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Abstract. To compensate for the poor reliability of Physical Unclonable
Function (PUF) primitives, some low complexity solutions not requiring
error-correcting codes (ECC) have been proposed. One simple method is
to discard less reliable bits, which are indicated in the helper data stored
inside the PUF. To avoid discarding bits, the Two-metric Helper Data
(TMH) method, which particularly applies to oscillation-based PUFs,
allows to keep all bits by using different metrics when deriving the PUF
response. However, oscillation-based PUFs are sensitive to side-channel
analysis (SCA) since the frequencies of the oscillations can be observed by
current or electromagnetic measurements. This paper studies the security
of PUFs using TMH in order to obtain both reliable and robust PUF
responses. We show that PUFs using TMH are sensitive to SCA, but can
be greatly improved by using temporal masking and adapted extraction
metrics. In case of public helper data, an efficient protection requires
the randomization of the measurement order. We study two different
solutions, providing interesting insights into trade-offs between security
and complexity.

Keywords: PUF, Side-Channel Analysis, Two-metric Helper Data, LFSR-based
Protection, Permutation, Countermeasures

1 Introduction

Physical Unclonable Functions (PUFs) have become an important security prim-
itive, which can greatly enhance authentication mechanisms in digital devices. A
good PUF provides a unique identifier, which does not have to be programmed
in non-volatile memory (NVM) and hence is not sensitive to memory hacking.

? This work was partly funded by the German Ministry of Education and Research
in the project SecForCARs under grant number 01KIS0795 and under the SPARTA
project, which has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement number 830892.
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This identifier corresponds to the value returned by a function that exploits slight
technological differences from the fabrication process, and which stay constant
during life time of a component. The extraction can be done in many different
ways, such as measuring the delay – giving rise to the delay PUF [17] – and
the initial state of SRAM cells – the SRAM PUF [7]. In particular, a PUF has
the property of unclonability : the outputs depend on process variations only, i.e.,
copying a device from the same blueprint does not yield the same PUF response.

One of the main drawbacks of PUFs is the reliability, as the bit error rate
(BER) of their output can be in the range of 3 to 15% [9]. The most common
way to improve the reliability is the use of error-correcting codes (ECC) [6,
10]. It requires to generate a public word during the enrollment phase, termed
helper data, which enables correction of faulty PUF bits during the reconstruc-
tion phase. Alternatively, the reliability can be improved if the PUF output
contains an indication of the bit reliability. For example, oscillation-based PUFs
such as the Ring Oscillator (RO) PUF [17] or Loop PUF [2] use the sign of a
frequency difference as secret, while the difference’s magnitude provides relia-
bility information regarding the probability of bit flips. A first approach is to
discard unreliable bits [15]. In this work, we examine an improved method, called
the Two-metric Helper Data (TMH) scheme [3], that does not loose unreliable
bits. By reconstructing under two different metrics, it can make the use of ECC
unnecessary.

PUFs have been attacked by side-channel analysis (SCA) in different ways,
e.g., targeting the post-processing stage [13, 19]. Oscillation-based PUFs have
been attacked by observing the electromagnetic (EM) emanations from the RO
PUF [11, 12, 16] and the Loop PUF [18]. To face this threat, protections based
on randomization have been proposed, such as using a random path for the
RO PUF [11] and temporal masking for the Loop PUF [18]. While helper data
manipulation has been used as an attack vector [4, 5, 1], the impact of the helper
data algorithm for SCA has been neglected so far.

Contribution: We show that the TMH scheme [3] is prone to yet unexplored SCA
attacks. As a consequence, new protection mechanisms are needed. In particular:

1. We present a novel attack against the TMH scheme, which makes use of
the magnitude – in contrast to the sign – of the frequency differences in
oscillator-based PUFs. The feasibility of the attack is shown for a 63-bit
Loop PUF.

2. We provide two different approaches for countermeasures that combine mod-
ification of the TMH metrics with randomization of the Loop PUF challenge
order. We show trade-offs between security and cost.

3. We deeply analyze the security of the proposed solutions, showing that the
low-complexity solution – while requiring less randomness – may be attacked,
although with higher effort than without the protection.

Structure: The remainder of this work is organized as follows: Section 2 explains
the TMH method. Sections 3 and 4 provide the threat model and the security
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analysis of the TMH respectively. Protections are presented in Section 5, their
security analysis in Section 6 and a conclusion is drawn in Section 7.

2 Two-metric Helper Data Method

The TMH is a method that enhances the reliability level of PUFs to generate
secret responses used as cryptographic key [3]. It applies specially to delay PUFs,
whose responses contain reliability information. Oscillator-based PUFs, such as
the RO PUF [17] and the Loop PUF [2] use the sign of a frequency difference df
as response bit. The magnitude of the difference provides reliability information.
Using this information, the TMH method can allow for highly reliable responses
without the use of ECC decoders in the post-processing stage.
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Fig. 1: Choice of metric and extraction of PUF bit value from the the frequency
difference df according to [3].

For this purpose, in the enrollment phase, the distribution of all df on a device
is estimated under the assumption that it follows a Gaussian normal distribution
with mean µ = 0 and variance σ2, i.e., df ∼ N (0, σ2). The distribution is divided
into octiles defined by the points −T1, −a, −T2, T2, a, T1 (and ±∞) as depicted
in Fig. 1. For each octile the upper and lower bounds x and y are adapted such
that, the cumulative distribution function (CDF) Φ(·) defined by the integral
over the probability density function (PDF) φ(·) complies to

Φ(x)− Φ(y) =

∫ x

y

φ(x)dx =
1

8
. (1)

The Two-metric Helper Data (TMH) method derives its name from the fact
that based on the octiles two metrics M1 and M2 define the mapping of the
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frequency difference df to the PUF bit k as:

M1 : k =

{
0, T2 ≤ df ∨ df < −T1
1, −T1 ≤ df < T2

M2 : k =

{
0, T1 ≤ df ∨ df < −T2
1, −T2 ≤ df < T1

. (2)

Note that from the definition of the octiles
∫ T2

−T1
φ(x)dx =

∫ T1

−T2
φ(x)dx = 1/2,

i.e., the values for k are equiprobable and no bias is induced by the TMH. For
the frequency difference dfC of a particular challenge C the metric is chosen
and stored as helper data wC , for which the reconstruction from a perturbed
df ′C = dfC + δ is more reliable. In other words, the metric is stored as helper
data, for which a deviation δ from the enrollment value is less likely to cause a
change of the PUF bit during reconstruction. From Fig. 1 metrics M1 and M2
are least stable around −T1/T2 and −T2/T1 respectively, thus the selection of
the appropriate helper data is done according to the following intervals:

wC =

{
M2, −a < dfC ∨ 0 < dfC ≤ a
M1, −a ≤ dfC ≤ 0 ∨ a < dfC

. (3)

During the reconstruction phase the frequency difference df ′C is mapped with
the metric stored in the helper data wC to k′C . As the bounds from the enrollment
±T1, ±T2 and ±a may change due to environmental conditions, the device
estimates a new set ±T1′, ±T2′ and ±a′ for reconstruction i.e.,

k′C =

{
1, −T1′ ≤ df ′C < T2′ &M1 ∨ −T2′ ≤ df ′C < T1′ &M2
0, −T2′ ≥ df ′C ≥ T1′ &M2 ∨ −T1′ ≥ df ′C ≥ T2′ &M1

. (4)

For typical noise measurements a BER of < 10−6 is achieved [3], i.e., k′C = kC
with high probability.

3 Attacker Model

Throughout the paper we adopt an attacker model where the attacker has phys-
ical access to the targeted device. In particular, the attacker has read access to
the helper data of the PUF, i.e., it is known which metric M1 and M2 of the
TMH scheme is used to derive a particular PUF bit. The assumption of public
helper data is generally accepted when designing PUF-based key storage as (i)
the helper data should not leak about the secret [14] and (ii) storing the helper
data in a protected NVM would render the PUF approach useless as the secret
could directly be stored. In theory, access to the helper data could be hampered,
e.g. if it is stored by fuses, that are difficult to read out. Limited helper data
represents the worst case scenario for an attacker, which is why we also inves-
tigate the possibility of an attack without helper data knowledge. However, the
security of the system must not depend on the concealment of the helper data.

Furthermore, the attacker is able to perform passive physical attacks such
as side-channel measurements during the reconstruction phase of the PUF. This
includes power measurements as well as EM measurements above the package.
We neglect semi-invasive attacks such as localized EM SCA, which have been
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applied to RO PUFs [12, 11, 16], but require a high level of sophistication due to
decapsulation of chips, and expensive measurement equipment in terms of micro
near-field probes. The bar for mounting these kinds of attacks can be raised by
adding sensors that detect opening of the package and thus impede direct access
to the die. As we focus on sequentially evaluated PUFs like the Loop PUF, the
application of semi-invasive means does not promise any advantage compared to
non-invasive attacks that would justify the additional effort.

For all considerations, the attacker is able to acquire multiple measurements
of the reconstruction phase for the same PUF device. That means for the coun-
termeasures proposed in Section 5 that the attacker can compare measurements
with different randomization to establish a relationship among measurements.
The number of measurements can practically be limited by the time and stor-
age capacities of the adversary, but we assume no countermeasures to limit the
number of reconstructions.

4 Analysis of the Two-metric Helper Data Method

In this section, we describe a side-channel vulnerability of the original TMH
method given an attacker without helper data access. We propose a modification
of the TMH from Section 2 that improves the scheme regarding mitigation of
the vulnerability. Subsequently, we show that even with the improved method
an attack with helper data knowledge still succeeds in recovering the secret. The
findings emphasize the need for additional countermeasures, which are proposed
in Section 5.

4.1 SCA Attack Vector of the Two-metric Helper Data Method

For oscillation-based PUFs, the use of the sign of frequency difference df can
be targeted by side-channel analysis. In case of the RO PUF, attacks target the
comparison of frequencies [12] and the resolution of single oscillators or counters
using localized EM measurements [11]. Even if components are placed close to
each other, EM attacks succeed due to geometric leaks [16], making an effective
protection against SCA difficult.

A possible improvement regarding side-channel resistance is the so-called
Loop PUF [2] that uses a single RO configured by challenges. In order to generate
a PUF bit k, a challenge C and its complement ¬C, where each bit is flipped,
generate the frequencies fC and f¬C . The sign of the difference df = fC −f¬C is
then taken as the PUF bit. While the original Loop PUF design is vulnerable to
SCA, because the frequencies can be measured sequentially, a simple and effective
countermeasure called temporal masking can be applied [18]. It randomizes the
order of the two challenges to derive df, therefore an attacker is not able to
deduce the sign of df anymore. The required randomness is derived from the
counter’s least significant bit (LSB), in other words from the oscillators phase
jitter, enabling a self-protected PUF design.

In the following and without loss of generality, we assume that the frequency
differences df processed by the TMH stem from a Loop PUF that is protected by
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the temporal masking scheme. With this approach the underlying PUF primitive
is protected against SCA and we can focus on the properties of the TMH. First,
note that for the TMH method the bit value is not given by the sign of df but
by its magnitude. Revisiting Fig. 1 and Eqs. (2) and (3), which establish the bit
value according to the metrics and df, if the absolute value of df is greater than
the threshold a, the bit value is always k = 0. Furthermore for absolute values of
df around 0, the bit value is k = 1. Thus an attacker observing the frequencies
and their difference in the side-channel can easily derive the bit value even in
presence of the temporal masking countermeasure. This is only possible because
the TMH uses the magnitude instead of the sign to derive the PUF bits.

4.2 Formalization of the Attack Success

In the following, we provide theoretical insights into the success probability that
an attacker can achieve by formally modelling the side-channel observations.

The noise Nattack that the attacker is confronted with is a combination of
the noise from measurements Nmeas. ∼ N (0, σmeas.) and the inherent noise
Nosc. ∼ N (µosc., σosc.) of the oscillation frequency f that occurs from measure-
ment to measurement. Assuming that the noise terms are normally distributed
and additive, the overall noise is expressed as

Nattack = Nmeas. +Nosc. ∼ N (µadv., σadv.), (5)

where σadv. =
√
σ2
meas. + σ2

osc.
3. Assuming that environmental conditions change

slowly, any perturbation is constant among the different frequencies. Thus, off-
sets µosc. of the oscillators are cancelled out when calculating the frequency
difference df = fC − f¬C , and it follows that µadv. = 0.

The following notation is adopted for the PDF of a normally distributed
variable with mean µ and standard deviation σ

φ? (x;µ, σ) :=
1

σ
φ

(
x− µ
σ

)
=

1

σ
√

2π
e−

1
2 ( x−µσ )

2

, (6)

where φ(x) is the standard normal distribution.
The attacker mimics the reconstruction process by estimating bounds ±T1?,

±T2? and ±a? from the observed values df? and guesses k̂C using Eq. (4). Note,
that for σmeas. = 0 this corresponds to the reconstruction procedure on the
device as only σosc. is present compared to the enrollment, i.e., T1? = T1′,
T2? = T2′ and a? = a′. In this case, the attacker has the same information
as the device and the attack will succeed. We will investigate how the attack
success is affected if the attacker observes σmeas. > 0. Without loss of generality
we can set σosc. = 0 in the following such that σadv. = σmeas. is the additional
noise the attacker observes. In other words, the device will reconstruct based on
the same bounds as during enrollment, i.e., T1′ = T1, T2′ = T2 and a′ = a,

3 Note that the device observes only σosc. during reconstruction, i.e., the attacker is
always in a worse position compared to the reconstruction.
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while the attacker does so based on the noisy versions T1?, T2? and a?. In the
following, we will investigate the success probability

Prsuccess(dfC , σadv.) = Pr[k̂C = kC |dfC , σadv.] (7)

that defines whether an attacker can retrieve the correct PUF bit for a challenge
C. The assumption is that the device sees dfC for reconstruction, while the
attacker observes df?C drawn from the normal distribution φ? (df?; dfC , σadv.).
Besides a relationship of attack success and Signal-to-Noise Ratio (SNR), Eq. (7)
also provides insights whether certain values dfC can be more easily attacked.

Weighting the success probability by the occurrence of the df, which follows
– per assumption from Section 2 – a normal distribution that for the sake of
simplicity we assume to be transformed into a standard normal distribution for
σosc. = 0, yields the average success probability

Prsuccess(σadv.) =

∫ ∞
−∞

Prsuccess(df, σadv.) · φ?(df; 0, 1) ddf. (8)

4.3 Exploiting the Two-metric Helper Data Method

In this section, we investigate the side-channel vulnerability of the TMH intro-
duced in Section 2 and provide insights into how attacks with and without helper
data knowledge differ. Subsequently, we introduce an extension of the TMH in
Section 4.4 that impedes attacks without helper data knowledge.
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Fig. 2: Visualization of the attack failure for attacker without helper data.

Attacker without helper data knowledge In a first step we will show that
even if an attacker does not know the helper data, i.e., whether metric M1 or
M2 is applied, the TMH leaks side-channel information. From Fig. 1 the attacker
needs to observe the magnitude of the frequency difference df? regarding a?: if

|df?| > a?, the guessed PUF bit is k̂C = 0, otherwise k̂C = 1 and the success
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probability is

PrnoHD
success(df, σadv.) = 1− Pr[k̂C 6= kC ] (9)

= 1−
(
Pr
[
|df?| ≤ a?

∣∣ |df| > a
]

+ Pr
[
|df?| > a?|

∣∣ df| ≤ a])
= 1−

{∫ −a?

−∞ φ? (df?; df, σadv.) ddf? +
∫∞
a?
φ? (df?; df, σadv.) ddf?, −a ≤ df < a∫ a?

−a?
φ? (df?; df, σadv.) ddf?, −a > df ≥ a

,

i.e., the probability that the estimated PUF bit k̂C does not match the correct kC .
Figs. 2a and 2b depict the distributions of df/df? from which device and attacker
derive their bounds a/a?as solid and dashed curves respectively. The dotted red
curve represents the distribution of observed values df?C for an enrolled value dfC
marked as square. Consequently, the filled area below the dotted curve marks a
failed attack according to Eq. (9).

Fig. 3a depicts the success probability depending on the enrolled value of
df for different levels of noise σadv.. Around df? = |a?|, the attacker faces the
biggest uncertainty, which is in accordance with intuition as the additional noise
changes the retrieved PUF bit most easily close to the decision boundary. Note
that the attack does not change whether the temporal masking [18] is applied or
not – in both cases, the magnitude reveals the PUF bit.

In Fig. 3c the overall success rate for varying noise levels σadv. is depicted
according to Eq. (8). In case the helper data is known, but no temporal masking is
applied the TMH can be attacked even more easily highlighting that the TMH
scheme without further protection enables SCA. Note that without temporal
masking the frequency difference df would be revealed independently of the
helper data scheme, therefore the notion is rather of theoretical interest and we
provide the details in Appendix A. However, the results show that the reliability
information of the TMH improves the attack compared to the scenario without
helper data knowledge.

Attacker with helper data access and temporal masking Finally, we
consider the case where the temporal masking is activated and the attacker
cannot trust the sign of the observed frequency difference dfC . The attacker is
still able to estimate bounds ±T1? and ±T2?, but due to the randomization
of the sign there may be a small estimation error. We neglect this effect in the
following as it can be considered as an additional noise term in σadv..

From an attackers point of view there are two possible approaches towards
the temporal masking scheme. First, any helper data knowledge can be ignored,
i.e., the bound a? is used on the absolute values |df?| – the attack success rate
is the same as if no helper data was known. Second, the attacker can try to
exploit the helper data by using the bounds T1? and T2?. However, it has to be
considered that the sign of the observation could be flipped. Taking metric M1
as an example, the average over the usage of −T1? and T2?(as defined by M1
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Fig. 3: Simulation of the attack success probability for different levels of attacker
noise σadv.. (a) – (b) Depeding on enrolled value df. (c) Integrated success prob-
ability according to the occurrence of df.

in Fig. 1) and −T2? and T1?(reflecting a sign flip depicted in Fig. 4) gives

P1(df, σadv.) = Pr[k̂C 6= kC |wC = M1, df > a] (10)

=
1

2

[∫ T2?

−T1?
φ? (df?; df, σadv.) ddf? +

∫ T1?

−T2?
φ? (df?; df, σadv.) ddf?

]
.

Accordingly the other intervals from the enrollment are dealt with. From Fig. 4
the resulting error can be seen if the observed df? has flipped sign. Fig. 3b
highlights that the intervals between −T1? and −T2? and T1? and T2? are
most prone to errors. For increasing attacker noise σadv. the intervals [−T1?, T2?]
and [−T2?, T1?] overlap increasingly, i.e., the average error in Fig. 3c converges
towards the error for the case without helper data. However, even in the noise-free
case and for low-noise scenarios the attack using T1? and T2? yields worse results
compared to only using the helper data or a?. Thus, with temporal masking
activated, the attacker will use the bounds ±a?, and no additional information
is achieved from the helper data.
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Fig. 4: Visualization of the attack failure with known helper data and temporal
masking, where the sign of df? is flipped compared to df for metric M1.

−a a

T2−T1 −T2 T1

reconstruction

-3 -2 -1 0 1 2 3

df

F
re
q
u
en

cy

M1

M2

k = 0

k = 1

Fig. 5: Choice of metric and extraction of PUF bit value from the the frequency
difference df with new metric M2.

4.4 SCA-hardening for the Two-metric Helper Data Method

A straightforward improvement of the TMH is to modify the mapping of the
metrics. If the bit value with metric M2 is inverted compared to Eq. (2), i.e.,

M1 : k =

{
0, T2 ≤ df ∨ df < −T1
1, −T1 ≤ df < T2

M2 : k =

{
1, T1 ≤ df ∨ df < −T2
0, −T2 ≤ df < T1

,

(11)
the PUF response is related to the sign of df as shown in Fig. 5. Note that the
choice of the metric, i.e., the helper data, is maintained according to Eq. (3). As
the magnitude no longer reveals information the temporal masking protects the
TMH scheme as long as the helper data is unknown to the adversary.

However, in case of known helper data, the attacker can still learn about
the secret despite the temporal masking countermeasure. As the sign of df?C is
randomly altered by the temporal masking, consider the absolute values |df?|
and estimate the parameters ±a?, ±T1? and ±T2? as described in Section 4.2.
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Again, the attacker uses the bounds ±a? and combines the helper data and the
values of |df?C | to estimate the PUF bit as

k̂C =

{
0,
(
|df?C | > a? ∧ wC = M1

)
∨
(
|df?C | ≤ a? ∧ wC = M2

)
1,
(
|df?C | > a? ∧ wC = M2

)
∨
(
|df?C | ≤ a? ∧ wC = M1

) . (12)

Using Eq. (12), the attacker achieves the same success probability as for the
non-flipped metric. However, using the sign instead of the magnitude to derive
PUF bits, the following improvements are achieved:

1. Attacks without helper data are impeded completely.
2. The Hamming weight of the key is not leaked for unknown helper data,

because the attacker cannot distinguish regions that map to 0 or 1.

Yet, the attacker is able to retrieve PUF bits even under noisy measurements.
Furthermore, from the knowledge of the likelihood of a correct estimate, a smart
guessing strategy can be derived: In Eq. (12), the closer the values of |df?C | is
to the boundary a?, where 0 and 1 change, the lower is the reliability of the
estimate. In the remainder of this section we will provide practical results from
side-channel measurements to verify the possibility of a successful SCA attack.

4.5 Experimental Setup

We confirm the side-channel evaluation of the TMH scheme using an field pro-
grammable gate array (FPGA) implementation of a 63-bit Loop PUF, similar
to [18]. The Loop PUF is implemented on an Artix-7 (XC7A100TFTG256) run-
ning at fclk=100 MHz. The use of a ChipWhisperer 305 Artix FPGA Target
(CW305) SCA board facilitates the analysis as power measurements can be di-
rectly acquired using the SMA jack X4. We measure the voltage drop of the
FPGA’s internal supply voltage VCCint over a 100 mΩ shunt amplified by the
board’s 20 dB low-noise amplifier. A PicoScope 6402D USB oscilloscope acquires
measurements at a sampling frequency of fs=1.25 GHz.

At the beginning of each challenge, a trigger signal allows optimal alignment
of the measurements, which are transformed into the frequency domain after
acquisition. The counter values after each challenge are read back for offline-
verification of the SCA measurements. From the maximum of the frequency
signals, the counter values and their differences are estimated. The attack from
Section 4.4 is carried out by first performing an enrollment on the actual counter
values averaged over ten runs. From the enrollment, a set of reference helper data
is generated, which is used throughout the attack. The measurements of challenge
pairs (C, ¬C) are randomized to emulate the temporal masking countermeasure.

4.6 Practical attack results

For the following practical results, the TMH is derived on measured frequen-
cies, i.e. the attacker has an additional ”noise term” due to the difference of
frequencies during enrollment and measurement.
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Table 1: Remaining entropy in bit after smart guessing on 63-bit Loop PUF
using TMH with flipped metric M2 and temporal masking.

campaign Remaining entropy in bits

#1 7.3 9.1 15.7 16.6 16.6 17.0 17.5 > 20 > 20 > 20
#2 10.5 11.4 13.1 13.7 14.4 15.6 16.8 19.5 > 20 > 20

Table 1 depicts the results for two different campaigns of ten Loop PUF
runs each recorded on the same device. Enrollment is performed on the average
of the actual counter values of the campaign, while attacks are carried out on
single runs from the measured frequencies. The smart guessing changes first bits
derived from frequency difference |df?C | close to a? and is stopped at 20 bit to
limit the time used for the attack. The median guessing complexity is around
16 bits in both campaigns, indicating that an attack can break the TMH even
with the improved construction from Section 4.4 with reasonable effort.

5 Protection of the Two-metric Helper Data Scheme

According to Section 4 an attacker with helper data knowledge and side-channel
observations of frequencies can easily break the TMH scheme. However, the
matching of frequency differences and helper data is needed. Consequently, the
protection is to hinder the matching. This is achievable through randomization
of the measurement order or, equivalently, the order of applying challenge pairs.
Possible solutions are to generate challenge pairs in a randomized order or to
store a randomized mapping of helper data and challenges in protected NVM.
In a PUF scenario with publicly stored helper data no protected memory shall
be used. Further, by Kerckhoffs’s principle, the attacker knows how the chal-
lenges are generated and applied. Therefore, this section investigates methods
to randomly permute challenge pairs during reconstruction.

5.1 Attack Vector on the Protection Mechanism

We consider the case of a flipped metric as introduced in Section 4.4 and tem-
poral masking enabled. Thus, the attacker measures frequency differences df of
the Loop PUF without knowing the sign. Even if we randomize the order of
the different df, she still knows which frequency differences are used. Thus, a
divide and conquer strategy is possible: In a first step, the attacker brings the
frequencies into the correct order; In a second step, she mounts the attack from
Section 4.6 on the ordered data. The attack succeeds if the first step yields only
few possible mappings between helper data and frequency differences: For each
possible mapping, the attack from Section 4 is to be performed for which the
remaining entropy after a single measurement is determined by noise. As a con-
sequence, the difficulty of the attack is mainly determined by the complexity to
bring the frequencies into the correct order.



Analysis and Protection of the Two-metric Helper Data Scheme 13

Realistic Loop PUFs generate M > 3 secret bits from M challenge pairs
(C,¬C) and their corresponding df values. In such a case M ! > 2M different
permutations of df exist and permutation suffices to protect the secret. The
difficulty is to develop an algorithm, which generates the permutations or a
subset of permutations efficiently and unpredictably.

5.2 True Random Number Generator Based Protection

We first development a countermeasure that randomizes the order of challenge
pairs Ci = (Ci,¬Ci) using a True Random Number Generator (TRNG). For this
purpose at least M random numbers of length R ≥ dlog2(M)e bit are needed to
index Ci and to select the corresponding challenge pair. In this case, an attacker
with SCA knowledge observes a random permutation of frequency differences,
which hinders matching of helper data with observations and, eventually, the
attack in Section 4.

Two questions have to be addressed: (i) What is a suitable choice of R to
mitigate SCA attacks while retaining a low implementation overhead and (ii) how
to map from random values to a unique sequence of challenge pairs? We discuss
the former together with the problem of colliding random numbers in Section 6.1.
An efficient method to solve the latter problem is given in algorithmic form and as
block diagram in Fig. 6. It requires two dlog2(M)e-bit adders, two dlog2(M)e-bit
counters, an R-bit comparator and M ·(dlog2(M)e+R) bit of storage capability.
The permutation generator, which is related to Lehmer encoding, takes as an
input M distinct randomly chosen R-bit numbers stored in T-RAM. The index
RAM (I-RAM) is initialized with zero. By iterating with counters A and B over all
M ·(M−1)

2 pairs of random numbers and incrementing always the entry in I-RAM

that corresponds to the index of the larger random number, the I-RAM finally
contains a permutation of the values 0, ...,M−1. The sorting algorithm defines –
independent of the number of random bits R – the permuted order of C1 to CM .
Please note, that the order is unpredictable for the attacker but can be resolved
by the device in order to match frequency differences and helper data.

The TRNG-based approach described so far has one significant drawback: It
requires a relatively large number of random bits. This raises the question, if a
more lightweight protection mechanism is possible.

5.3 Towards a Lightweight Protection of the TMH Method

The TRNG-based approach from Section 5.2 exclusively focuses on the complex-
ity of guessing the sorting of the frequency differences. However, in a practical
setting, frequency differences as well as their relations to each other are not
constant between multiple reconstructions of the PUF response due to PUF
noise. This limits the attacker’s capability to establish a relationship between
observed frequency differences from different reconstructions. In parallel, the
measurement complexity can limit the applicability of the attack. This leads
to the question if a more lightweight approach with less random bits compared
to Section 5.2, and lower implementation complexity is feasible that retains a
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Algorithm 1: Permutation Generator

Choose M R-bit distinct random numbers ri
Store ri to T-RAM.
for A in 0 to M − 1 do

for B in A+1 to M do
if T-RAM(A) > T-RAM(B) then

increment I-RAM(A)

else
increment I-RAM(B)

end if
end for

end for
return Sequence in I-RAM.

Fig. 6: Block diagram and algorithm of permutation generator

sufficient level of protection. This section introduces such an approach with the
implementation shown in Fig. 7. It uses a combination of the linear feedback
shift register (LFSR) seed (b0 to b5), the LFSR feedback polynomial (in red),
an additive mask (in green), and clock shifting (in blue). We discuss an LFSR

b0 b1 b2 b3 b4 b5

p1 p2 p3 p4 p5

c0 c1 c2 c3 c4 c5

clk
en

m0 m1 m2 m3 m4 m5

Fig. 7: Combined low-complexity countermeasure.

with six state bits b0 to b5, because our target application is a Loop PUF with
64 stages. Hence, 63 challenges4 have to be permuted, and the 2N − 1 states of
an N = 6-bit LFSR directly represent the index of a challenge, which makes the
approach very lightweight. The discussion focuses on a 6-bit LFSR as the Loop
PUF with more than 64 stages would be too slow and less stages ease the attack.
For other applications longer LFSR length could be considered, i.e., the method
is generally applicable.

4 From the 64 Hadamard challenges the pair of the all-zero and the all-one challenge
shall not be used to derive secret bits, c.f. [2, 18] for further details.
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Entropy from the random seed The first randomization technique under
investigation is the use of a random initialization of the LFSR state bits. Since
all states of the LFSR are used to index the 2N − 1 challenge pairs, the random
seed corresponds to a cyclic shift of the LFSR output. An attacker has to guess
the correct seed to obtain the correct sorting of the frequency differences, which
introduces log2(2N − 1) ≈ N bit of entropy – 5.98 bit in case of the 6-bit LFSR.

Entropy from the random shifts The second protection mechanism is a
multi-bit shift of the LFSR output. The LFSR is read out only after every n-th
shift, where n is selected once per reconstruction. In Fig. 7 the enable signal en
is set for n cycles after which the values of the ci are used to determine challenge
index. As the LFSR output is cyclic the shift by n has to be relative prime to the
period of the LFSR 2N −1 in order to reach all states of the LFSR, i.e., to index
all challenge pairs. In case of the 6-bit LFSR, from Euler’s totient function ϕ(63)
there are 36 values for n corresponding to approximately 5.12 bits of guessing
entropy for the attacker.

Note that shifting the LFSR output has two possible drawbacks: First, the
method delays the indexing of the challenge pairs. This is, however, not critical,
since the next index is calculated in parallel to the much slower measurement
of the Loop PUF. Second, an attacker can observe through a side-channel how
frequently the LFSR is clocked. However, the SNR for the attacker is likely too
small, to observe the LFSR: When the LFSR is clocked in parallel to the Loop
PUF, the attacker has to observe both the Loop PUF frequency and the LFSR
in parallel and the attacker can observe the clocking only 2N −1 times, i.e., once
per frequency difference, since for the next reconstruction another n is chosen.
An additional hiding countermeasure could be to randomize the point in time,
when the LFSR starts shifting during the measurement time of the Loop PUF.

Entropy from the random mask The third method to add randomness
is to mask the output by applying an additive 6-bit mask to the LFSR state
corresponding to 6 bits of entropy. By adding a mask we introduce the index
zero, i.e., the index of a challenge pair, which is not used, while another index –
the one equal to the mask – disappears. We therefore map the zero index to the
missing index in our analysis5.

Entropy from the random polynomials As a fourth and last method dif-
ferent feedback polynomials are randomly chosen for the LFSR. For the case of
N = 6 there are six irreducible polynomials [8] that add another log2(6) ≈ 2.6
bit of entropy.

5 We also investigated inserting a zero randomly at the beginning or end of the state
before masking. For index zero we selected the Loop PUF under the all zero/all one
challenge. However, the results were equivalent to the ones shown in this work.
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Summary of Countermeasure The idea of the combined countermeasure is
to increase the complexity for an attack while maintaining a low complexity of
the countermeasure. Summing the entropy values of the four protection mecha-
nisms, 19.7 bit of entropy are achieved for an 6-bit LFSR. While the brute-force
complexity below 20 bit would not prevent an attack, recall that the attacker
has to perform the smart guessing attack from Section 4.6 up to 219.7 times if
the different sequences are indistinguishable. Considering that a single run of
the attack takes more than an hour, even with a 100-fold parallelization, the
attack on the different sequences would take approximately one year, which can
be considered a reasonable protection level for a lightweight solution. However,
the practical security analysis in Section 6 shows that an adversary can distin-
guish sequences generated by the lightweight countermeasure, which reduces the
entropy and allows for an attack.

6 Security Analysis

The attacker can observe absolute values of frequency differences, but due to
temporal masking the sign of the differences is unknown. The goal is to enable
the attack from Section 4 by reconstructing the order of the frequency differ-
ences. Since the adversary does not have direct information regarding the correct
ordering, she can enable an attack by labeling the observed frequencies with sym-
bols. Then she brings the symbols into an order that might have been generated
by the protection mechanism. An attacker wins if she can guess or identify the
correct ordering of the frequencies since then and only then she can sort the
frequency differences according to the helper data.

6.1 Security Analysis of the TRNG-Based Protection

If a TRNG outputs only distinct random numbers, the protection mechanism in
Section 5.2 does not reveal information about the sorting. However, in practice
collisions, i.e., sampling the same random number twice, are possible. Options
to overcome this problems include to put the frequency differences for which
collisions appear into a predefined order or to re-sample in case of a collision.
The former leads to a higher probability for specific permutations that gives
additional information to an attacker. To prevent possible statistical attacks
exploiting permutations with distinct probabilities, we suggest to ensure distinct
random numbers through re-sampling.

The probability that collisions of at least two random numbers appear is
defined by the Birthday Paradox. However, it is less important if collisions ap-
pear than how many bits are required when generating a set of distinct random
numbers if we resolve the collisions through re-sampling. Let us assume that
the random numbers ri are sampled sequentially and that the current ri is re-
sampled until the TRNG provides a number not yet used. Further, let us assume
an ideal TRNG providing R-bit outputs such that all 2R possible sequences are
equally likely. Under this assumptions the probability of a collision pre,R(i) for
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the i-th random number with 2R ≥ i ≥ 0 is linked by

pre,R(i) =
i

2R
⇔ Ere,R(i) =

1

1− i
2R

=
2R

2R − i

with the expected number of samples to receive a yet unused random num-
ber Ere,R(i). As a consequence, the average number of required random bits
Ebits,M (R) when sampling all random numbers ri, i ∈ {0, ...,M − 1} is

Ebits,M (R) = R ·
M−1∑
i=0

2R

2R − i
, (13)

which has a minimum in R. For a given M the minimum defines the optimal
choice of R regarding the expected amount of TRNG bits needed. We suggest
to use this optimum for the permutation generator from Section 5.2: Under
consideration of re-sampling for the case of M = 63 the minimum is reached at
R = 8, i.e., on average Ebits,63(8) ≈ 577.23 bits are needed.

6.2 Security Analysis of the Lightweight LFSR

In this section, we analyze the quality of the lightweight countermeasure from
Section 5.3 in order to show its limitations and to point towards possible solu-
tions. We discuss the different countermeasures individually and show practical
evaluation results of individual and combined countermeasures. In the following,
we interpret the Galois LFSR state from Fig. 7 as integers, e.g., [1, 0, 0, 0, 0, 0]
corresponds to 1. For simplicity of explanation we treat the case of a 6-bit LFSR.

Attack Strategy Assume an attacker taking two measurements from two dis-
tinct reconstructions of the same Loop PUF. The randomized seed, shift size,
mask, and polynomial are fixed for each reconstruction. The attacker defines the
frequency differences of the PUF as symbols si ∈ 1, ..., N . She knows that there
is a native order snat = [s1, ..., sN ] of the symbols, which matches the sorting of
the helper data. Further, the frequency differences sobs she observes are sorted
by a permutation described by a permutation matrix A.

From the 219.7 bit of entropy Section 5.3, more than 850k permutation ma-
trices exist and the attacker’s task is to find the correct one corresponding to
one of her observations. If one or more randomization options are disabled, the
number of permutations decreases accordingly. The attacker uses a differential
approach on the observed sequences sobs,1 and sobs,2. She resorts each of the
sequences with all possible sub-sequences. For the correct permutation matrices
A1 and A2 of two noise-free measurements it holds that

(sobs,1 = snatA1 ∧ sobs,2 = snatA2)⇒ snat = sobs,1A
−1
1 = sobs,2A

−1
2 .

However, the reverse argumentation does not hold, i.e., if two matrices A?
1 and

A?
2 exist such that scand = sobs,1A

?
1
−1 = sobs,2A

?
2
−1 the candidate solution scand
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is not necessarily snat. In the following we determine how many solutions scand
exist, i.e., how much entropy the attacker faces.

For noisy measurements, a direct matching of the resorted sequences is not
reasonable. However, we show that the attack is still applicable by correlating
the two observed and transformed sequences sobs,1A

?
1
−1 and sobs,2A

?
2
−1.

Confusion from random seed Randomizing the seed corresponds to a cyclic
shift of the LFSR. The permutation matrix Rm for a cyclic shift by m bit is
Rm = Rm

1 , where R1 is the permutation matrix of the shift by one bit. Same
applies to the inverse, i.e., R−1m =

(
R−11

)m
. Consequently, if two observations

have the shifts α and β from their seeds, the relative shift of the sequences
corresponds to a κ-bit shift with κ = α − β. The native sequence follows from
inverting the respective shifts, i.e., sobs,αR

−1
α and sobs,βR

−1
β . Every candidate

scand,n that fulfills

scand,n = sobs,αR
−1
α Rn = sobs,βR

−1
β Rn = snatRn

is a solution. Since the LFSR is cyclic with period 2N − 1, the attacker cannot
distinguish 2N − 1 different sequences.

Confusion from random shift Similarly to the previous argumentation, the
shift by multiple bits is a permutation with a permutation matrix T. Let Tα

corresponds to the permutation of the LFSR state sequence under shifts by α,
and Tβ corresponds to the permutation of the LFSR state sequence under shifts
by β. Since all shift sizes are relative prime to the LFSR length 2N − 1, their
product modulo 2N −1 is relative prime to the LFSR length. The multiplication
of matrices Tα and Tβ therefore results in a valid shift. Thus, for each pair of
observations there exists a pair of matrices Tk, Tl so that

sobs,iT
−1
α Tk = sobs,iT

−1
β Tl,

and the attacker cannot distinguish different shift widths.

Confusion from random masks A mask is implemented as a bitwise XOR
onto the LFSR state with the all-zero result mapped to the mask value. Different
from the previous methods, two permutations Mα and Mβ inserted by the mask
are unique. As a consequence, if different masks are used to permute the state
sequence of the LFSR, the resulting symbol orders can be distinguished since
only for the correct pair of masks and – as the experiments show – few exceptions

sobs,αM
−1
α = sobs,βM

−1
β

holds. Consequently, the entropy spent through this countermeasure does not
contribute to the confusion of the attacker. In addition, the experiments in the
last part of this section reveal that the mask, when combined with the random
shift, effectively reduces the uncertainty for an attacker.
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Confusion from random polynomial Similar to the mask case, polynomials
do not lead to an increased confusion of the attacker but rather allow for a better
attackability of the LFSR. The reason is, that the permutation matrices Pα and
Pβ from different feedback polynomials are very distinct. Therefore,

sobs,αP
−1
α = sobs,βP

−1
β

only holds for the correct permutation and – as the experiments show – for few
exceptions.

Practical evaluation We verify the theoretical insights with experimental data
from synthetic symbols as well as on the measurement data of campaign #1 used
in Table 1. All experiments assume temporal masking, i.e., the absolute values
of frequency differences are used. An attack is limited to the measurements of a
single Loop PUF, but can employ measurements from multiple reconstructions.
Each pair of two reconstructions in the campaign is analyzed. For the attack,
resorted frequency differences from two reconstructions are correlated in order
to find their correct ordering. A correlation of 1 would be a perfect match of
sequences, which only occurs for synthetic data. As frequency differences differ
from measurement to measurement, for experimental data the correlations de-
pend on the noise level. For fair comparison we present results for highest and
lowest correlation, i.e., for lowest and highest noise seen by the attacker. This
best and worst case have correlations of 0.97 and 0.91 for our measurements.
Please note, that the attack requires only two single-shot measurements of the
Loop PUF.

The synthetic symbols and measured frequency differences are permuted in
software with different permutation strategies from Section 5.3 enabled. In ac-
cordance with the attack strategy, the attacker pre-computes all inversions to
map from some permutation back to the native sorting. For the 6-bit LFSR a
list with more than 850k inversions is generated. Then, the attacker permutes
the two observed sequences of symbols w.r.t. to the pre-computed inversion list
and correlates the result. Clearly, the result between the two correct inversions is
ρ0 = 1 in case of a noise free sequence and ρ0 = 0.91 and ρ0 = 0.97 in case of the
selected noisy sequences. The complete attack takes on a commodity computer6

in the range of seconds if only one permutation strategy is enabled up to less
than 70 minutes with all four protection mechanisms enabled.

Table 2 summarizes the results for different levels of countermeasures en-
abled, namely random seed (R), randomly selected shift (T), random mask (M),
and randomly selected feedback (P). Each experiment is repeated ten times for
each set of enabled countermeasures and minimum, maximum, and median num-
ber of indistinguishable sequences are provided. A sequence is included into the
set of possible candidates if it yields a correlation ρ ≥ ρ0− ε with the data. The
correlation threshold ρ0 considers the noise level of the data sets and setting
ε = 10−6 prevents rounding errors. The values indicate, how many times the

6 Intel(R) Core(TM) i7-6700 CPU; 3.40GHz; 4 cores; 16GB RAM
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Table 2: Attack results on lightweight protection mechanism. Noisy data from
power measurements of Loop PUF frequencies, noise free data from synthetically
generated symbols. R, T, M, P correspond to random seed, randomly selected
shift width, random mask, and randomly selected polynomial.

Enabled Used Data
Countermeasure Noise free Noisy; correlation 0.97 Noisy; correlation 0.91

R T M P min median max min median max min median max

x - - - 63 63 63 63 63 63 63 63 63
- x - - 36 36 36 36 36 36 36 36 36
- - x - 1 1 1 1 2 8 1 8 27
- - - x 1 1 1 1 1 6 1 1 1
x x - - 2,268 2,268 2,268 2,268 2,268 2,268 2,268 2,268 2,268
x x x - 378 378 756 378 378 3,780 378 2,268 10,584
x x - x 2 2 13,608 2 4 13,608 2 4 13,608
x x x x 2 4 2,268 2 4 11,340 4 13 870,912

attacker would have to run the attack on the TMH scheme in Section 4.4 under
different mappings between helper data and frequency differences.

We provide some remarks regarding the results in Table 2:

1. Except for all countermeasures enabled, the minimum value is the same
for the noise conditions, and minimum and median are close. The small
deviations indicate that the attack is quite robust against noise.

2. The maximum for noisy data and only polynomials (P) enabled is 6 and
the maximum value for random seed, shift width, and feedback enabled
(R,T,P) is always 13, 608 = 36 ·63 ·6, both corresponding to the theoretical
maximum according to Section 5.3. The reason for these cases is, that by
random chance twice the same polynomial has been selected and the attacker
does not know which one. Conversely, if distinct polynomials are used, the
distinction of two sequences is easier, which suggest that the polynomial
countermeasure should not be used in combination.

3. In case that the mask is enabled, the median and maximum numbers of indis-
tinguishable sequences increase, and at the same time the minimum number
decreases, compared to the same setting without mask, i.e., (R,T,P) vs.
(R,T,M,P), and (R,T) vs. (R,T,M). While the increased median and
maximum values indicate a susceptibility of the attack towards noise, the
increase of the minimum value reveals that masking is an unsuited permuta-
tion strategy and lowers the overall protection similar as the use of random
polynomials.

Summarizing, the best combination of protection mechanisms is the use of
random seeds (R) and randomly selected shifts (T) for which the attacker faces
63 · 36 = 2, 268 indistinguishable sequences when observing ten different pairs of
Loop PUF measurements. While we showed that the attack is independent of the
noise level, an attacker could combine Nmeas measurements to construct Nmeas!
different pairs for an attack. From each pair, processed in parallel, she could take
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the 2, 268 most likely results or drop results, which have more than 2, 268 equally
high correlations. The resulting up to Nmeas!× 2, 268, sequences could be used
in parallel to match helper data and frequency differences and to run the attack
from Section 4.6. This eventually demonstrates that the lightweight countermea-
sure hardly provides sufficient protection to the TMH method. Nevertheless, the
discussion highlights pitfalls, e.g., regarding combined permutations, and pro-
vides indicators on how to develop improved lightweight protection mechanisms
in the future.

7 Conclusion

This paper studies the security of a PUF using the TMH method in the pres-
ence of SCA attacks. While TMH can greatly enhance the reliability without
resorting to ECC, we show that the used metrics need to be modified in order to
achieve a high level of security when the helper data is unknown to the attacker.
In case of public helper data, it appears that the TMH method has important
security weaknesses. Two protections are proposed relying on randomization of
the challenge order. The first one, which takes advantage of a TRNG, provides
excellent security but requires a significant number of random bits. The second
and less costly solution is relying on an LFSR, but only adds a limited secu-
rity enhancement. The limitations of the approaches highlight the need for more
efficient protections in terms of complexity and security. In particular, we are in-
terested in minimizing the number of random bits and in interleaving challenges
during oscillation measurements.
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A Attacker with helper data access and no temporal
masking
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Fig. 8: Visualization of the attack failure for attacker with helper data knowledge.
As an example metric M1 is used, but no temporal masking is effective.

We assume that the attacker can read the helper data, but the temporal
masking countermeasure is not activated. We show how this additional infor-
mation affects the attack highlighting that the TMH scheme without further
protection enables SCA. This notion is rather of theoretical interest as without
temporal masking, the frequency difference df would be revealed independently
of the helper data scheme. However, the results show that the reliability informa-
tion of the TMH can also be exploited by the attacker and improves the attack
compared to the scenario without helper data knowledge.

Figs. 8a and 8b depict the attack scenario assuming helper data knowledge.
As an example, the use of metric M1 is depicted, where an attacker can use
the bounds −T1? and T2?instead of ±a? if no helper data is known. Compared
to Figs. 2a and 2b, the red area below the distribution of observed values is
significantly smaller. This indicates that the attacker benefits from the reliability
information encoded in the helper data and is formalized in the following.

Assuming metric M1 and the value df > a during enrollment the actual PUF
bit is kC=0 according to Eqs. (2) and (3). The attacker will know that M1 is

the metric but any observed value T1? ≤ df ′C < T2? is decoded as k̂C = 1 6= kC .
In other words any perturbation T1? − df < ε < T2? − df will lead to an error
in the attack. Now for df? ∼ N (df, σadv.), the probability for this event is

P1(df, σadv.) = Pr[k̂C 6= kC |wC = M1, df > a] (14)

=

∫ T2?

−T1?
φ? (df?; df, σadv.) ddf?.
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The boundaries −T1? and T2? depend on the noise the attacker faces7, thus
Eq. (14) establishes a relationship between the SNR and failure probability.
Similarly, for the case when the metric is M1 and kC = 1, the failure probability
is:

P2(df, σadv.) = Pr[k̂C 6= kC |wC = M1,−a ≤ df ≤ 0] (15)

=

∫ −T1?

−∞
φ? (df?; df, σadv.) ddf? +

∫ ∞
T2?

φ? (df?; df, σadv.) ddf?.

In an analogous way the failure probability for metric M2 with kC = 0 is
defined as

P3(df, σadv.) = Pr[k̂C 6= kC |wC = M2, df < −a] (16)

=

∫ T1?

−T2?
φ? (df?; df, σadv.) ddf?,

and for metric M2 with kC = 1 it results in

P4(df, σadv.) = Pr[k̂C 6= kC |wC = M2, 0 < df ≤ a] (17)

=

∫ −T2?

−∞
φ? (df?; df, σadv.) ddf? +

∫ ∞
T1?

φ? (df?; df, σadv.) ddf?.

From the probabilities in Eqs. (14) to (17), which define the entire support
of df, the overall success probability to recover a PUF bit is given by

Prsuccess(df, σadv.) = 1−
4∑
i=1

Pi(df, σadv.). (18)

Fig. 9 depicts the success probability for different levels of noise σadv. an attacker
faces and depending on the enrollment value df. The results show that df ≈ ±a
and df ≈ 0 contain most uncertainty for the attacker, i.e., it is most likely that
the estimated value for the PUF bit k′C is wrong. The attacker faces the highest

uncertainty for values of df close to the boundary between k̂ = 0 and k̂ = 1. On
the one hand, this means the attack will not yield a 100% success rate for all PUF
bits. On the other hand, the attacker is provided with reliability information for
the attack results that allow for developing a smart guessing strategy.

7 Note: For the standard normal distribution µ = 0, σ = 1, the resulting value are
| ± T1| = 0.31863936, | ± a| = 0.67448975 and | ± T2| = 1.15034938. Depending on
σ, the value are scaled accordingly. Notably the points that define the octiles are not
equidistant.
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Fig. 9: Helper data/no temporal masking: Simulation of the attack success prob-
ability for different levels of attacker noise σadv..


