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Abstract—Monitoring the daily activities of older adults is
a key enabler for aging in place because it reliably indicates
whether autonomy is preserved and it prevents unwanted situa-
tions (e.g., lack of activity during daytime). To fulfill its promises,
activity monitoring requires development methods capable of
systematically delivering activity recognizers that are accurate
enough to be trusted and accepted by users and their caregivers.

This paper presents a systematic approach to developing accu-
rate activity recognizers, based on a tooled method. To achieve
accuracy, our strategy is twofold: 1) to encompass the main
variations of a target activity by abstracting over descriptions
reported by users; 2) to ensure proper customization with respect
to user specificities using a dedicated tool. This development
method is iterative, allowing to adjust the parameters of an
activity recognizer to maximize its accuracy.

We validated our approach by applying it to a case study.
Specifically, we applied our tooled method to the development of
6 generic activity recognizers, which were then customized with
respect to the specificities of 5 older adults, and deployed in their
homes during 5 days. Once deployed, the results produced by
these activity recognizers were checked daily against activities
self-reported by our participants. This experiment shows that
80% of the outputs of our activity detectors were confirmed by
the user reports. The accuracy of our approach goes up to 88%
when considering the four, more routinized participants.

Index Terms—human activity recognition, ambient assisted
living, smart homes, agile methodologies, aging in place

I. INTRODUCTION

The aging of the population raises a vast societal challenge
to support the needs of older adults and to enable them to
live independently. To address this challenge, a promising
approach revolves around assistive computing and consists of
equipping the home of older adults with pervasive computing
technologies and services dedicated to monitoring and assist-
ing their daily activities [1]. In this approach, it is paramount
to monitor the daily activities performed by older adults,
such as a bedtime routine and meal preparation, because they
give a reliable indication of whether autonomy is preserved
and prevent unwanted situations (e.g., lack of activity during
daytime). In particular, the goal of this monitoring is to assess
how daily activities evolve over time. On the one hand, a
sudden surge in activity misses is valuable information for a
caregiver or a health professional that can result in a prompt
intervention. On the other hand, a steady increase in activity
misses is useful for a caregiver to anticipate compensation
measures (e.g., a meal delivery service).

To fulfill its promises, activity monitoring requires devel-
opment methods capable of systematically delivering activity
recognizers that are accurate enough to be trusted and ac-
cepted by users. Indeed, considering how much they are to be
intertwined in the daily life of users, activity detectors with
low accuracy may do more harm than good. For example,
consider an activity recognizer that falsely misses activities
and issues erroneous reminders to a frail user and their
caregiver. At best, such a service is quickly ignored and/or
unplugged by the user; at worse, it may have a deleterious
effect on them.

The major challenge when developing activity recognizers
is to make them both generic and specific: generic to cope
with a wide range of home configurations and user routines,
and specific to detect activities with a sufficient level of
accuracy. Black-box approaches based on machine learning
are very powerful for dealing with a potentially high volume
of data and delivering statistically correct answers. However,
such answers may not be predictable enough, nor easy to
explain to older adults and caregivers. Moreover, approaches
based on machine learning require a great amount of training
data (sometimes tagged by experts) in order to be effec-
tively specialized for each home/user configuration. These
limitations suggest that deterministic solutions to activity
recognition are better suited for assistive computing and that
activity recognizers should be both generic to scale, and
customizable to account for user/home specificities.

Recently Caroux et al. proposed an approach to daily
activity recognition for older adults that aims to verify daily
routines based on user declarations [2]. Specifically, daily
routines are initially declared by users and their caregivers;
these declarations are then formalized into simple formulas,
which model user interactions with their environment. For-
mulas, generalized across users, are matched against sensor
data to determine whether daily routines have been performed.
Because their approach is driven by user declarations, activi-
ties are verified and not inferred, delivering predictable infor-
mation. Although, activity verification has shown promising
results [3], developing activity recognizers involves ad hoc
and manual steps that prompt a need for methodological and
tool support.

This paper presents an agile method dedicated to producing



accurate and rapidly customizable activity recognizers. Our
method is 1) knowledge based in that it involves declarations
from users and their caregivers to drive the service customiza-
tion process, leveraging Caroux et al.’s approach, and 2) data
centric in that it uses real sensor logs from smart homes,
untagged and in small amount, to achieve the required level
of accuracy.

Our work makes the following key contributions.
• We present a disciplined method to develop generic

activity recognizers. This approach leverages user decla-
rations and generalizes over inter-individual variabilities.

• We develop a visualization tool used by our method to
allow rapid customization of generic activity recognizers.

• We expand the range of target activities, compared to
Caroux et al, and generalize their formula-based ap-
proach to cope with partially performed activities.

We validate our tool-based method by measuring the accu-
racy of our set of activity recognizers in a case study on
5 users and 6 activities, namely, bedtime routine, wakeup
routine, outings, preparation of breakfast, lunch and dinner.

The rest of the paper is strucured as follows. Section II
presents the related work and Section III provides some
background information and context for the proposed work.
Section IV defines our disciplined and tool-supported method.
Section V applies our method to the development of 6
customizable activity recognizers, tested by 5 older adults in
their home. Section VI assesses the accuracy of the developed
activity recognizers by matching their results against the user
truth. Section VII discusses our results and Section VIII
presents concluding remarks.

II. RELATED WORK

Homes are rapidly becoming connected with the deploy-
ment of pervasive computing technologies, consisting of con-
ventional devices, such as motion detectors, contact sensors
and connected plugs, and emerging technologies, such as
smart speakers, learning thermostats, connected door locks.
Today, most of these technologies automate a narrow range
of tasks, such as voice-activation of appliances and heating
system driven by machine learning. Tomorrow, pervasive
computing, scaled up by the Internet of Things, will allow to
maintain health and independence of older adults [4]. Taking
up this challenge, researchers have been developing smart
homes and services to monitor older adults, and study how
age decline impacts their cognition and everyday functioning.
A major project focusing on the monitoring of older adults
is CART [5], where longitudinal, naturalistic, observational
cohort studies are conducted at a large scale (totaling over
400 participants). Other smart home-based projects for aging
complement the monitoring with services that assist older
adults in their daily activities. This approach is pursued by
HomeAssist [6], which provides assistance to older adults in
the form of notifications to remind them of an activity (e.g., an
appointment) and to alert them about an undesirable situation

(e.g., a door left open). Regardless of the approach, smart
homes for aging in place revolve around activity recognition,
that is, the ability to recognize human activities [7]. Because
of privacy and intrusiveness concerns, activity recognition
for older adults often precludes the use of cameras when
studies are conducted in their homes [8]. As a consequence,
in the context of a smart home, most approaches to activity
recognition rely on sensors that detect interactions of the older
adult with their environment (e.g., a door opened, a motion
in a room) [5], [6].

In a real-life setting, recognizing human activities needs
to account for a range of inter-individual variabilities. These
variabilities include the home features, a caregiving context,
user specificities, requirements, and preferences. Neglecting
these variabilities can result in using an inappropriate sensor,
misplacing it, or making a false assumption. In turn, this leads
to missing user activities or misinterpreting sensor data. When
studies are conducted over a long period of time, collecting
incomplete or incorrect sensor data can turn into a vast waste
of time and energy. The range of variabilities in real-life
settings and their unexpected nature have been a major barrier
for the applicability of activity recognition approaches based
on machine learning and activity models. This difficulty is
illustrated by Dawadi et al. that restrict their use of machine
learning to infer activities in a lab setting [9].

Caroux et al. introduce an alternative to inferring activ-
ities, named activity verification [2], [3]; it is inspired by
Chen et al.’s knowledge-based approach [10] and has been
successfully applied to a real-life setting: homes of older
adults. Activity verification leverages knowledge about users
to verify their daily activities; the verification is driven by the
characteristics of the user and their daily activities. Activity
verification targets older adults because these individuals are
known to routinize their daily activities as they age [11].
Caroux el al. use declarations provided by older adults to
model their activities. In doing so, a user declares the charac-
teristics of each activity of interest. Specifically a user is asked
to situate the activity in a room (i.e., where), to identify the
user-environment interactions (i.e., how), and to give a time
at which the activity occurs (i.e., when). The observed user-
environment interactions give a list of markers that charac-
terize an activity (e.g., breakfast preparation involves turning
on the coffee machine, getting a mug from a kitchen cabinet,
taking a milk bottle from the fridge). Markers are not equally
reliable to detect an activity: some are said to be primary
markers because they are present every time the activity is
performed (e.g., coffee machine); whereas others are said
to be secondary markers because they may sometimes be
missing (e.g., a mug can be taken from the dishwasher, instead
of the usual cabinet). In practice, activity verification requires
a minimal set of sensors because markers have been carefully
selected based on the user-declared routines. Furthermore,
the approach only requires three kinds of sensors: motion
detectors (room presence), contact sensors (room/entrance and



cabinet doors) and connected plugs (appliance usage). Their
placement is driven by user declarations to target specific
user-environment interactions. Although promising, Caroux
et al.’s approach involves ad hoc and manual steps to achieve
accuracy.

Our work takes activity verification further by systematiz-
ing and tooling the development of accurate activity recogniz-
ers. Achieving accuracy is driven by a multi-step development
method that leverages user declarations to generalize over
inter-individual variabilities while ensuring proper customiza-
tion with respect to user specificities. This development
method is iterative and allows to adjust the parameters of
an activity recognizer to maximize its accuracy.

III. BACKGROUND

To develop our proposed method, we leveraged the Home-
Assist project [6], which aims to support aging in place
by developing and deploying a smart home platform in the
home of older adults. This platform consists of sensors, which
provide contextual information to a set of assistive services,
and actuators, which allow these services to take actions,
if needed. These services target three assistive domains: 1)
they monitor activities of daily living and providing assistance
when necessary (e.g., reminders, task prompting); 2) they alert
the user and/or caregiver when security issues are detected
(e.g., entrance door left open); 3) they support social inter-
actions (e.g., collaborative games). The HomeAssist platform
was used in a field study and deployed in over 140 homes of
older adults, aged 80 years and older, living alone, during
a maximum of 24 months. This field study revealed the
positive impact of HomeAssist on participants in terms of
daily autonomy, self-regulation and empowerment [12].

For each participant, depending on their needs, specific
activities are targeted for assistance. Declaring an activity
includes having the user sketch the activity of interest in their
home to determine reliable markers. Table I presents a typical
list of sensors deployed in a home; the first column lists the
rooms fitted with sensors, whose names are defined in the
second column (Sensor ID) – these names are later used to
discuss activity recognizers. The last column of Table I defines
the function for each sensor deployed in a home, that is, the
meaning of the sensor measurements.

IV. DEVELOPMENT METHOD

This section defines our disciplined and tool-supported
method for the agile development of activity recognizers. The
overall view of our approach is depicted in Figure 1. Let us
examine the key concepts and steps, forming our approach.

Step 1 of our approach (noted “1. Declaration” in Figure
1) is the declaration of routines by the seniors and/or their
caregivers (noted ‘(a)’ in Figure 1). During interviews using
dedicated questionnaires, they declare the steps used to per-
form their daily routines (e.g., “When I wake up, I come out of
the bedroom and shortly afterwards I go to the kitchen”) and
they provide estimated values for these steps (e.g., bedtime,

TABLE I
HOMEASSIST SENSORS AND THEIR FUNCTIONS

Room Sensor ID Function

Kitchen

EMeter Coffeemaker Coffee maker in use
EMeter Microwave Microwave in use
ContactS Cupboard Cabinet door open

ContactS Fridge Fridge door open
MotionD K Kitchen presence

Entrance ContactS E Door open
MotionD E Entrance presence

Bedroom EMeter L Bedside lamp in use
MotionD B Bedroom presence

Bathroom MotionD Ba Bathroom presence
MotionD S Shower/Bathtub presence

Toilet MotionD T Toilet presence
Living room MotionD L Living room presence
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Fig. 1. Overview of the development method.

wakeup time, transition time between bedroom and kitchen
in the morning). These values serve as parameters for service
customization (noted ‘(b)’ in Figure 1).

Step 2 of our approach is the deployment of sensors in
the home of a senior, and the collection of the logs during a
setup period. Only the sensors required to verify the routines
declared at Step 1 are installed. In our method, the logs
gathered during the setup period are used as a base line to
build and tune the target activity recognizers.

Next, Step 3 consists of iteratively developing a service to
recognize a target activity. The service needs to be generic
enough, not only to cover all the declared variations of user
routines, but also to cope with diverse home configurations.
Indeed, homes may range from small apartments to houses
with several floors. The agility of this development step hinges
on a rapid prototyping cycle. However, from our experience
developing a range of assistive services, a prototyping cycle
for simple activity recognizers takes in the order of 2 person-
weeks, assuming a general-purpose programming language is



used, such as Java, as well as state-of-the-art development
tools. Additional time is also needed to deploy and test
activity recognizers in the homes of older adults. The duration
of this process does not meet our requirement of rapid iterative
prototyping of generic services.

To resolve this issue, we chose to raise the level of
abstraction at which activity recognizers are developed by
using a scripting language. Furthermore, we decided to pro-
totype activity recognizers by running them against recorded
logs, instead of deploying them. In practice, our strategy
is particularly well-suited for developing and testing the
kind of applicative logic needed to detect daily activities
declared by users. Indeed, daily activities consist of events
(e.g., motion detected, door closed) with ordering constraints
and time delays that can naturally be expressed as timed
automata, which are to be matched against event logs. As
such, developing activity recognizers requires a programming
language with limited but specialized expressive power. To
ease the prototyping process, event logs are kept in a simple
textual format (JSON format, with one sensor event per line),
ensuring good readability for easy manual inspection, under-
standing, and debugging. Considering the textual nature of the
data to be processed, we chose Perl as the scripting language
to benefit from its rich set of text processing operations.

Assessment of our new strategy revealed that the Perl-
scripted, executable specifications of activity recognizers in-
curred a development cycle of less than 1 person-day. As
such, it is short enough to be considered an agile iterative
development.

As a specification gets tested against an increasing number
of logs, coming from different homes (noted ‘(c)’ in Figure
1), its generality typically grows by introducing new param-
eters; e.g., delays between user actions or the name of the
room where the user sleeps at night. Once the Perl-scripted
specification covers all the configurations, it is implemented
as a generic service over the sensor infrastructure, using
appropriate technology (noted ‘(d)’ in Figure 1). In our case,
we use the Java programming language and the HomeAssist
platform [6], [13].

Finally, Step 4 is the generic service customization for each
configuration. In principle, parameter values can simply be
extracted from user declarations. However, as we show in
Section VI, values provided by users are only estimates, and
can rarely be used as final customization values. Thus, it is
necessary to check these values against real logs, and perform
the necessary adjustements. Considering the potentially large
number of user/home configurations for a given service (over
100 homes in the HomeAssist project), it is critical to use
an efficient process to find the right parameter adjustments.
This is why we developed a visualization tool for assisting
this instantiation step. More specifically, this tool performs
statistic analyses on the logs and displays the results in a
visual form as histograms to facilitate the manual validation
or adjustment of parameter values for the generic services.

The histograms allow one to understand the typical values
for a given home/user configuration. For example, the time
slots and the appropriate appliances for detecting a lunch
activity in a specific user-home configuration can be found
using histograms of appliance usage from log data. Also, the
correct threshold for the delay between the wakeup time of
a user and the start of their morning routine can be easily
observed using an appropriate histogram.

Whenever a set of values is chosen for the parameters of an
activity detector during Step 4, the visualisation tool allows
to execute the scripted specification of the detector on any
smart home log, and to display the results as a list of detected
activities for each day. This allows to instantly see the effect
of changing a parameter value and relate this value with the
one declared by the user.

Thus, our visualization tool enables rapid customization
decisions based on automated statistic analyses and dedicated
display functionalities.

V. CASE STUDY

We now present the case study1 used to validate our
approach. Specifically, we applied our tooled method to the
development of 6 generic activity recognizers, which were
then customized with respect to 5 older adults, and deployed
in their homes during 5 days. Once deployed, the results
produced by these activity recognizers were checked daily
against activities self-reported by our participants. Let us
describe each step of our study.

A. Declaration and data collection

The declarations of activities of interest were gathered at
the installation time of the platform in each home. Activities
were declared using questionnaires dedicated to extract key
inputs for the sensor-based verification process. For instance,
for the preparation of each meal during the day, the older adult
and/or caregiver were asked to provide the approximate time
period of this activity and the appliances used to perform the
task. After gathering user declarations, sensor logs started to
be accumulated and provided a basis to assess their accuracy.

B. Generic service development

Developing generic services is driven by initial declarations
of older adults and their caregivers describing the steps
involved in performing the activities of interest. Analyzing
the inter-individual variations is essential to determine where
genericity (i.e., parameters) is needed to abstract over these
variations. As illustrated with the activity recognizers pre-
sented below, the parameters often need to be adjusted when
applied to real homes and users. Note that we only discuss
parameters that are not self-explanatory.

Each activity recognizer is briefly described. Its behavior
is then formalized in the form of an automaton. Finally, the

1The present case study is publicly available at the following URL:
https://github.com/belloum/data-analyser



Initial	state	

Monitoring	meal	

Secondary	marker	Primary	marker	

…	Start	of	meal	slot?	 End	of	meal	slot?	
=>	publish(0)	

Primary	marker?	 Secondary	marker?	

Secondary	marker?	
=>	publish(1)	

Primary	marker?	
=>	publish(1)	

End	of	meal	slot?	
=>	publish(0.2)	

End	of	meal	slot?	
=>	publish(0.8)	

Fig. 2. Automaton for recognizing the different meal routines.

list of its parameters are presented, as well as its evolution to
capture unanticipated variations.

1) Meal preparation: In pursuit of genericity, we set out
to develop one service that could cover all three meals
(breakfast, lunch and dinner), as opposed to one service for
each meal.

a) Logic: The logic of this service is implemented by
the automaton in Figure 2. The automaton starts in the initial
state and begins monitoring a meal when the corresponding
time slot starts (transition to the “monitoring meal” state).
While in this state, the service waits for the markers associated
to the meal to be detected. If the primary marker is detected
first, another state is reached where the secondary marker is
waited for, and vice versa. If both are detected, in any order,
the automaton publishes a value of 1, meaning that the meal
has been definitely recognized, and resets itself. If, however,
the end of the meal slot happened before the sequence is
complete, the automaton resets itself without waiting further
markers. Depending on the markers already seen (which are
encoded in the current state), the published value may be 0
(meaning that no meal has been recognized), 0.2 (meaning
that only the secondary marker has been activated), or 0.8
(meaning that only the primary marker has been activated).

b) Initial parameters: meal name, time slot, primary
marker, secondary marker.

c) Added parameters: several primary markers, several
secondary markers. In a second iteration of our method,
the parameters for the markers had to be extended from a
single sensor to a list of sensors. This is because, for some
participants, there are variants of meal preparation that need
to be covered by a set of primary (or secondary) markers,
from which any appliance is considered part of the activity.
For instance, a participant may prepare breakfast using either
the coffeemaker, the microwave, or the fridge as a primary
marker, while the cupboard door detected open is always the

Initial	state	

Monitoring	
wakeup	

In	bedroom	 Timed	out	

Start	of	wakeup	slot?	

End	of	wakeup	slot?	
=>	publish(0)	

MotionEntrance	
or	MotionBath?	
=>	publish(0.8)	

MotionBedroom?	
=>	delay	=	0	

delay>10?	

MotionBedroom?	
=>	delay	=	0	

MotionKitchen?	
=>	publish(1)	

MotionBedroom?	
=>	delay	=	0	

Fig. 3. Timed automaton for recognizing the wakeup routine.

secondary marker.
2) Wakeup routine: The wakeup routine detects a user

starting their day. The challenge is to exclude situations where
the user wakes up during the night to visit the toilet or to
drink in the kitchen and later goes back to bed. The two key
elements to consider are the time period at which the user
normally wakes up and how much time it takes them to go
to the kitchen to start their day.

a) Logic: The logic of this service is implemented by
the timed automaton in Figure 3. Indeed, with respect to the
previous service recognizing meals, the present service has to
check some timing constraints. A timed automaton is adequate
for this purpose, as it contains clock variables that may be
reset by transition actions and may be read by the transition
conditions. The automaton transitions from the initial state
to a monitoring state when the wakeup time slot starts. Sub-
sequently, when user motion is detected in the bedroom, the
‘delay’ clock variable is reset and a transition is taken towards
state “In bedroom”. Any further motion in the bedroom resets
this clock. Upon a motion in the kitchen, a value of 1 is
published, which corresponds to a full recognition of the
wakeup routine. Alternatively, if the clock reaches 10 minutes,
the “timed out” state is reached. While in this timeout state, a
value of 0.8 may be published (meaning that the routine has
been partially recognized) if motion is detected in a different
room, excluding the kitchen. Alternatively, a new motion in
the bedroom triggers a transition back to the previous state
“In bedroom”. However, if the end of the wakeup time slot is
reached, no matter the current state, the automaton resets itself
and publishes a value of 0 (meaning that the wakeup routine
was not detected at all). This is expressed by the transition
originating in the compound state regrouping all the previous
three states.

b) Initial parameters: time slot, delay from bedroom to
kitchen.

c) Added parameters: room where the user usually
sleeps (default: bedroom), room where activity occurs in the
morning (default: kitchen). Indeed, a second iteration of our



Initial	state	

Monitoring	gotobed	

In	Bathroom	In	Bedroom	

Start	slot	of	gotobed?	

MotionBathroom?	
=>	tBath	=	0	

MotionBedroom?	
=>	tSleep	=	0	

MotionEntrance		
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MotionBathroom?	
=>	tBath	=	0	
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tSleep	>	20	?	
=>	publish(0.8)	

MotionBathroom?	
=>	tBath	=	0	

Fig. 4. Timed automaton for recognizing the bedtime routine.

method consisted in allowing to parameterize the rooms for
the wakeup routine, as they are not always the bedroom and
the kitchen. For instance, after wakeup, a participant may start
their day by visiting the bathroom to shower, rather than the
kitchen to prepare breakfast.

3) Bedtime routine: This routine targets the actions per-
formed by a user before going to bed at a specific time period.
The typical pattern we considered is a visit to the bathroom
shortly followed by an extended stay in the bedroom.

a) Logic: The logic of this service is implemented by
the timed automaton in Figure 4. Starting in the initial state,
a transition to a monitoring state is taken upon the start of
the indicated time slot. Here, a motion in the bathroom or
in the bedroom causes a transition to one of two states: “In
bathroom”’ and “In bedroom”, respectively. A corresponding
clock variable, tSleep or tBath, is also reset. While in the
bathroom, any motion in the bedroom within 10 minutes
(for instance) causes a full recognition of the routine (by
publishing a value of 1). While in the bedroom, any motion in
the bathroom transitions to the previous state “In bathroom”;
any motion elsewhere causes a transition back to the monitor-
ing state. Alternatively, if no movement is sensed anywhere
else for 20 minutes (for instance), the routine is partially
recognized (by publishing a value of 0.8). However, if the end
of the given time slot is reached, whatever the current state,
the automaton resets itself without recognizing the routine at
all (by publishing a value of 0).

b) Initial parameters: time slot, delay from bathroom to
bedroom.

c) Added parameters: room where activity occurs last
(default: bathroom), room where the user usually sleeps (de-
fault: bedroom). Indeed, in a second iteration of our method,
the rooms involved in the bedtime routine were parameterized
because they are not always the bathroom and the bedroom.
For instance, a participant may visit the toilets, rather than

Initial	state	

Closed	door	

Outdoor	

CloseDoor?	
=>	delay	=	0	

delay	>	T	
=>	publish(1)	

MotionX	
or	OpenDoor?	

OpenDoor?	

MotionX?	
=>	publish(Error)	

Initial	state	

Closed	door	

Timed	out	

CloseDoor?	
=>	delay	=	0	

delay	>	T	

MotionX	
or	OpenDoor?	

OpenDoor?	
=>	publish(1)	

MotionX?	

(a)	 (b)	

Fig. 5. Timed automaton for recognizing outings: (a) in real time; (b) a
posteriori.

the bathroom, shortly before going to bed.
4) Regular outings: This service detects when the user

departs from home to conduct some activity outside. The key
insight to detect an outing is to monitor the entrance door and
motion within the home.

a) Initial logic: The initial logic of the service was
implemented by the timed automaton in Figure 5 (a). This
automaton recognizes an outing soon after a closed door, if the
door is not opened and no motion in the home has been sensed
during a certain delay T. For that, it uses the clock variable
‘delay’. When the clock reaches T, the automaton signals the
outing and goes to the ‘Outdoor’ state. In this state, the only
legal transition is when the door is opened, which signals
the end of the outing. Sensing any motion within the house
in this state, before opening the door, means that the person
was really inside the house, so the signalled outing was in
fact a false positive. Therefore, an error is published to signal
the mistake. We initially thought that choosing a suitable
value for the delay T should cover all possible configurations.
But in fact, this specification never worked reliably in all
the homes with any reasonable delay: the service sometimes
raised errors. This is because the motion detectors of many
homes do not exhaustively cover the space. Thus, it is possible
for the user to close the door from the inside, and stay
undetected inside the home for an arbitrary long time.

b) Final logic: In a later iteration of our method, after
having tried different designs, we aimed to detect outings
in an a posteriori way. Specifically, an outing is signalled
when no motion has been sensed within the home since the
entrance door was closed and until it is opened again. This
logic is implemented by the automaton in Figure 5 (b). Note
that, in this version, the value of 1 (signalling the outing)
is not published until the entrance door is opened again. The
delay T in this case only serves to signal outings lasting more



than T. This parameter can be set to any value (e.g., filtering
out short outings for checking the mailbox or emptying the
thrash) without incurring any risk of creating false positives.
Although accurate in practice, this approach comes at a price:
outings are never detected in real time, but only when the user
returns home.

c) Parameters: minimum duration of the outings (value
of T).

C. Service customization

Once developed as automata scripted in Perl, the generic
services can be customized, leveraging our visualisation tool.
We illustrate the customization steps on one user/home con-
figuration for all the above 6 services.

In a first phase, the visualization tool is used to produce
histograms of the various sensors events in a log, distributed
across a 24-hour period. These histograms provide a graphical
summary of events gathered during the whole setup period,
spread across a single day representation. Figure 6 displays
three such histograms, one for each category of sensors
deployed in a home: contact sensors, electric meters, and
motion detectors. In each histogram, time is placed in the
X-axis, containing 24 labels representing a day (of 1 hour
length in the figure, but other granularities can be chosen),
and, in the Y-axis, the number of events is placed, computed
from the log for each sensor within a given hour. In our case
study, the logs cover a setup period of two weeks. Note that
using logs of several weeks provides confidence in the activity
patterns revealed by our visualization tool.

From these histograms, one can observe that the peaks in
the opening of the fridge and the cupboard occur around the
time meals are being prepared. Consequently, these events
can be used either as primary or secondary markers for
preparation activities of the three meals of the day. In contrast,
the toaster was only used twice during the two-week period
at breakfast time; the microwave was only used once, in the
afternoon. From these occurrences, one can conclude that the
toaster is used rather rarely and, if used as a marker for
breakfast preparation, it needs to be combined with some
other marker to be reliable.

At this point, we have identified initial candidates for
primary and secondary markers of our service recognizers.
Furthermore, initial candidates for the time periods of activi-
ties can be extracted from user declarations. These candidate
configuration parameters allow to make an assessment of
the accuracy of the service recognizers, by executing the
scripted service recognizers on the log. Table II shows, for
each of our service recognizers, the initial and adjusted/final
customization settings. Each customization is assessed and its
success rate in recognizing the target activity is reported in
the last column of the table.

Let us examine Table II for a specific service recognizer:
breakfast preparation. The participant declared preparing this
meal between 8:30 and 9:00, by opening the fridge, using

the toaster, and usually also opening the cupboard. Before
even running the service recognizer, observing Figure 6, for
the related event sensors and the declared period, reveals that
this period is too restrictive. Indeed it does not include the
peak of the fridge uses in the morning, nor the two uses
of the toaster. Let us inspect the initial configuration of the
breakfast preparation service, parameterized with the user
declared parameters (see the top entry of Table II): time slot =
8:30-9:00; primary markers = Toaster and Fridge; secondary
markers = Cupboard.

For such a configuration, the service recognizer only detects
breakfast preparation in 48% of the days within the two-week
setup period. This situation illustrates the typical discrepancy
between user declarations and measured activities: the user
information is correct overall but often inaccurate. By adjust-
ing the time period of breakfast preparation to better reflect
the measured activities (i.e., setting the time interval to 07:00-
09:00), breakfast preparation is recognized in 90% of cases
for this period.

Similar adjustments were done to parameter values of other
activity recognizers. The fixed values of these are displayed
in italics in Table II. As can be seen, the time slots of
all the recognizers had to be adjusted for this user/home
configuration.

Moreover, some additional parameters had to be changed
for the recognizer of the wakeup activity. Indeed, using user
declarations for this routine, the detection rate was only 10%.
Our participant declared to wake up between 06:00-07:00 and
to go to the kitchen within 10 minutes after that (second-
to-last activity in Figure II). By studying the histograms of
the motion detectors (bottom part of Figure 6), we observe
that motion in the bedroom (first bar of each group) is rarely
followed, within less than 1 hour, by motion in the kitchen
(4th bar of each group). Instead, motion in the shower (3rd
bar of each group) within the following hour appears to be
much more correlated to the presence in the bedroom. To
account for this situation, the value of the first room, where
activity occurs after waking up, was changed from kitchen to
shower. Re-executing the service, with this room value and
an increased delay of 1 hour, confirms this fact because the
detection rate of the wakeup routine raises from 10% to 80%.

D. Testing in silent mode

We implemented the automata corresponding to the final
specifications of each activity recognizer using Java, com-
bined with the DiaSuite, a middleware underneath HomeAs-
sist and dedicated to develop pervasive computing applica-
tions [13]. We then customized these services with respect
to 5 different users and their home, leveraging the parameter
values found in the previous step. Then, we deployed the
services in those homes for two weeks in ‘silent mode’; that
is, they ran on the real sensor infrastructure, detected their
target activity, but no action was performed in response to
detection or absence of the target activity (e.g., no notification



Fig. 6. Histograms of sensors spread over a 24-hour period in a home: contact sensors (top), appliance uses (middle), motion sensors (bottom).



TABLE II
EXAMPLES OF SERVICE CUSTOMIZATION FOR ONE HOME/USER CONFIGURATION.

Activity Iteration Slot Parameters Success
Begin End Primary Secondary (%)

Breakfast Initial config 08:30 09:00 Toaster, Fridge Cupboard 48
Final config 07:00 09:00 Toaster, Fridge Cupboard 90

Lunch Initial config 12:00 13:00 Fridge, Mwave Cupboard 71
Final config 11:00 13:00 Fridge, Mwave Cupboard 81

Dinner Initial config 19:30 20:00 Fridge, Mwave Cupboard 57
Final config 18:30 21:00 Fridge, Mwave Cupboard 86

Active room Delay (min)
Wakeup Initial config 06:00 07:00 Kitchen 10 10

Final config 06:00 08:30 Shower 60 80
Gotobed Initial config 22:30 23:00 Shower 10 50

Final config 22:00 23:30 Shower 10 85

issued if activity is missed). This mode only logs the detected
activities.

At the end of the silent-mode period, to further ensure
the reliability of the Java implementation of the service
recognizers, we tested whether they behaved the same as their
Perl-scripted counterparts. To do so, we checked that they
detected the same activities on the collected logs.

VI. VALIDATION

Despite our test process, activity recognizers still need to
be validated by their respective user to determine whether
they agree on the reported activities. Filming the user around
the clock in their home would be an effective approach
to establishing ground truth for our services. However, the
vast majority of participants rejected the option of including
cameras in the set of sensors to be deployed in their home. As
an alternative, the user could decide whether they agree with
the detected activities; with no cameras, this approach seems
to be the ultimate measure of the accuracy of our activity
recognizers, and more generally, of the services produced by
our tooled method.

To achieve this user-validated accuracy, we activated our
services in the home of 5 users, who agreed to evaluate
them during 5 days. This evaluation took the form of a
questionnaire submitted daily to our 5 participants. More
specifically, a questionnaire was sent every morning by e-
mail to each user; it consisted of the list of activities detected
the day before. The user was asked whether they approved or
disproved each item of the list.

Note that, because Participant B was bedridden during our
study, the services to detect wakeup and outing were not
installed. Note also that a fault of the entrance door sensor,
starting the very first day prevented us from installing the
outing detector in the home of Participant D.2

An overall view of the validity of our activity detectors is
shown in Figure 7. The detailed counts of valid and invalid
reports for each detector are given in Table III.

2We chose not to visit the participant to fix the sensor during the test week
in order to avoid any bias with respect to the other participants.

72%	

8%	

13%	

7%	

Performed	
Not	performed	
False	nega8ve	
False	posi8ve	

Fig. 7. Overall validity of the detected activities.

VII. DISCUSSION

As shown by Figure 7, 80% of the activity detector out-
puts are confirmed by the users reports: 72% of activities
performed and detected and 8% of non-performed and non-
detected activities. The reminding 20% correspond to wrong
results produced by the activity detectors, assuming that the
user responses are the ground truth. In particular, in 13%
of cases, the activity was performed but slipped undetected,
which can be considered a false negative, while in 7%
of cases, the activity was not performed but was wrongly
detected, which can be considered a false positive. Although
some proportion of technical errors cannot be excluded (i.e.,
missed events from sensors, or spurious sensor activations),
we hypothesize that false negatives essentially correspond to
activities that were performed by deviating from the declared
routine, and that false positives were due to other activity in
the home that accidentally triggered the same event patterns.
This hypothesis may easily explain why false negatives are
encountered significantly more often (twice as often, in our
case) than false positives.

The more detailed figures in Table III show that some
activity recognizers perform better than others. The least
accurate recognizers are those for the wakeup and lunch
activities. By diving into the details in data collected from our
5 participants for these detectors, other interesting patterns are
revealed. Namely, the wrong results produced by these two
detectors are specific, with very few exceptions, to Participant
C (a single exception for the wakeup detector, and only two



TABLE III
DETAILED VALIDITY RESULTS FOR EACH ACTIVITY DETECTOR.

Detector OK KO %
Wakeup 14 6 70
Breakfast 21 4 84
Lunch 19 6 76
Dinner 20 5 80
Gotobed 20 5 80
Exit 13 2 87

exceptions for the lunch detector). This tends to indicate that
these detectors are less effective for this user. Moreover, all
the detectors seem to be less effective on this user/home
configuration, because Participant C gathers most detection
errors: 14 errors. This is more than the total of 13 errors
on all the other participants; these errors correspond to an
overall accuracy of 53% for Participant C vs. an average of
88% for the other four participants. This lack of effectiveness
for Participant C could be attributed to different factors, such
as more routine variations, less structured time periods for
activities, or technical issues with the infrastructure of this
home. No matter the reason, for this case, this uneven error
distribution between 80% of the users and the remaining 20%
could indicate that our activity recognizers (that is, based
on declarations and developed using our method) are highly
adequate for most user/home configurations, and much less
adequate for the remaining ones. A study on a larger sample
would be needed to confirm or infirm this hypothesis.

In any case, achieving 100% accuracy in the domain of
activity detection seems out of reach considering the contin-
gencies that need to be taken into account when monitoring
real users in real homes, even when users are routinized with
age decline. In absence of such ideal oracles, obtaining an
overall accuracy of 80% should provide older adults and their
caregivers valuable information to support independent living.

VIII. CONCLUSION AND FUTURE WORK

We have presented a tooled method to develop accurate
activity recognizers, which support aging in place. User
declarations of daily activities are refined with sensor logs,
visualized with a dedicated tool. Perl is used to rapidly script
activity recognizers, which are executed over sensor logs.
Then, Perl-scripted activity recognizers are implemented in
Java and deployed in the homes of older adults.

We conducted a case study to put our method to practice.
We scripted 6 activity recognizers, which, once refined, were
implemented in Java. These services were deployed in the
home of 5 older adults in silent mode (i.e., without user
notifications) at first to check their consistency with respect to
their Perl counterparts. Once their consistency was validated,
they were put in production mode. To assess the accuracy
of the developed activity recognizers, their outputs were
compared to the activities self-reported by our participants
over a period of 5 days. This experiment shows that 80% of
the outputs of our activity detectors were confirmed by the

user reports. The accuracy of our approach goes up to 88%
when considering the four, more routinized participants.

To further this work, our study needs to be conducted with
a larger group of participants to determine whether our results
scale up.

To go beyond the use of general-purpose scripting lan-
guages, we are developing a domain-specific language (DSL)
with precise and formal semantics, dedicated to expressing
activity detection logic. The notations and concepts of this
DSL result from an analysis of existing assistive applications.
This DSL should enable an even shorter development cycle
in the order of 1 hour-person. A preliminary version of this
DSL has already been developed and is showing promising
results.
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