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Abstract—In this paper, we propose to implement the sigmoid
function, which will serve as an activation function of the
neurons of a Multi Layer Perceptron (MLP) network, as well
as its approximate derivative using an analog circuit. Several
implementations have already been proposed in the literature, in
particular, by Lu et al. (2000), which offers both a configurable
and simple circuit realized in 1.2 µm technology. In this paper
we demonstrate the circuit design of a sigmoid function based
on Lu et al. using 65 nm technology in order to reduce energy
consumption and circuit area. The design is based on an in-
depth theoretical analysis of the circuit and validated by circuit
level simulations. The main contributions of the paper are a
modification of topology of the circuit in order to meet the
required nonlinear response of the circuit and the extraction
of the DC power consumption of the resulting circuit.

Index Terms—Activation function, analog CMOS circuit, ap-
proximate derivative, backpropagation, multi-layer perceptron,
sigmoid function.

I. INTRODUCTION

In the current digital age, Artificial Intelligence (AI) spreads
and impacts all areas of modern society. If AI has experienced
such a revolution, it is thanks to the development of digital
hardware. Today, Moore’s Law, which predicts the improve-
ment of digital microprocessors, is now facing the physical
limits of matter. In addition, the Von-Neumann architecture,
is characterized by a significant energy loss due to the flow
of data between memory and processor, and is not the best
solution for implementing neural networks such as mutli layer
perceptrons (MLPs). Therefore, many researchers are moving
towards the realization of neural networks implemented by
means of analog circuits [1].

Different technologies have been considered to implement
the behavior of the neuron with varying degrees of success.
In [2], a memristor was added to the feedback loop of an
operational amplifier to create a pseudo sigmoid function, e.g.
a linear amplifier transfer function with bounded upper and
lower voltage rails. Authors in [3] explain that the magnetic
texture of spintronics such as domain walls and skyrmions,
can implement leaky integrate and fire neurons.

In this paper, standard CMOS technology is preferred
due to its maturity, low-cost and well-established fabrication
processes. Therefore, the following review focuses on papers
proposing implementations of sigmoid functions with CMOS
circuits.
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In 1993, Bogason [4] proposed a circuit based on two differ-
ential pairs in 2.4 µm CMOS technology driven by a digital
MODE signal. Depending on the logic state of MODE, the circuit
generates the sigmoid function or the derivative function. The
drawback is therefore that it only generates one function at a
time and requires additional driver circuitry. In 1994, Annema
[5] proposed a circuit that generated both functions at the same
time, which avoids the driving circuit. The proposed circuit is
also based on a differential pair. However, the parameters of
the function (gain factor and threshold) are fixed and cannot be
changed. In 1997, Al-Ruwaihi [6] proposed a programmable
sigmoidal activation function generator circuit which was man-
ufactured by MOSIS in 2.0 µm CMOS technology. Changing a
voltage was enough to vary the gain factor of the function, thus
offering a wide choice of possibilities. However, the circuit
suffers from significant nonlinear distortions.

In 2000, Lu, Shi and Chen [7] proposed a circuit using
1.2 µm technology which is configurable and able to generate
both a sigmoid and an approximate derivative at the same time
using CMOS technology. This circuit, thanks to its simplicity,
offers a very low energy consumption which is the main
feature to be improved to address future challenges of analog
AI computing architectures. In addition, this simplicity will
ease the design of large and complex networks. We propose
here an improved version of this circuit realized in 65 nm.
This technology node is preferred here because it supports
adequate supply voltage (1.2 V), which is more suited to
analog processing. Our major contribution is to improve the
circuit of [7] in order to be compatible with the chosen
technology node. In addition, to the best of our knowledge,
power consumption for such elementary circuit has not been
discussed yet, which is an essential feature for the development
of analog based neuromorphic systems. In this paper, we
provide the DC power consumption obtained from circuit
simulations.

In section II, we do a reminder on MLP as well as
backpropagation, which emphasizes the need to implement
the activation function as well as its derivative. In section
III, we start by making an overall description of the circuit
which is made up of two sub-circuits, then we focus on the
two sub-circuits operation in more detail by explaining the
modifications as well as the compromises made to obtain the
desired signals at the output. Finally we present the simulation
results obtained with Cadence Virtuoso ADE [8].



II. MULTI LAYER PERCEPTRON AND BACKPROPAGATION
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Fig. 1: Simple Multi Layer Perceptron (MLP) : (a) Example
of a neural network with one hidden layer, (b) Connections to
a neuron. xij , wij , f(.) and b are the inputs of the neuron,
the dendritic weights, the activation function, and the bias
respectively

In the brain, the neuron is the basic unit of the nervous sys-
tem. Neurons are interconnected with each other: their inputs,
called dendrites, have a weighting role via the synapses; their
output, known as axon, redistributes the activity level of the
neuron to other neurons. In artificial systems, they are modeled
as shown in Fig.1.(a). At the level of the neuron (Fig.1.(b)) the
weighted sum resulting from the dendrites passes through the
activation function which introduces ”non-linearity”. Various
activation functions can be used and the most commonly used
is the sigmoid function which is given by:

f(x) =
1

1 + exp(−αx+ Θ)
(1)

where α is called the gain factor and Θ is called the threshold.
In order to ensure the learning process of the MLP network, we
use a supervised learning method by minimizing a quadratic
error function defined as:

Error =
1

2
(yactual − ytarget)2 (2)

yactual = f

∑
ij

xijwij

 (3)

This objective function is used to tune the synaptic weights
using a gradient descent based optimization method. This
method, known as ”backpropagation algorithm” consists in
calculating the gradient of the error with respect to the weight
that is to be tuned [9]. The weight update rule is given by:

wIJ ← wIJ −
∂Error

∂wIJ
(4)

with wIJ the weight that is being updated. Recalling the chain
rule, the gradient of the error can be expanded to:

∂Error

∂wIJ
=

∂Error

∂ycalculated
× ∂ycalculated
∂
∑

ij xijwij
×
∂
∑

ij xijwij

∂wIJ
(5)

∂Error

∂wIJ
= (yactual− ytarget)× f ′

(∑
i

xijwij

)
×xIJ (6)

It can be noted from Eq. (6) that, the value and the expression
of the derivative of the activation function are required to
calculate the weight update. The computation of these values
in analog circuits is actually one of the major challenge to
implement end-to-end analog MLP networks that include both
inference and teaching phases with analog computation.

III. CIRCUIT DESCRIPTION

A. Overall view
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Fig. 2: Circuit schematic of the generator [7]

Fig. 2 shows the circuit of Lu et al. as published in [7].
The input of subcircuit 1 is the current Iin which is also
the input of the circuit in general. This current represents the
weighted sum of the inputs of the neuron. The voltage VB , the
output of subcircuit 1, is a function of the currents Iin
and Iref1, and the voltage VN − VP . In [7], VN − VP tunes
the gain factor of the sigmoid function at the output Vout1.
Iref1 tunes the horizontal position, previously mentionned as
the threshold.
Subcircuit 2 generates both the sigmoid function at

the output Vout1 and also its approximate derivative via the
voltage difference Vout1 − Vout2. Subcircuit 2 is driven
by the voltage VB and outputs the two voltages Vout1 and
Vout2. In the following, we develop the design methodology
used to migrate the initial circuit of [7] to 65 nm technology.

Note also that the bulk terminal of all the transistors is
connected to the source terminal of the transistor in order to
simplify the formulas.

B. Subcircuit1 : The Sigmoidal Biasing Circuit

As introduced earlier, subcircuit 1 sets the voltage VB
which drives the input of a differential pair that produces
a sigmoid function. This voltage carries several information
such as the gain factor and the threshold of the activation
function, which is modified by the voltage VN − VP and the
current Iref1 respectively, and obviously the value of the input
signal representing the weighted sum coming from a synaptic
network carried by the current Iin.

In section III-C, we show that the input of the circuit needs
a sufficiently wide dynamic range to allow an appropriate
response of the circuit. However, in order to guarantee proper
operation of the circuit and obtain an equivalent resistance



which varies linearly with the voltage VN − VP between the
nodes A and B, the two transistors M1 and M2 must always
remain in the linear region, which means that:

VAB < VN − VB − Vthn (7)
VAB < VA − VP − |Vthp| (8)

where VAB represents the maximum voltage between the drain
and the source nodes of the two transistors and Vthn and Vthp
the threshold voltages of the NMOS and PMOS transistors
respectively. Eq. (7) and (8) yield to the following conditions:

VA + Vthn < VN < Vdd (9)
0 < VP < VB − |Vthp|. (10)

Maximizing the dynamic range of VAB requires to maximize
VA and to minimize VB . Eq. (9) and (10) show that maxi-
mizing VA and minimizing VB , reduces the allowed dynamic
range of VN and VP . The tradeoff here is to provide enough
dynamic range for implementing a full sigmoid function, while
leaving enough room to control the voltage difference VN−VP
which encodes the gain factor.

Now we compute the function that governs the voltage VB .
In the triode region, the currents of the circuit are [10]:

IN = βN

(
(VN − VB − Vthn)VAB −

1

2
V 2
AB

)
(11)

IP = βP

(
(VA − VP − |Vthp|)VAB −

1

2
V 2
AB

)
(12)

IAB = IN + IP (13)

with I(N,P ) and β(N,P ) the drain current and the transcon-
ductances parameter of each transistor. Transistors M1 and
M2 are sized to have βN = βP = β and the quadratic
term is neglected in our derivation for sake of simplicity.
Consequently, the circuit between nodes A and B is equivalent
to a variable resistor RAB given by:

RAB =
VAB

IAB
≈ 1

β[(VN − VP )− (Vthn + |Vthp|)]
(14)

RAB is therefore expected to be essentially independent from
VAB . However, this is not exactly true due to the dependence
of the threshold voltages to potentials VA, VB .

On the other hand, voltage VB is given by:

VB = Vref1 − VAB =⇒ VB = Vref1 −RABIAB (15)

which can be further developed as:

VB ≈ Vref1 −
Iin+ Iref1

β[(VN − VP )− (Vthn + |Vthp|)]
(16)

Now, the dynamic range of VB has to be analyzed in order to
guarantee that the transistors always remain in the linear/ohmic
zone. In our case, VB varies between 450 mV and 750 mV
with Vref1= 750 mV so that VAB < 0.3 V; otherwise, tran-
sistors will go into saturation. Further numerical results are
provided in section III-D.

VB
Vref2-√2.Vov +Vref2 √2.Vov + Vref2VBmin VBmax

sig(VB)

Saturation RegionLow Flat 
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Fig. 3: The desired sigmoidal function with its three regions:
Low Flat Region, Saturation Region, High Flat Region.

C. Subcircuit2 : Generator of sigmoidal function and its
approximate derivative

Now, we analyze the effect of the driving voltage VB on
the differential pairs. The expected I/O characteristics of the
differential pair is shown in Fig. 3. It implements a full
sigmoid function that is defined over the voltage range of ∆VB
(recall that VB ∈ [0.45 V; 0.75 V]). First, we set the voltage
Vref2 = 0.6 V which corresponds to the mean of VB . Then,
the ”Voltage Amplification” AV and the ”Over-drive Voltage at
equilibrium” VOV are set so that: 50% of ∆VB corresponds to
the ”Saturation Region”, 25% for ”Low Flat Region” and 25%
”High Flat Region”. ∆V , as shown in Figs. 2 and 4, is a small
fixed voltage that shifts Vout2 with respect to Vout1; as shown
in [7], the difference Vout2 − Vout1 provides an approximate
of the sigmoid derivative. Because the range of VB is quite
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Fig. 4: The subcircuit2 ”Generator of sigmoidal function and
its approximate derivative”

small (about 0.3 V as mentionned earlier), the voltage gain
of the differential pair must be maximized in order to ensure
nonlinear output response. The circuit topology proposed by
[7] is not able to provide a gain large enough to meet the
targeted nonlinear response. This gain limitation is due to the
supply voltage reduction (from 3.3 V to 1.2 V).

The circuit is modified as shown in Fig. 4, by replacing the
PMOS ”diode connected” transistors with a ”current mirror”.
Note that here also the bulk terminal is connected to the
source terminal of the transistor. In this case, the ”Voltage



Amplification” AV is equal to [11]:

AV = −gmEq,N × (roN ||roP ) (17)

roN and roP are the ”ON” state resistances of the transistors
and gmEq,N is the transconductance of the NMOS transistor
at equilibrium (e.g. in common mode) defined as [11]:

gmEq,N =

√
µNCOX

WN

LN
Iref2. (18)

It corresponds to the slope of the characteristics shown in
Fig. 3 for VB = V ref2. The ”Overdrive Voltage at equi-
librium” VOV is given by:

VOV =

√
Iref2

µNCOX
WN

LN

. (19)

VOV defines the saturation region shown in Fig. 3 and is set
according to the dynamic range of VB . Therefore, the targeted
nonlinear response is obtained by tuning the ratio WN

LN
and the

current Iref2.

D. Simulation Results

The proposed circuit was simulated with Virtuoso with
V dd =1.2 V, Vref1 = 0.75 V, 0.75 V < VN − VP < 1.2 V,
Vref2 = 0.60 V, ∆V = 10 mV and Iref2 = 10 µA. Fig. 5
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Fig. 5: Sigmoidal function (continuous line) and its approxi-
mate derivative (broken line) for different value of Iref1

shows the obtained sigmoidal function and the approximate
derivative as function of input current Iin. Also, the current
Iref1 properly sets the threshold (horizontal shift) of the
sigmoid. The sigmoid function obtained varies from 0.4 V to
1.2 V and is centered in 0.8 V, while the true sigmoid function
varies from 0 to 1 and is centered at 0.5. For next work, we
could consider a circuitry which would lower the voltage at
the center of 0.8 V to Vdd

2 and would amplify our output signal
to match the desired function.

According to [7], the variation of VN − VP is supposed
to modify the gain factor of the function. Fig. 6 shows the
derivative curve calculated from the sigmoid functions and
shows a variation of the maximum gain with respect to VN −
VP . This variation is quite limited and is attributed to the small
dynamic range of the equivalent resistance RAB . For now,
the required dynamic range of RAB is still under analysis to
validate this circuit feature. In addition, it should be noted that
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the variation of VN − VP causes an undesirable shift in the
function.

Fig. 7 compares the approximate derivative obtained with
the differential voltage Vout1 − Vout2 and the true derivative
of V out1, computed in Virtuoso’s calculator with the deriv
function. The two functions are close with a slight horizontal
shift of the approximate derivative compared to the true one.
Future work will be to experiment the level of tolerance of
the neural network to the error made on the derivative of
the activation function at the time of training so that it can
converge. The results of these experiments will allow us to
better assess the quality and the required accuracy of the
derivative to properly train a regular MLP and demonstrate
the efficiency of this circuit for on-chip analog learning under
nominal operating conditions and taking into account the
impact of PVT variations.

We have calculated the power of this circuit as:

P = Vref1 × Iref1 + Vdd × Idd (20)

where Iref1 and Idd were the current delivered by the voltage
generator Vref1 and Vdd respectively. The calculated value
from the DC simulations is P = 171 µW. It is worthnoting that
[12] summarizes power consumptions of current accelerators
and highlights the fact that conventional learning systems
require more than 100 W. It is expected that neuromorphic
systems based on the proposed analog circuit provide similar



learning capabilities as conventional approaches while reduc-
ing the power consumption.

IV. CONCLUSION

In this paper, we propose an improved version of the circuit
described in the paper by Lu et al. The proposed circuit topol-
ogy allows to appropriately produce a full sigmoid function
and its approximate derivative using a 65 nm technology. The
main objective is to minimize both energy consumption and
also circuit area with the ultimate target of implementing large
scale deep neural networks. The calculated power consumption
of the circuit is 171 µW. This power estimation is useful for
dimensioning future neuromorphic networks based on analog
circuits and for demonstrating the potential of new computa-
tional architectures which are currently under development.
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