N
N

N

HAL

open science

Multiple and Reproducible Fault Models on
Micro-Controller using Electromagnetic Fault Injection

Vanthanh Khuat, Oualid Trabelsi, Laurent Sauvage, Jean-Luc Danger

» To cite this version:

Vanthanh Khuat, Oualid Trabelsi, Laurent Sauvage, Jean-Luc Danger. Multiple and Re-

producible Fault Models on Micro-Controller using Electromagnetic Fault Injection.

JOINT IEEE INTERNATIONAL SYMPOSIUM
ITY, SIGNAL & POWER INTEGRITY, AND EMC EUROPE, Jul 2021, Virtuel,

10.1109/EMC /SI/PI/EMCEurope52599.2021.9559288 . hal-03365013

HAL Id: hal-03365013
https://telecom-paris.hal.science/hal-03365013

Submitted on 24 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

ON ELECTROMAGNETIC COMPATIBIL-
France.

https://telecom-paris.hal.science/hal-03365013
https://hal.archives-ouvertes.fr

Multiple and Reproducible Fault Models on
Micro-controller using Electromagnetic Fault
Injection

Vanthanh Khuat*T, Oualid Trabelsi*, Laurent Sauvage* and Jean-Luc Danger*
*LTCI, Télécom Paris, Institut polytechnique de Paris, France
Email: {khuat, oualid.trabelsi, laurent.sauvage, jean-luc.danger} @telecom-paris.fr
TFaculty of Information Technology, Le Quy Don Technical University, Hanoi, Vietnam
Email: van-thanh.khuat@lqdtu.edu.vn

Abstract—TIn this paper, we present a method to obtain multiple
and reproducible fault models on a 32-bit Micro-controller
(MCU) using Electromagnetic Fault Injection (EMFI). By using
different Pulse Width (PW), this method allows to obtain either a
replay or skip of instructions fault model with a fault rate up to
100%. Specifically, a replay of an instruction block is obtained
with the PW of 1.5 nano second (ns), whereas a skip of an
instruction block is observed with the PW of 7.0 ns. With these
types of fault model, an adversary may be able to retrieve secret
information, as cryptographic key, by using efficient attacks. The
study is carried out by enabling or disabling the cache. The only
difference is that the resulting faulty block is either 32 bits when
the cache is disabled or 64 bits when the cache is enabled. The
impact of the Pulse Amplitude (PA) has been analyzed, and the
fault model has been characterized at bit level. These results
demonstrate the efficiency and the flexibility of the EMFI which
should be considered for designing robust MCU.

Index Terms—Electromagnetic fault injection, Fault models,
Characterization, Micro-controller.

I. INTRODUCTION

In recent years, with the development of the Internet of
Things (IoT), a large number of embedded systems have been
deployed for sensing, collecting data, and connecting to the
server. Their architecture relies on MCUs which process plenty
of valuable information such as password, account number,
identity, critical data, etc. These objects are the target of many
attack types. As they are physically accessible, the physical
attack becomes possible in addition to cyber attacks. One of
the most powerful threats is the Fault Injection (FI).

FI is an active side-channel attack in which the attacker
induces faults to the target to further exploit them in order
to extract secret information by differential analysis (fault vs
no-fault). Many FI techniques have been developed, such as
clock or voltage tampering [1], [2], EMFI [3], [12], optical
fault injection [7], [13]. The attacks can be classified into
invasive, semi-invasive, and non-invasive attacks. EMFI is a
non-invasive technique, in which the electromagnetic (EM)
pulse is used to divert the program from its proper functioning.
A probe is specifically designed for conducting EM waves to
be coupled into the device and disturbs the operation inside
it. There are several advantages of EMFI. First, because the
Electromagnetic (EM) pulse can be confined in a small space,

it only affects the device locally as compared to voltage or
clock tampering which has a global impact on the device.
Second, though the space resolution of the EMFI is not as
high as that of the Laser Fault Injection (LFI) [6], in EMFI,
due to the nature of EM pulse, it is possible to attack the MCU
without depackaging it. In addition, because the front-side of
the MCU is protected with several metal layers which can
absorb and reflect the light, normally LFI must be performed
from back-side of the MCU. However, most of the available
works using EMFI were able to attack the devices from its
front-side, which is beneficial in many practical applications.

The EMFI has been proven to be a very effective tool for FI
in MCUs including 8-bit MCU [9] and 32-bit MCU [10]. At
logical level, the fault includes bit-set, bit-reset, bit-flip and no
sampling. At software level, the fault models which character-
izes the main scheme of the Fault Injection Attacks (FIA) are:
instruction replay, instruction skip, instruction replacement,
and register fault. They are also classified into single and
multiple instruction(s) faults. In single instruction fault model,
EM impacts only one instruction. Effective countermeasure
has been proposed against it [11]. In multiple instructions
fault model, two or more instructions are impacted by EMFI.
This fault model is more complex to obtain, and so as the
countermeasure to thwart it.

Most of the available works on EMFI focused on how to
achieve a fault model with a high fault rate. To our best
knowledge, no studies have reported on obtaining multiple
fault models with a perfect fault rate. In this paper, we report
on the observation of multiple and reproducible fault models
on a 32-bit MCU, in which for a same targeted block of
instructions, the adversary can choose the fault model between
multiple instructions replay and multiple instructions skip both
with a perfect fault rate. The main contributions of this paper
are:

« investigating the impact of the PW on the fault induced
by EM pulse to obtain two fault models on multiple
instructions;

o determining the injection time to achieve a fault repro-
ducibility of 100%;

« investigating the impact of the PA on the skip and replay
fault models induced by EM pulse, respectively;
o characterizing the fault model at bit level.

The rest of the paper is organized as follows. Section II
describes the experiment setup and target. Section III discusses
the two fault models of replay and skip of block instructions
achieved with EMFI by using different PW. Section IV dis-
cusses the impact of the PA on the fault rate of each observed
fault model. Section V characterizes the fault on buffer content
at bit level. Section VI provides the main conclusions and
perspectives.

II. EXPERIMENTAL SETUP

Fig. 1 shows the experimental setup used for conducting
EMFI on SAMD21G18A MCU which consists of an oscillo-
scope, a pulse generator, an amplifier, a probe, a computer,
and the device under test. The pulse generator is the Keysight
Pulse generator 81160A, which is capable of generating a
pulse as short as 1.5ns and a rising time of 1.0ns. Its output

. amplifier

e J—2

ulse generator
+ B probe

SAMD21G18A

Figure 1. Schematic of EMFI experimental setup

is redirected to the CBA 400M-260 Power Amplifier, which
delivers the pulse to a handmade probe. The later is built with
four loop turns of a 150 um wire, around a ferrite core designed
as a circular truncated cone, with a top diameter of 1.5 mm
and a bottom diameter of 0.8 mm. The oscilloscope was used
to monitor the trigger related to the test code execution time,
as well as a second trigger signal generated from the target,
and redirected it to the pulse generator.

Our target is the 32-bit MCU SAMD2IGI18A [8], em-
bedding an ARM Cortex-M0+ core (2-stage pipeline), that
implements the ARMV6 thumb instruction set. For all the
tests, the MCU was configured to work at 12 MHz, with zero
wait states to ensure no delay during the data read operation
from the Flash memory. The MCU is equipped with an 8
lines of 64-bit cache, and the data transfer is performed via
32-bit AHB and APB buses. The EMFI induced faults were
studied with both cache enabled and disabled. The MCU debug
was performed through the Atmel-ICE Debugger which allows
collecting all the needed registers and memory data.

A manual scan of all the chip package was performed to
find the sensitive positions. The probe was then fixed at an
optimal position that provides the highest fault rate. All the

registers were initialized to a known value at the beginning of
all the tests to ensure the fault traceability. One test iteration
follows three main steps: (1) the target is reset and all systems
registers are initialized; (2) the trigger for the pulse generator
is set, and the test code is executed; (3) all the registers value
are collected as the program reaches the configured breakpoint,
or when an interrupt routine is performed.

During the campaign, 100 tests were performed for each
configuration of fault injection parameters. Before each test,
we collected the value of all the registers to confirm the that
the program functions correctly in the normal condition and
used it as the reference to detect the fault after each EMFI.
More details on experiment setup and the method for applying
the EMFI can be found in [12].

Our analysis focused mainly on the observed faults through
the variation of setup parameters, such as the injection time,
the PW, and the PA.

III. IMPACT OF THE PW ON THE EMFI-INDUCED FAULT
MODELS

To understand the impact of the PW to the fault obtained
by EMFI, pulses with different PW, from 1.5 ns to 9.0 ns with
an increment of 0.5 ns, were used to induce fault on the MCU,
while all the other parameters such as the probe position and
the PA were fixed. The faults were induced in MCU with cache
disabled and cache enabled, respectively.

A. Cache disabled

1. sub r0,r0,#0x01 1. sub r0,r0,#0x01 1. subr0,r0,#0x01
2. sub r0,r0,#0x02 2. sub r0,r0,#0x02 2. sub r0,r0,#0x02
3. sub r0,r0,#0x04 3. sub r0,r0,#0x04 3. sub r0,r0,#0x04
4. sub r0,r0,#0x08 4. sub r0,r0,#0x08 4. sub r0,r0,#0x08
block 1 # block 1 # block 1

5. add r1,r1,#0x01 « | 5. subr0,r0,#0x01 5. nop

6. add r2,r2,#0x01 6. sub ro,ro,#0x02 6. nop

block 2 # block 2
7. add r3,r3,#0x01 7. add r3,r3,#0x01 7. add r3,r3,#0x01
8. add r4,r4,#0x01 8. add r4,r4,#0x01 8. add r4,r4,#0x01

(a) (b) (c)

block 2

Figure 2. Demonstrations of the replay and skip instructions with cache dis-
abled, (a) testcode, (b) replay of two instructions, (c) skip of two instructions

The main part of our test code, which consists of eight
instructions, is shown in Fig. 2(a). For convenience, the
instructions are denoted as (i1, 72, %3, %4, 5, 15, i7, 1g); blockl
is (5, %¢); block2 is (i7, ig). As the cache is disabled, 32-
bit data corresponding to two 16-bit instructions are loaded
from the Flash every two clock cycles. EM pulse was used to
target the loads of blockl and block?2. It should be pointed out
that to differentiate the replay and skip fault model, (i1, %o,
i3, 14) in the test code must not be (nop, nop, nop, nop),
because the replay and skip of a block of nop instructions
are equivalent. Here, for convenience of post processing, in-
structions: sub r0, r0, #value (with value being 0x01,
0x02, 0x04, 0x08) were used for (i1, ia, 73, i4); and (5, ig,
17, ig) are simply the operations to add 0x01 to a register.

The faults are classified into the following types:

o replay ¢1i5: (i5, i) being replaced by (i1, i2);

o skip i,y (74, 1) being replaced by instructions equiva-
lent to (nop, nop), with a, b being 5, 6, 7, §;

o other: register fault, system fault, instruction replace-
ment, up to three instructions skip, etc.

The effects of replay of two instructions and skip of two
instructions are shown in Fig. 2(b) and (c). It is worth noting
that, in the replay of two instructions, (i5, ig) are replaced
by (i1, t2), not (i3, ¢4) which are right above them. While
in the skip of two instructions, (i5, i¢) are replaced by two
instructions equivalent to (nop, nop).

. replay iy . skip isig . other . other

= replay i, EEE skip isie

=
o
o

100

®
o

80

=)
o

60

o
o

40

fault rate (%)
fault rate (%)

N
o

20

o
o

1230 1240 1250 1230 1240

delay time (ns) delay time (ns)

(@) (b)

1250

Figure 3. Two different fault models induced by EMFI on blockl with a
perfect fault rate (a) Replay of two instructions with PW of 1.5 ns, (b) Skip
of two instructions with PW of 7.0 ns

The result shows that the PW has a decisive impact on
the fault type or fault model induced by EMFI. As the
PW changes, the fault rate for each type of fault changes
accordingly. And it is very interesting that at almost the
same injection periods, two multiple instructions fault models
namely replay and skip of two instructions are achieved, both
with a perfect fault rate of 100%. With the PW of 1.5ns,
the faults are mainly replay of two instructions and system
fault, and the replay fault rate is up to 100% as shown in
Fig. 3(a). While for the PW from 2.0ns to 9.0 ns, no replay
of instructions is observed, the faults are mainly instruction
replacement, instruction skip, and other fault. Specifically, with
the PW of 7.0ns, skip of two instructions with fault rate up
to 100% is obtained as shown in Fig. 3(b).

It can be seen from Fig. 3 that the adversary is able to
choose between the two fault models of replay and skip of two
instructions both with a perfect fault rate by only changing the
PW. This makes the attack more flexible and threatening.

The fault on block2 is different from the fault on blockl
in several ways. For one thing, no replay of instructions is
observed with the PW of 1.5 ns as shown in Fig. 4(a). For the
other, the distributions of the faults are also different. However,
with the PW of 7.0ns, the skip of two instructions with the
fault rate up to 100% is still achieved as shown in Fig. 4(b).

Further investigation shows that the fault behavior above
repeats every four clock cycles for each block of two instruc-
tions. Because the SAMD21G18A implements ARM Cortex-
MO+, which has a 32-bit bus, with two stages pipeline, and
every two clock cycles the processor fetches 32 bits data
(2x16-bit instructions). Therefore, we conclude that there
exists two 32-bit buffers: buffer] and buffer2 at the Flash

N skip ivig I other W skip ivig B other

=
o
o

100

®
o

80

=)
o

60

N
o

40

fault rate (%)
fault rate (%)

N
o

20

o

1390 1400 1410

delay time (ns)

(a)

1390 1400 1410

delay time (ns)

Figure 4. Fault induced by EMFI on block2 (a) 1.5 ns, (b) Skip of two
instructions with a perfect fault rate as the PW of 7.0 ns was used.

lcycle 1 | e 3 | a4 [5 [s 7 8
(@) [putter1 (i, 1,) (i, i) (i i)

Buffer2 (i, i,) | (i, i,)

cycle 1 | 2 3 [4 [5 [6 7 [8
(b) Bufferl (i, 1,) (i, 1)) (W]

Buffer2 (igv i4)] (ir i)

Cycle 1 [2 3 [4 [5 [6 7 [8
(c) |sufter1 (iy i) (nop, nop) (iy i)

Buffer2 (i, i,)] (i, i)

Cycle 1 | 2 3 [a5 | s 7 | s
(d) |putfer (i, i) (iy i) (iy i)

Buffer2 (i, i,) | (nop, nop)

Figure 5. Hypothesis on EMFI-induced different fault models on

SAMD21G18A with cache disabled, (a) normal execution instruction loading
process, (b) EMFI-induced replay of two instructions on bufferl, (¢) EMFI-
induced skip of two instructions on bufferl, (d) EMFI-induced skip of two
instructions on buffer2

interface, and each buffer is updated with new data every four
clock cycles as shown in Fig. 5(a).

In the first case, during the clock cycle 2, the content of
bufferl is (i1, i2), and is supposed to be updated with (is5, ig),
however as disturbed by the short EM pulse, the bufferl fails to
update; as the result, (i1, 72) are replayed as shown in Fig. 5(b).
While subjected to the EM pulse with a longer PW, the content
of buffer is updated with the corrupted data, resulting into
instructions modification. In case, the modified instructions
are not recognized by the Processor Core (PC), they are turned
into instructions equivalent to nop instructions, resulting into
skip of instructions as shown in Fig. 5(c). The fault behavior
can be explained by considering the sampling fault model [4],
[5]. According to which the fault happens as the EM pulse is
injected during the sampling windows, affecting one or more
inputs of the D flip-flop (DFF) including (set, reset, clock, D).
The different fault models observed here certainly correspond
at physical level to a sampling fault for the replay, and bit
modification for the skip. The exact physical phenomenon
depending on the PW needs to be deeply analyzed in future
works.

The same principle is applied for the buffer2. However,
for buffer2, the replay is not observed, though skip of two

instructions is still observed. Fig. 5(d) explains the skip of two
instructions induced by EM pulse on buffer2. This is maybe
because the difference in position makes it not as sensitive to
the pulse as the bufferl. This also makes the distribution of
the fault observed with a longer EM pulse on the two buffers
different from each other.

B. Cache enabled

The faults induced by EMFI as the cache is enabled are
classified into the following types:

o replay i1iqi3i4: (45, 6, i7, tg) being replaced by (i1, o,
i3, 14)

. Skip i5i6i7i82 (i5, ’i6, i7,
(nop, nop, nop, nop)

o other: register fault, system fault, instruction replace-
ment, up to three instructions skip, etc.

ig) being replaced by

1. subr0,r0,#0x01 1. subr0,r0,#0x01 1. subr0,r0,#0x01
2. sub r0,r0,#0x02 2. sub r0,r0,#0x02 2. sub r0,r0,#0x02
3. sub r0,r0,#0x04 3. sub r0,r0,#0x04 3. sub r0,r0,#0x04
4. sub r0,r0,#0x08 4. sub r0,r0,#0x08 4. sub r0,r0,#0x08
block # block # block
5. add r1,r1,#0x01 5. sub ro0,ro0,#0x01 5. nop
6. add r2,r2,#0x01 4 | 6. subro,ro,#0x02 6. nop
7. add r3,r3,#0x01 7. sub r0,ro,#0x04 7. nop
8. add r4,r4,#0x01 8. sub r0,ro,#0x08 8. nop
(a) (b) (c)

Figure 6. Demonstrations of replay and skip instructions with cache enabled,
(a) test code, (b) replay of four instructions, (c) skip of four instructions

The test code used was the same as in section III-A. However
it is worth mentioning that, as the cache is enabled, four
instructions are buffered every four clock cycles, therefore
the block is used to specify (i5, ig, %7, ig) as shown in
Fig. 6(a). The two effects of replay of four instructions and
skip of four instructions are depicted in Fig. 6(b) and Fig. 6(c),
respectively. Here, for the replay fault, (¢5, ig, t7, tg) are
replaced by the (i1, i2, i3, %4). And for the skip fault, (i5,
ig, 17, 1g) are replaced by (nop, nop, nop, nop).

W replay iiiyizia W skip isisizia . other W replay ivizizia W skip isigizig . other
1007 100
80 80
2 60 7 60
1 GJ
e ©
£ 40 £ 40
& &
20 20
0 0
1220 1230 1240 1250 1220 1230 1240 1250
delay time (ns) delay time (ns)
(a) (b)

Figure 7. Cache enabled: impact of the PW on the fault model induced by
EMEFI on the block (a) 1.5 ns, (b) (f) 7.0 ns

The PW also has a decisive role on the obtained fault model.
As the PW changes the fault rate for each fault model changes
accordingly. It is noticed that the replay four instructions is
observed with the PW of 1.5ns as shown in Fig. 7(a), and the
skip of four instructions is observed with the PW of 7.0ns as

shown in Fig. 7(b). For both of the fault models, the fault rate
is up to 100%.

As the cache is enabled, the adversary can chose which
fault model for the whole block of four instructions by using
the corresponding PW. This makes the attack even more
threatening and flexible.

cycte 1 | 2 3 [4] s | 6 7 | 8
(a) Buffer (64 bits) (ip iz, i3, l) (i5, ig i7, is) (iy iw iu' l;z)
Cache (iyiniyi) | (iyiyi, i)
cycte T 3 [4 [s [s 7 [8
) |outer Gabits) | (i ipiy iy (i iyiy i) (i) iy i i)
Cache (iy iy iy i) | (iy iy i)
lcycte T 3 | 4 [s] s 7 | 8
(©) Buffer (64 bits) | (iyy Iy iy i) (nop, nop, nop, nop) (ig iy iy i)
Cache (iy iy, i) [(nop, nop, nop, nop)
Figure 8. Hypothesis on EMFI-induced different fault models on

SAMD21G18A with cache enabled (a) normal execution instruction buffering
process, (b) EMFI-induced replay of four instructions, (c) EMFI-induced skip
of four instructions

Further investigation shows that the fault repeats every four
clock cycles. We also reasoned that the fault behavior observed
here is a type of sampling fault, which happens as the EM
pulse is injected during the sampling windows. As shown in
Fig. 8(a), in normal executing process at the clock cycle 2 the
content of buffer is expected to be updated with the block of
(5, 26, 17, 1s). However, due to the impact of the EM pulse,
the fault occurs here. We ascribed the replay effect to EM-
induced prevention on the update of the buffer, leading to the
cache being updated with previous block of data, which is
similar with the result observed in [12]. As the result, (i1, io,
i3, 14) are re-executed or replayed instead of (i5, ig, i7, ig)
as shown in Fig. 8(b). Notice that the replay only happens as
EM pulse with short PW is used. As a longer PW is used,
the impact is rather in the content of the buffer, meaning the
update process still happens but instructions or data inside are
corrupted by the EM pulse. As the modified instructions are
not recognized by the PC, they are turned into instructions
equivalent to nop, consequently the skip of four instructions
is observed as shown in Fig. 8(c).

Obviously, the PW has a great impact on the fault models
achieved on the target. In both cases with cache disabled and
enabled, the same multiple fault models of replay and skip of
block instructions with fault rate up to 100% were achieved
with the PW of 1.5 ns and 7.0 ns, respectively. In the following
sections, the PW of 1.5ns was used for generating the replay
fault, and the PW of 7.0ns was used for generating the skip
fault.

IV. IMPACT OF THE PA

A. Impact of the PA on replay fault

We also studied the impact of the PA on the fault rate of the
replay fault model. Based on the result in section III, we fixed
the PW at 1.5ns to produce the replay fault in the MCU. The
PA was increased from —6dBm to 0 dBm with an increment

100

80

60

40

fault rate (%)
fault rate (%)

20

-6 -4 -2 6 -4 -2 0
Pulse amplitude (dB) Pulse amplitude (dB)
(@)

Figure 9. Influence of the PA on the fault rate of replay fault: (a) cache
disabled: replay of two instructions, (b) cache enabled: replay of four
instructions

of 1dBm. The highest fault rates of replay of two instructions
and four instructions that can be achieved for each PA value
are shown in Fig. 9. As can be seen in Fig. 9(a), the replay of
two instructions obtained with cache disabled can be observed
with the PA starting from —5dBm with fault rate up to 40%.
The fault rate increases as the PA increases, and a fault rate
of 100% can be reached starting from PA of —3 dBm. On the
other hand, no replay fault is observed with PA of —6 dBm.

The replay of four instructions obtained with cache enabled
is observed with PA starting from —4 dBm with the fault rate of
93%. The fault rate increases gradually to reach 100% starting
from PA of —1dBm as shown in Fig. 9(b). The fault is not
observed with PA smaller than —4 dBm.

This experiment highlights the direct impact of the PA on
the fault rate of the replay fault. To observe the fault, the PA
needs to reach a certain value, and by increasing the PA higher
fault rate up to 100% can be achieved.

B. Impact of the PA on skip fault

100

80

60

40

fault rate (%)
fault rate (%)

20

-4 -2 - -2
Pulse amplitude (dB) Pulse amplitude (dB)

(@) (b)

100

80

60

40

fault rate (%)

20

6 -4 -2
Pulse amplitude (dB)

(c)

Figure 10. Influence of the PA on fault rate of skip fault, cache disabled (a)
skip of two instructions (bufferl) (b) skip of two instructions (buffer2) (c)
cache enabled: skip of four instructions

The impacts of the PA on the skip of two instructions and
four instructions were also studied. Here, the PW was fixed
at 7.0ns, and we proceeded with the same PA variation from

—6dBm to 0dBm with the increment of 1dBm. The highest
faults rate that can be obtained according to each tested PA are
reported in Fig. 10. As the cache is disabled, the faults in the
two buffers behave differently with increasing PA. As shown
in Fig. 10(a) for bufferl, skip of two instructions is observed
in with all the PA from —6 dBm to 0 dBm, with a fault rate of
100% that can be obtained from the PA of -4 dBm to 0 dBm.
On the other hand for buffer2, the skip of two instructions can
only be seen with the PA starting from —3 dBm; and as the PA
increases, the fault rate increases accordingly. The fault rate
can only reaches 100% with the highest tested PA value of
0dBm.

It can be seen that buffer] seems to be more sensitive to
the EM pulse at current position of the probe than buffer2.
However, it is obvious that with the PA of 0 dBm, it is possible
to achieve skip of two instructions for both of the buffers.

The dependency of fault rate of skip of four instructions
obtained when the cache is enabled on the PA is shown in
Fig. 10(c). The skip can only be seen with the PA starting
from —4 dBm with a linear increase to reach 100% of fault
rate with the PA value of 0 dBm.

It is quite clear that for both cases of cache disabled and
enabled, as the PW is fixed, the EMFI-induced fault models
tend to be the same; and the PA mainly has the impact on
the fault rate. As the PA increases, the fault rate increases
accordingly.

V. CHARACTERIZATION OF THE FAULT AT BIT LEVEL

As analyzed above, we assume that the skip of instructions
is due to the EM-induced the corruption of one or multiple bits
of the buffers content. An in-depth analysis of this corruption
is proposed with the next experiments to identify the fault
model at bit level (bit-set or bit-reset). For the following tests,
we kept the same probe position and set the PW to 7.0ns
and the PA to 0dBm to guarantee the highest fault rate on
both 32-bit buffer (when the cache is disabled), and 64-bit
buffer (when the cache is enabled). To detect bit-set fault, the
buffer is filled with all bits at 0. This is accomplished by
using a test code consisting of successive same instructions
1sl r0,r0, #0x00 with the opcode of 0x0000. With the
same manner, bit-reset fault can be detected if fault occurs
when the buffer is filled with all bits at 1. Because there is
no instruction with such opcode, the test code represents a
successive same instructions sub r7,r7, #0xff of which
the opcode is (0x3££f) (most of the bits are 1). Fig. 11 shows
the fault rate on the 32-bit and 64-bit buffers corresponding
to cache disable and enable mode, respectively. It is obvious
that very few faults occur as the buffers are filled with all 0.
On the other hand, many faults can be observed when most
of the bits in the buffer are 1. Indeed, the same behavior is
reported on both the buffers when the cache is enabled or
disabled. Through this test, we assume that at bit level, the
fault induced by EMFI is bit-reset fault rather than bit-set.
It should be noted that this behavior is reported only with a
specific PW at the current probe position.

100 100
80 80
g 60 3 60
e e
= 40 £ 40
& &
20 20
0 0
1230 1240 1250 1230 1240 1250
delay time (ns) delay time (ns)
(a))]
100 100
80 80
S S
g 60 3 60
c e
£ 40 s 40
& &
20 20
0 0
1390 1395 1400 1405 1410 1390 1395 1400 1405 1410
delay time (ns) delay time (ns)
(¢ d
100 () 100 ()
80 80
g 60 3 60
© e
£ 40 £ 40
& s
20 20
0 - 0
1230 1240 1250 1230 1240 1250
delay time (ns) delay time (ns)

(e) ()

Figure 11. Fault rate is low for the bit-set test code when the cache is disabled:
(a) 32-bit bufferl and (c¢) 32-bit buffer2, and when the cache is enabled (e)
64-bit buffer. The fault rate is higher for the bit-reset test code, when the cache
is disabled: (b) 32-bit bufferl and (d) 32-bit buffer2, and when the cache is
enabled (f) 64-bit buffer.

VI. CONCLUSION & PERSPECTIVES

In this paper, we reported on the observation of multiple
fault models achieved with EMFI on a 32-bit MCU, including
multiple instructions skip and multiple instructions replay by
using the EM pulse with different PW. With a short pulse at
1.5 ns, replay of instructions was observed with fault rate up
to 100%. While with a longer pulse, instructions modification
was observed and by turning all the instructions into the ones
equivalent to nop, skip of multiple instructions was observed.
With the PW of 7.0 ns, the fault rate of multiple instructions
skip reached up to 100%. The fault was ascribed to the impact
of EM pulse on the Flash interface buffers. And different fault
models were observed due to the fact that each PW has impact
on different input of the buffer. As the cache is disabled, the
buffer size is 32 bits; as the cache is enabled, the buffer size
is 64 bits. The impact of the PA on the fault behavior was
also systematically studied. The result showed that the PA
has a direct impact on the fault rate, and should be chosen
carefully to achieve a fault rate of 100%. By using the test
code with a specific opcode containing maximum bit of 0 and
1, the fault model at bit level was identified to be mostly bit-
reset. Our result demonstrates both the precision and flexibility
of EMFI for attacking MCU. This brings the adversary with

more choices to implement password bypass, differential fault
analysis to extract secret keys or deny of service when
using EMFI to attack MCU. For the designer, this should be
taken into consideration when implementing countermeasures
against EMFI attack. Our future works will be centering on:
(1) the verification of the fault models obtained here in other
devices, (2) the study of mechanism under the faults, (3) the
development of efficient countermeasures against the faults.

ACKNOWLEDGMENT

This work was partly funded by the SPARTA project, which
has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement
number 830892.

REFERENCES

[1] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An in-
depth and black-box characterization of the effects of clock glitches on
8-bit mcus. In 2011 Workshop on Fault Diagnosis and Tolerance in
Cryptography, pages 105-114. IEEE, 2011.

[2] Alessandro Barenghi, Guido Bertoni, Emanuele Parrinello, and Gerardo
Pelosi. Low voltage fault attacks on the rsa cryptosystem. In 2009
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pages 23-31. IEEE, 2009.

[3] Arthur Beckers, Josep Balasch, Benedikt Gierlichs, Ingrid Verbauwhede,
Saki Osuka, Masahiro Kinugawa, Daisuke Fujimoto, and Yuichi
Hayashi. Characterization of em faults on atmega328p. In International
Symposium on Electromagnetic Compatibility. IEEE, 2019.

[4] Mathieu Dumont, Mathieu Lisart, and Philippe Maurine. Electromag-
netic fault injection: how faults occur. In 2019 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pages 9-16. IEEE,
2019.

[5] Mathieu Dumont, Philippe Maurine, and Mathieu Lisart. Modeling of
electromagnetic fault injection. In 2019 12th International Workshop on
the Electromagnetic Compatibility of Integrated Circuits (EMC Compo),
pages 246-248. IEEE, 2019.

[6] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan
De Castro, Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gen-
drier, David Hély, Regis Leveugle, Paolo Maistri, et al. Laser fault
injection at the cmos 28 nm technology node: an analysis of the
fault model. In 2018 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 1-6. IEEE, 2018.

[7]1 Jean-Max Dutertre, Timothé Riom, Olivier Potin, and Jean-Baptiste
Rigaud. Experimental analysis of the laser-induced instruction skip fault
model. In Nordic Conference on Secure IT Systems, pages 221-237.
Springer, 2019.

[8] Microchip Technology Inc. SAM D21/DA1 Family. In SAM D21/DA1
Family.

[9] Haohao Liao and Catherine Gebotys. Methodology for em fault

injection: Charge-based fault model. In 2019 Design, Automation &

Test in Europe Conference & Exhibition (DATE), pages 256-259. IEEE,

2019.

Alexandre Menu, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste

Rigaud, and Jean-Luc Danger. Precise spatio-temporal electromagnetic

fault injections on data transfers. In 2019 Workshop on Fault Diagnosis

and Tolerance in Cryptography (FDTC), pages 1-8. IEEE, 2019.

Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno

Robisson. Formal verification of a software countermeasure against in-

struction skip attacks. Journal of Cryptographic Engineering, 4(3):145—

156, 2014.

Lionel Riviere, Zakaria Najm, Pablo Rauzy, Jean-Luc Danger, Julien

Bringer, and Laurent Sauvage. High precision fault injections on the

instruction cache of armv7-m architectures. In 2015 IEEE International

Symposium on Hardware Oriented Security and Trust (HOST), pages

62-67. IEEE, 2015.

Sergei P Skorobogatov and Ross J Anderson. Optical fault induction

attacks. In International workshop on cryptographic hardware and

embedded systems, pages 2—12. Springer, 2002.

[10]

(11]

[12]

[13]

