Luc Danger∗
∗LTCI, Télécom Paris, Institut polytechnique de Paris, France

Email: {khuat, jean-luc.danger}@telecom-paris.fr
†Mines Saint-Etienne, CEA, Leti, Centre CMP, F - 13541 Gardanne France

Email: dutertre@emse.fr
‡Faculty of Information Technology, Le Quy Don Technical University, Hanoi, Vietnam

Email: van-thanh.khuat@lqdtu.edu.vn

Abstract—In this paper, we present a method to obtain a
new Laser Fault Injection (LFI)-induced fault model: replay of
instructions on a 32-bit Microcontroller (MCU). This method
allows a potential adversary to replay a block of two or four
instructions with a fault rate up to 100%. These faults are
induced by laser pulses and cause the instructions updating
process of a Flash buffer to fail. As a result, the new instructions
failing to be stored in the Flash buffer, the previous ones are
replayed. We deeply studied the properties of this replay fault
model by many experiments of laser fault injections. We have
notably shown that the sensitivity window is proportional to the
laser Pulse Width (PW), and that up to 20 instructions in a row
were tested to be overwritten due to replaying five times the
block of four instructions. The effects of the laser power and
cache status (enabled or disabled) are also presented. Finally, we
proposed and assessed a simple method to detect the LFI-induced
replay faults using a hardware counter with different increments.
Our results extend the ability of LFI on MCU, illustrating the
accuracy and reproducibility of LFI.

Index Terms—Laser fault injection, Fault models, Character-
ization, Microcontroller.

I. INTRODUCTION

Thanks to its advantages such as low-cost, compact size,
and easy to use, MCU is an outstanding candidate for many
Internet of Things (IoTs) applications, in which the MCUs
process plenty of valuable information such as password, ac-
count number, identity, critical data, etc. The MCUs are subject
to many types of attack. As they are physically accessible,
physical attacks become possible in addition to cyber attacks.
One of the most powerful threat is the Fault Injection (FI).

FI is an active physical attack in which the attacker induces
faults into a target to further exploit them in order to obtain
information by differential fault analysis (fault vs no-fault).
The most common techniques used for Fault Injection Attacks
(FIA) are: Clock or voltage tampering [1], Electromagnetic
Fault Injection (EMFI) [8], Optical fault injection [4], [13].
The attacks can be classified into invasive, semi-invasive, and
non-invasive attacks. LFI is a semi-invasive one because in this
technique the device needs to be unpackaged to ensure that
the light can reach the circuit layer. Optical fault injection
is the method in which the optical source, specifically the
laser source, is used to induce ionization in electronic circuit
devices hence causing the targets to behave differently. The

disadvantages of this method are: (1) the cost of equipment is
relatively high (2) and well-trained staffs are needed to operate
the laser. However, the laser has the advantage that it has a
very high temporal and spatial accuracy. This comes from the
fact that the laser pulse can be confined in a very small space
(a few µm), and lasts for a very short time.

The optical source had been used for injecting transient
localized disturbances into the electronic circuit since 1965 [5],
but the first optical attack was only reported in [13], in which
the author succeeded to use the laser illumination to change
the data stored in memory cells. Then there have been plenty
of works focusing on examining the characteristics of the
optical attack, understanding the mechanism underneath, and
developing the countermeasures against it. Among these, many
are dedicated to studying different kinds of laser-induced faults
in MCU.

LFI is reported of being able to cause faults on data stored in
memories such as volatile type [12], or data being transferred
on the communication bus without affecting the data stored
in the source memories [2]. Specifically, LFI can target and
modify instructions being read from memories to Processor
Core (PC), causing instruction corruption, instruction skip,
etc. Recently, Dutertre et al. [4] reported a LFI-induced
powerful multiple instructions skip fault model, in which the
authors were able to achieve an arbitrary number of skipped
instructions with a maximum of 300 instructions being skipped
by using laser pulse with a relatively long PW.

FI-induced fault in MCU can also prevent the update of a
block of several instructions to be executed, resulting into the
replay of the previous block of instructions (as if the targeted
instructions have been overwritten by the replayed ones). In
[11], the authors succeed to use Electromagnetic (EM) pulse
to prevent the update of a data buffer during cache read,
replaying a block of up to four instructions. However, to our
best knowledge, there is no paper reporting such fault model
using LFI.

In this paper, we report on the observation of a new fault
model induced by LFI: the replay of block of instructions in
a 32-bit MCU. The main contributions of this paper are:

• obtaining a new LFI-induced fault model: the replay of
block of instructions in a 32-bit MCU;

• analyzing the impact of the laser power on the replay
fault rate and fault window;

• investigating the impact of laser PW on the replay fault
model and extending the fault model to multiple times
replay of a block of instructions;

• achieving the replay fault with cache enabled and cache
disabled, comparing them to each other;

• proposing a countermeasure at instruction level to detect
the replay fault.

The rest of the paper is organized as follows. Section II
describes the experimental setup, target, test code, fault defini-
tion, and methodology. Section III discusses the fault models
of replay of block instructions achieved with LFI. Section IV
discusses the dependency of the number of instructions being
overwritten as the function of the laser PW. Section V char-
acterizes the impact of the laser power on the replay fault.
Section VI investigates the replay fault model as the cache is
enabled and compares it with result obtained as the cache is
disabled. Section VII describes a proposed detection method
for LFI-induced replay fault and provides experimental results.
Finally, section VIII provides the main conclusions and some
perspectives.

II. EXPERIMENTAL SETUP AND METHODOLOGY

A. Laser bench

Figure 1. Experimental setup: (a) laser bench schematic, (b) target back-side
image taken using an IR camera.

Our laser setup is depicted in Fig. 1(a), it consists in a laser
source, a microscope, a XYZ table, a camera, and a computer.

The laser source can produce laser pulses with a wavelength
of 1,064 nm which allows the light to pass through several
hundreds of µm of silicon. The laser PW is tunable in the
range from 50 ns to 1 s. Note that in this work we only
considered single laser pulse (several laser pulses could also
be used as in [4]). In addition, the laser source allows obtaining
a programmable delay, and power ranging from 0 to 3 W. The
laser light is conducted to and focused by a microscope. In our
experiments, an objective of 20x was used to focus the pulse
on the device under test. The diameter of the laser spot was 5
µm (single-mode laser fiber). More details on the laser bench
can be found in [4], [10]. The device under test was mounted
on a XYZ stage which allows controlling the position of the
laser spot with an accuracy of 0.1 µm. The IR camera was
used to see the surface of the device. The computer was used
to control the laser pulse parameters and communicate with
the device under test.

B. Device under test and targeted region

Our target is the 32-bit MCU SAMD21G18A [6], em-
bedding an ARM Cortex-M0+ core (2-stage pipeline), that
implements the ARMV6 thumb instruction set of which most
of the instructions are 16-bit length [7]. Fig. 2 shows the block

Figure 2. SAMD21 Nonvolatile Memory (NVM) interface [6]

schematic of the NVM of the SAMD21G18A. Instructions,
normally stored in the NVM such as the Flash, are loaded into
the Flash interface buffer before being transferred to the AHB
bus. The MCU is equipped with 256 Kb Flash, and 32 Kb
SRAM. The data transfer between processor and memories is
performed via a 32-bit AHB and APB bus. A cache, of which
the size is 8×64-bit lines, is added to improve the performance
of the MCU.

The MCU was unpackaged from the backside to ensure
that the light is able to reach the transistor layer. Notice that
laser power is strong enough to reach the circuit layer of the
MCU without requiring it to be thinned down. Fig. 1(b) shows
the image taken with an IR camera from the backside of the
MCU. The positions of the Flash and SRAM memories are
marked with black rectangular shapes. The other structures in
the circuit layer can also be seen. The region where the replay
fault model is obtained is highlighted as the targeted region
marked with a red rectangular shape which is located near
the Flash region. After being opened, the MCU was soldered
on a minimum circuit board designed based on [6]. For all
the experiments, the MCU was configured to work at 12 MHz,

with zero wait states which guarantees there is no delay during
the data read operation from the Flash memory. The MCU
was debugged using an Atmel-ICE Debugger which allows
stopping the program at a breakpoint and collecting registers
data for further analysis.

C. Test code and fault definition

Figure 3. Test code and fault definition, (a) testcode, (b) replay i1i2, (c)
replay i5i6, (d) replay i1i2i3i4.

The main part of our test code which consists of ten
instructions is shown in Fig. 3(a). For convenience, the
instructions are denoted as (i1, i2, i3, i4, i5, i6, i7, i8, i9,
i10). As in cache disable mode, for every two clock cycles,
32-bit data corresponding to two 16-bit instructions are
loaded from the Flash, the laser pulse was used to target the
load of each two instructions. It should be pointed out that to
differentiate the replay and skip of instructions, the replayed
instructions shall not be no-operation (or nop instruction),
because it would make the replay being equivalent to skip
of instructions. Here, for convenience of post processing,
instructions: sub r0,r0,#value (with value being
0x01, 0x02, 0x04, 0x08) were used for (i1, i2, i3, i4);
and (i5, i6, i7, i8, i9, i10) are simply the operations to
add #value to a register, with value being 0x01 and
0x02. The initial values of the related register are as follows:
R0:0x7F8000FF, R1:0x01FE0000, R2:0x3FC00000,
R3:0x001FE000. And the expected values of the related
registers at the end of the program are: R0:0x7F8000F0,
R1:0x01FE0003, R2:0x3FC00003, R3:0x001FE003.
The following fault definitions are used in this paper.

• replay i1i2: (i5, i6) being overwritten by (i1, i2) as shown
in Fig. 3 (b). In this case, the final values of the related
registers are: R0:0x7F8000ed, R1:0x01FE0000,
R2:0x3FC00003, R3:0x001FE003;

• replay i5i6: (i9, i10) being overwritten by
(i5, i6) as shown in Fig. 3 (c). In this
case, the final values of the related registers
are: R0:0x7F8000F0, R1:0x01FE0006,
R2:0x3FC00003, R3:0x001FE000;

• replay i1i2i3i4: (i5, i6, i7, i8) being overwritten
by (i1, i2, i3, i4) as shown in Fig. 3 (d).
In this case, the final values of the related
registers are: R0:0x7F8000E1, R1:0x01FE0000,
R2:0x3FC00000, R3:0x001FE003;

• other: Instruction(s) modification, system faults, and
other.

It is worth noting (as reported in section III) that in replay of
two instructions: (i5, i6) are overwritten by (i1, i2) but (i3,
i4) which are right above them, can not be replayed. While in
replay i1i2i3i4, (i5, i6, i7, i8) are overwritten by (i1, i2, i3,
i4).

D. Test procedure

We first performed a scan of all the chip surface to identify
its laser-sensitive regions. Several regions were found to be
sensitive to the laser pulse such as the Flash and several
other regions. For the Flash region, the fault tends to be the
corruption on some specific bits of the opcode, resulting into
instruction modification or skip as reported in [3]. The laser
spot was then fixed at an optimal position that provides the
highest replay fault rate. Notice that the same fault behavior
can still be achieved as we moved the laser spot around this
position with a diameter around tens µm, however the fault
rate deceases along the distance to the optimal position. All
registers were initialized to a known value at the beginning
of all the tests to ensure fault traceability. One test iteration
follows three main steps: (1) the target is reset to initialize all
systems including memories and registers; (2) the trigger for
laser pulse generator is set and the test code is then executed
(as a result of the trigger setting the laser source is fired);
(3) registers content harvesting is performed as the program
reaches the configured break-point. During the campaign, 100
tests were performed for each set of fault injection parameters.
Before each test, we collected the contents of all registers
at the configured break-point to confirm that the program
functions correctly in the normal condition and used it as a
reference to detect the fault after each LFI.

III. REPLAY FAULT MODEL

A. First experimental results

At first, the MCU was configured to work in cache disabled
mode. We set the laser PW to 50 ns, and its power to 0.75 W.
The delay, or time elapsed between the trigger onset and the
actual firing of a laser pulse, was chosen to target the loading
of instructions (i5, i6), (i7, i8), (i9, i10) into the Flash buffer to
see how often the fault happens. Fig. 4 depicts the LFI replay
fault rate as a function of time on a 400 ns delay range (from
1,650 ns to 2,050 ns). For a delay around 1,680 ns and
2,000 ns, the replay i1i2 and replay i5i6 fault models were
respectively obtained with fault rates up to 100%. The replay

Figure 4. Fault rates of replay i1i2 and replay i5i6.

i1i2 happens from 1,645 ns to 1,695 ns, while the replay
i5i6 happens from 1,980 ns to 2,025 ns. The corresponding
fault windows for each were almost equal to the laser PW. It
proved impossible to obtain a replay i3i4 fault for any value
of the delay. The time interval between replay i1i2 and replay
i5i6 is 4 clock cycles (i.e. ≈333 ns). Further investigation
confirms that the above behavior occurs every 4 clock cycles.
Therefore we focused our experiments on the time interval of
four clock cycles during which the loads of instructions (i5,
i6) and (i7, i8) were performed.

The laser power was set to 0.75 W, the PW was set to
different values from 50 ns to 200 ns. LFI delay was adjusted
to target the loads of (i5, i6) and (i7, i8) from Flash memory
by changing the pulse delay time. The obtained replay fault
rates are shown in Fig. 5. First, we can see that the fault
sensitivity window is proportional to the laser PW and that
it ends around a delay time of 1,695 ns for each value of
PW. For PWs of 50 ns, 80 ns and 120 ns, a replay of two
instructions with a fault rate of 100% is observed, as shown in
Fig. 5(a), (b) and (c). Starting from a PW of 160 ns, a replay
of four instructions is seen at the end of the fault interval as
shown in Fig. 5(d). Then, as the laser PW increases, the replay
of four instructions interval widens accordingly as shown in
Fig. 5(e) and (f).

As the clock period is approximately 83.3 ns, the replay
of four instructions fault model (i1, i2, i3, i4) starts to appear
as the laser PW reaches two clock cycles (i.e. 160 ns). The
replay (i3, i4) fault model was never observed, it is only faulted
together with (i1, i2).

B. Fault mechanism hypothesis

For analysis purposes, we drew the scenarios of replay
faults in Fig. 6 where we depicted the sensitivity window
of the replay (i1, i2) and (i3, i4) fault models with green
arrows marked load buffer 1 and 2 respectively. For (i1, i2)
as long as the pulse covers the first sensitive point, a replay
of these two instructions is observed as shown in Fig. 6(a).
Note that the delay sensitivity window in Fig. 5 (a) to (d)

Figure 5. Obtained replay fault models and fault rates for laser PW set to:
(a) 50 ns, (b) 80 ns, (c) 120 ns, (d) 160 ns, (e) 180 ns, (f) 200 ns.

extends leftward as the laser PW increases; this is because a
greater PW accommodates with a lower delay to obtain a laser
perturbation able to reach the instruction load process at 1,700
ns.

(i3, i4) can not be replayed independently as illustrated in
Fig 6 (b). However, as the pulse duration is long enough
to cover both sensitive points at 1,700 ns and 1,860 ns, a
replay i1i2i3i4 is observed as exemplified in Fig. 6(c), which
corresponds to the experimental results reported in Fig. 5 (e)
and (f).

Because the SAMD21G18A implements an ARM Cortex-
M0+ core (which has a 32-bit bus, and a 2-stage pipeline)
and that the processor fetches 32 bits data (i.e. two 16-bit
instructions) from the Flash memory every two clock cycles,
we draw the assumption that it uses two 32-bit buffers: buffer1
and buffer2, at the Flash interface. Each of them is updated
with new data every four clock cycles (with a relative phase
shift of two clock cycles between them). This process is
illustrated in Fig. 7. In a normal execution process, at clock
cycle 2, the content of buffer1 is (i1, i2), and will be updated
with (i5, i6) as shown in Fig. 7(a) (and then with (i9, i10) four

Figure 6. Different replay fault scenarios with different PWs and delay time,
(a) replay i1i2, (b) nofault, (c) replay i1i2i3i4.

clock cycles later).
Fig. 7(b) depicts how a replay i1i2 is induced. Buffer1 is

disturbed by a laser pulse during clock cycle 2, it fails to
update: its content remains (i1, i2): as a result (i1, i2) are
replayed, and (i5, i6) are never executed (as if they were
overwritten by (i1, i2)). The same principle is applied for
replay i5i6 in which (i9, i10) are not updated properly as
shown in Fig. 7(c).

Figure 7. Replay fault hypothesis, (a) normal execution process, (b) replay
i1i2 caused by a laser pulse during clock cycle 2, (c) replay i5i6 caused by a
laser pulse during clock cycle 6, (d) replay i1i2i3i4 caused by a laser pulse
covering clock cycles 2 to 4.

Fig. 7(d) illustrates the case of a longer laser pulse (corre-
sponding to a laser PW greater or equal to 160 ns as reported
in Fig. 5(e) and (f)) induced during clock cycles 2 to 4 and able
to cover the sensitivity windows of both buffer 1 and buffer 2.
As a result, the update of both buffers fails and a replay of four
instructions is obtained (i.e. replay i1i2i3i4). Our experiments
did not revealed why it is impossible to replay instructions (i3,
i4) independently of instructions (i1, i2). It is probably due to
the hardware architecture of buffers 1 and 2 that is unknown
to us and to the local effect of LFI.

IV. IMPACT OF THE PW ON THE NUMBER OF
INSTRUCTIONS BEING OVERWRITTEN

Figure 8. Impact of PW on the number of instructions being overwritten.

We then checked the ability to replay a block of instructions
several times by increasing the laser PW. The laser power
was set to 0.75 W, and the laser PW was increased from
160 ns to 1,500 ns with an increment step of 166 ns
corresponding to a duration of two clock cycles. Fig. 8 reports
the number of instructions being overwritten as a function of
the laser PW. For every increase of the laser PW by two clock
cycles, the number of instructions being overwritten increases
by two. The same four instructions were replayed several
times (with a granularity of two replayed instructions). We
tested until the block (i1, i2, i3, i4) was replayed for five
times corresponding to 20 instructions being overwritten (not
executed). It is believed that the number of instructions being
overwritten can be even more, however, we did not test with
longer laser pulse because there was a risk of burning the
MCU.

To summarize, this laser-induced fault injection mechanism
is linked to a failure of the update processes of two 32-
bit buffers at the Flash memory interface. As a result, the
instructions stored into the targeted buffer(s) are replayed
while the instructions failing to be fetched from the Flash are
discarded (as if they are overwritten by the replay instructions).
This faulty behavior has a periodicity of four clock cycles and
may affect both buffers (though buffer 2 can only be affected
after buffer 1 was). This fault can be reproduced several times

by increasing the laser PW, replaying the same instructions
stored in the two buffers and overwritten those failing to be
fetched). A fault rate of 100% was obtained experimentally.

V. IMPACT OF THE LASER POWER

Figure 9. Impact of laser power on replay fault rate as PW is 50 ns, (a) 0.3
W, (b) 0.4 W, (c) 0.5 W, (d) 0.6 W, (e) 0.7 W, (f) 0.8 W.

To understand the impact of the laser power on the fault
rate of the replay fault model, we set the PW at 50 ns and
the laser power was progressively increased from 0.1 W to 0.8
W with an increment of 0.1 W. The corresponding fault rates
are shown in Fig. 9. For laser power of 0.1 W and 0.2 W,
no fault is detected. With the power of 0.3 W, replay i1i2 is
observed, however the maximum fault rate is only 20% and the
fault sensitivity window is very small as shown in Fig. 9(a).
Starting from laser power of 0.4 W, the fault rate can reach up
to 100% as shown in Fig. 9(b). As the power goes higher, the
fault interval becomes wider as shown in Fig. 9 (c), (d), (e)
and (f). As can be seen, the laser power has a direct impact
on the replay fault rate, it should be high enough to cause the
replay fault.

Figure 10. Comparison of replay faults obtained with cache disabled and
cache enabled: (a) cache disabled, (b) cache enabled.

Figure 11. Hypothesis of Replay of four instruction as the cache is enabled,
(a) normal execution process, (b) replay of four instruction caused by LFI-
induced 64-bit buffer update prevention during clock cycle 2.

VI. CACHE DISABLED AND ENABLED COMPARISON

We also studied the replay fault model as the cache is
enabled. The replay fault rates with cache disabled and enabled
are shown in Fig. 10. The laser PW was 50 ns and the laser
power was 0.75 W. It is clear that as the cache is enabled
we still achieved the replay fault. And the fault interval is
quite the same as that of the case when the cache is disabled.
However, the replay is with a block of four instructions (i.e.
replay i1i2i3i4) instead of two instructions. And the fault rate
is up to 100% as shown in Fig. 10(b). Further investigation
also showed that the fault repeats itself every four clock cycles.
Therefore, it is also ascribed to the laser-induced prevention
on the Flash buffer update. However unlike the case with
cache disabled, as the cache is enabled, the 64 bits data
corresponding to four 16-bit instructions are updated every
four clock cycles. This is because the cache is 8 lines of 64
bits. Fig. 11 demonstrates how the Flash buffer is updated
as the cache is enabled. As shown in Fig. 11(a), in normal
execution process, at clock cycle 2 the content of the buffer is
(i1, i2, i3, i4) and is supposed to update with (i5, i6, i8, i8).
However, as it is disturbed by a laser pulse during clock cycle
2 the update process is prevented as illustrated in Fig. 11(b),
therefore four instructions (i1, i2, i3, i4) are re-executed
instead of (i5, i6, i7, i8), resulting in the replay i1i2i3i4
(the corresponding experiments are reported in Fig. 10(b)). It
should be noticed that with cache disabled, replay i1i2i3i4
can also be observed as discussed in the previous section
however the PW needs to be as long as two clock cycles
duration to cover the update of four instructions. In addition,
the replay of instruction as cache enabled here is similar to
the result of Riviere [11], in which the author ascribed replay

of instructions to cache read failure as subjected to EM pulse.
However, the result here clearly demonstrates that the replay of
blocks of instructions occurs in both cases for cache disabled
or cache disabled. In addition, it is more likely to happen at
the Flash interface buffer, where the instructions are loaded
periodically.

VII. METHOD FOR DETECTION OF INSTRUCTIONS REPLAY
FAULT

Figure 12. Detection of replay fault model (a) test code , (b) protected code,
(c) replay of two instruction with protected code, (d) replay of four instructions
with protected code.

We also developed a method to detect the LFI-induced
instructions replay fault in a MCU. Fig. 12 illustrates the
implementation of the method and its principle. Here, we con-
sider the case of a replay that targets the block of instructions
(i1, i2, i3, i4), see in Fig. 12(a). The idea behind this method
is to insert a hardware counter (register R5 in our case) to
be incremented after each instruction and use it to detect the
fault as highlighted in bold in Fig. 12(b). R5 is used as the
counter, and the inserted instructions are denoted as (c1, c2,
c3, c4), which are simple add operations. Notice that each
time the counter is incremented with a different value us-
ing instruction add R5,R5, #value with the value being
0x01,0x02,0x04,0x08. Fig. 12(c) demonstrates the case
in which replay fault happens with two instructions (i1, c1).
While Fig. 12(d) demonstrate the case in which replay fault
happens with four instructions (i1, c1, i2, c2).

As a consequence of the laser-induced instructions replay,
the value of R5 will be modified. Therefore, in the program
by checking the value of R5, the fault can be detected.
For example, consider that an initial value of R5 is 0x00.
At the end of the program, the expected value of R5 is
0x0F. However, if the replay of two instructions illustrated
in Fig. 10(c) happens, (i3, c3) are overwritten by (i1, c1), and
as a result the value of R5 would be 0x0C. In case of a replay

of four instructions as illustrated in Fig. 10(c) (where (i3, c3,
i3, c4) are overwritten by (i1, c1, i2, c2)), the value of R5
would be 0x06 which would be detected.

The advantages of this detection method are: (1) easy to
implement, (2) relatively small code size overhead. To clarify
this, let us consider the countermeasure proposed in [9] against
single skip instruction fault model. The implementation of this
method includes two steps: (1) transforming the instructions
into the idempotent ones, (2) duplicating all the idempotent
instructions obtained in first step. It should be noticed that
in the first step, the transformation of a non-idempotent in-
struction may result into several idempotent instruction which
are further duplicated in the second step. This leads to very
heavy code size overhead and longer code execution time.
In addition, the process is quite complex because there is
no common formula for such instruction transformation. In
comparison, our detection method is quite easy to implement.
The designers only need to insert a counter in the program and
increase it after each instruction. There is no need to transform
or revise the instruction. The protected code suffers from an
overhead in both code size and execution time that are doubled
(a little more than doubled in fact, taking into account the code
part in charge of checking the counter).

We experimentally tested this method against LFI-induced
replay instructions faults. In the following, in order to evaluate
the effectiveness of the detection method, the detected faults
are classified into fault in R5 (i.e. a replay fault is detected
thank to an incorrect value readback from R5) and other
fault (fault occurs without affecting value of R5). The results
obtained with different laser powers, while the PW was 50
ns are shown in Fig. 13. It can be seen that in most of the
cases where faults occur, the value of R5 is also faulted. No
replay fault was observed without being detected by a faulty
value of R5. The proposed method was proved to be effective
at detecting laser-induced replay faults with a 100% success
rate. It should be pointed out that the detection method only
works if one of the instructions cn (with n being 1, 2, ..) is
included in the block being replayed or overwritten. In case of
single instruction updating, if the laser illumination prevents
updating the instruction in but does not prevent updating the
counter cn, the replay will be not detected because the value
of the counter is correct.

VIII. CONCLUSION & PERSPECTIVES

In this paper, we reported, on experimental basis, the ability
for an attacker to induce an original LFI fault model: the
replay of blocks of instructions in a 32-bit MCU. These replay
faults are induced by laser pulses which cause the instructions
updating process of two instruction buffers at the interface
of the Flash memory to fail. It leads to the replay of the
already stored instructions. In addition, and as a result, the
instructions failing to be stored in the buffers are overwritten
by those replayed. When the target’s cache is enabled, it makes
it possible to replay a block of four instructions with settings
relatively easy to find to ensure a fault rate of 100%. The
fault injection process has then a periodicity of four clock

Figure 13. Experimental result using a hardware counter to detect replay
fault, PW 50 ns (a) 0.3 W, (b) 0.4 W, (c) 0.5 W, (d) 0.6 W, (e) 0.7 W, (f) 0.8 W.

cycles. Increasing the laser PW makes it possible to repeat the
process and to replay successively the same block of replayed
instructions while overwriting several instructions in a row
(we ascertained this behavior for up to twenty instructions
in a row and draw the assumption that this number can be
increased further similarly to what is reported in [4] for the
instruction skip fault model). This phenomenon was observed
with the target’s cache enable or disabled with a difference in
the granularity of the number of replayed faults that drops to
two for the latter case (which was also very helpful to analyze
and understand the underlying process and its relation with the
two buffers).

This laser-induced new fault model appears to be very
powerful for an attacker as it makes it possible to overwrite
several instructions in a row, mimicking the instruction skip
fault model of [4] that was only demonstrated on an 8-bit
MCU. It may be used to erase (i.e. overwrite) a whole section
of a program for attack purposes. A perspective work would be
to study if the ability to replay some instruction while erasing
other may be linked to an increased threat w.r.t. to repeated
fault skips.

We also introduced a first simple software detection method
for the replay fault model. It uses a register as a hardware
counter that is incremented by dedicated canary instructions
inserted in-between instructions to be protected. The register
content is checked against a predicted value after the protected
section of the program. Hence, any difference in the counter
value due to the overwriting of a canary instruction shall be
detected if a replay fault is induced. This method comes at a
high price, it is associated to an overhead in both code size
and execution time that are approximately doubled. However,
our experiments proved its effectiveness.

Other, more elaborate countermeasures are prospective re-
search work.

ACKNOWLEDGMENT

This work was partly funded by the SPARTA project, which
has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement
number 830892.

REFERENCES

[1] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-
depth and black-box characterization of the effects of clock glitches on
8-bit mcus. In 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 105–114. IEEE, 2011.

[2] Arthur Beckers, Josep Balasch, Benedikt Gierlichs, Ingrid Verbauwhede,
Saki Osuka, Masahiro Kinugawa, Daisuke Fujimoto, and Yuichi
Hayashi. Characterization of em faults on atmega328p. In International
Symposium on Electromagnetic Compatibility. IEEE, 2019.

[3] Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain
Moëllic, Jean-Baptiste Rigaud, and Jean-Luc Danger. Laser-induced
single-bit faults in flash memory: Instructions corruption on a 32-bit
microcontroller. IACR Cryptology ePrint Archive, 2018:1042, 2018.

[4] Jean-Max Dutertre, Timothé Riom, Olivier Potin, and Jean-Baptiste
Rigaud. Experimental analysis of the laser-induced instruction skip fault
model. In Nordic Conference on Secure IT Systems, pages 221–237.
Springer, 2019.

[5] Donald H Habing. The use of lasers to simulate radiation-induced
transients in semiconductor devices and circuits. IEEE Transactions
on Nuclear Science, 12(5):91–100, 1965.

[6] Microchip Technology Inc. SAM D21/DA1 Family.
https://ww1.microchip.com/downloads/en/DeviceDoc/SAM_D21_
DA1_Family_DataSheet_DS40001882F.pdf.

[7] ARM Limited. Arm®v6-m architecture reference manual. In ARM
Limited. ARM Limited, 2017.

[8] Nicolas Moro, Amine Dehbaoui, Karine Heydemann, Bruno Robisson,
and Emmanuelle Encrenaz. Electromagnetic fault injection: towards a
fault model on a 32-bit microcontroller. In 2013 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pages 77–88. IEEE, 2013.

[9] Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno
Robisson. Formal verification of a software countermeasure against in-
struction skip attacks. Journal of Cryptographic Engineering, 4(3):145–
156, 2014.

[10] PULSCAN. Innovative Solutions for Testing and Failure Analysis. https:
//www.pulscan.com/pages/pulsbox.php/.

[11] Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien
Bringer, and Laurent Sauvage. High precision fault injections on the
instruction cache of armv7-m architectures. In 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
62–67. IEEE, 2015.

[12] Cyril Roscian, Alexandre Sarafianos, Jean-Max Dutertre, and Assia Tria.
Fault model analysis of laser-induced faults in sram memory cells. In
2013 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 89–98. IEEE, 2013.

[13] Sergei P Skorobogatov and Ross J Anderson. Optical fault induction
attacks. In International workshop on cryptographic hardware and
embedded systems, pages 2–12. Springer, 2002.

