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Abstract: In this paper, we give an exhaustive bilinear generalization of

Contents:

the Continuous Wavelet Transform and emphasize on links
between time-frequency and time-scale energy
distributions. The well-known Cohen's Class gives a full
description of the former, in which a smoothing function
acts on the Wigner-Ville Distribution (WVD). We here provide
a full description of the latter: the result is a new, versatile
class of representations in which the smoothing of the WVD
is scale-dependent (mathematically speaking, a correlation
on the affine group). Through proper choices of the smoothing
function, interesting properties may be further imposed on
the representation. Also, specific choices allow to recover
known definitions (including the Bertrands' and the
scalogram = wavelet spectrogram). Another, very flexible,
choice uses separable smoothing functions to provide a
continuous transition between spectrograms and scalograms
via Wigner-Ville. This "do it yourself" property makes of
affine smoothing of the WVD a very flexible tool for
nonstationary signal analysis.
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1 - The Short-Time Fourier Transform and the Wavelet
Transform

Let x(t) be a finite energy signal and h(t) be a sliding window. A
well-known linear time-frequency representation is the so-calleq
short-time Fourier transform (STFT), computed as
+ oo

x(u) h*(u - t) e-i2rvu dy
In recent years, an alternative linear representation, called the
continuous wavelet transform (CWT), has been extensively studied [1-2],
The fundamental idea underlying the CWT is to replace the frequency
shifting operation that occurs in the STFT by a time (or frequency)
scaling operation. This results in

>

F(t, v)

+ .00

1
Tx(t,a)=\/-|?|- J.x(u)h*( a2 ) du

- 00

>

The so-called analyzing wavelet h(t) is assumed to be localized in time
in order to obtain a local analysis. The explicit dependence of this
definition on the dilation/compression (or scale) parameter a makes the
WT a time-scale representation rather than a time-frequency one [3].

As for the STFT, the WT may be inverted, but under different
conditions, namely that the Fourier transform H(v) of the analyzing
wavelet h(t) satisfies [1]

+ oo
JIH(V)Iz dvv < +oo,

- 00

This basically means that h(f) is the impulse response of some band-
pass filter (hence it must be localized in frequency as well as in time).
This is equivalent, in the time domain, to the condition that its mean
value vanishes. h(t) thus oscillates, hence the name wavelet.

It is important to note that both transforms analyze the signal by
means of an inner product with analyzing waveforms depending on two
parameters. The main difference between the STFT and the WT is
actually related to the generated structure of the respective analyzing
waveforms. d

- In the STFT case, modulated versions of a /low-pass filter are
used to explore the spectral content of the analyzed signal (uniform
filterbank). This amounts, in the time-domain, to using an analyzing
waveform of constant envelope with an increasing number of
oscillations as higher frequencies are analyzed.

- In the WT case, the waveforms are generated from h(tf) by time-
shift and dilation operations and are referred to as the wavelets. Time
evolutions of signals are thus analyzed by means of a waveform whose
envelope is narrowed as higher frequencies are analyzed, whereas its
number of oscillations, hence its shape, remains constant. They can



iherefore be seen as dilated or compressed versions of a band-pass
filter, whose relative bandwidths ‘are constant (constant-Q filterbank).

9 - Spectrograms and Scalograms

4. Definitions and comparison

STFTs and WTs are defined as complex-valued functions and thus
convey both modulus and phase informations. For some applications (4],
hase information can be of interest, but a description based only on the
squared modulus - providing an energy density distribution, is often
oreferred. Indeed, the spectrogram | F,(t, v)|2, defined as the energy
distribution associated to the STFT, has been widely used for many
signal processing tasks. A similar quantity, ITX(t, a)|2, can be defined
in the case of the WT: we propose to refer to this "wavelet spectrogram”
as a scalogram.

There is a classical time and frequency resolution trade-off that
underlies the structure of the spectrogram and should be mentioned
here: the choice of an analyzing window of short duration ensures a good
time localization, but at the expense of a poor frequency resolution (by
Fourier duality), and vice-versa. Moreover, once an analyzing window
has been chosen, the resolution capabilities of the spectrogram remain
fixed for all time and frequency parameters.

The situation is different for scalograms: owing to the constant-Q
structure described above, resolution capabilities are frequency-
dependent.

B. Smoothing interpretation within the Cohen's class

Both spectrograms and scalograms are defined as bilinear
functions of the analyzed signal. In the following, we provide a simple
interpretation of them with the help of the general class of bilinear,
shift-covariant, time-frequency energy distributions. This class,
referred to as Cohen's , is given by [5]

o0 4 00

+
JWx(u, n) I(u-t n-v)dudn |, )

(o)

+
Cy(t, v; 1) = J

(ee)

Where TII(t, v) is some arbitrary function and where

+ o0

W, (t, v) = J x(t + %) x*(t - %) g-i2nve gt
is the so-called Wigner-Ville Distribution (WVD) [5]. Note that whenever
I1(t, v) happens to be a low-pass function in the time-frequency plane,



the general class (1) may be considered as composed of smootheqy
versions of the WVD.

For description purposes, it is convenient to introduce two.
dimensional Fourier transformations in (1). Changing variableg
accordingly yields a dual characterization:

4 00 4 oo
Ct, v 1) = f f f(n, T)A(n, 1) e-i2n{nt+ 1) dpn dr

- 00 = 00

where the weighting function f(n, ) and the (narrowband) amb;‘gufzy;
function [5] A(n, 1) are the (direct and inverse, respectively) 2D Fourier:
transforms of II(f, v) and W.,(t, v) .

We now use members of the Cohen's class to give a s:mplefi
interpretation of both spectrograms and scalograms. What happens m_.ﬁ';-
the spectrogram case [6-7] can be summarized by the following :

Proposition 1. Provided that the weighting function has modulus umty,

classical smoothing of the signal distribution by the wmdo_wj;-?_
distribution results in a spectrogram :

(0, ] =1 e |Ft w2 =

o0

Cylu, nm; 1) C

*

p

LI

u-t, n-v,ITYdudn. (2)

This condition is met by numerous distributions, including the class of
generalized Wigner distributions [7] among which the Rihaczek s'gjf;;
distribution [5] and the WVD itself are special cases.

We state a similar specification of scalograms from Cohen' sfi
distributions  [6]:

Proposition 2. Provided that the weighting function has modulus umry?f:!f'é
and depends on its variables only through their product, an affine
smoothing of the signal distribution by the wavelet distribution results
in a scalogram :

{3¢(.)7f(n, 7} &¢(n) and | p(n1)] =1} =

T.(t a)|?= ].

OQ - OO

+
J-Cxu n )G, ( Uc,; t, an, I1)du dn. (3)




Although the condition on the weighting function is more restrictive, it
is still fulfilled by any generalized Wigner distributions [8]. Hence C,in
(3) can be chosen as any generalized Wigner-Ville distribution,
including the WVD itself.

3 - Time-Scale Energy Distributions

A. A general class and its interpretation

In order to derive the general formulation of time-scale energy
distributions, it is appropriate, at this point, to interpret Proposition 2
in the restrictive case where WVDs are used. Proposition 2 then reads:

A scalogram results from the affine smoothing of the WVD of the
analyzed signal by the WVD of the analyzing wavelet.

It is this affine smoothing concept that enables us to generalize
scalograms to general time-scale energy distributions, in a similar way
as spectrograms are generalized to the Cohen's class. More precisely,
consider the following affine transformation (a square integrable
representation of the affine group):

Lalt, AW = =T )

where the factor 1/y [al is introduced for normalization purposes. The
main result of [6] presented in this paper is given by the

Proposition 3. If a bilinear time-scale distribution Q,(t, a) is covariant
to affine transformations, i.e.

t -0 a
(04

QLA(G,a)X(t' a) = QX( o ] ) ’

then, it is necessarily parameterized as .
o0

+.00 4+ ;
Qt a; IT) = J f W (u, n) (-5~ an) du dn , (4)

(e o]

o0

o0

where ITis some arbitrary time-frequency function. Eq.(4) characterizes
the general class of time-scale energy distributions.

The operation described in (4) is nothing else but a two-
dimensional correlation on the affine group [8]. More precisely, {t, a} are
elements of the affine group for the product {t, al{u, o} = {au+t, ac}. This



yields {t, a}"'{u, o} = { (u-t)/a, a/a}, which, with the identification
= 1/0, indeed interprets (4) as. a correlation.

A similar approach has been investigated by the Bertrands [9]. -
Precise links between our formulation and theirs will be given later in
subsection HI-C.

Alternative characterizations of the class (4) may be given. An
interesting one makes use of the weighting function f and reads :

o +4- OO

..i
f fla A (n, ) e2ratdn dr

c....._;!-

QL a; IT) =

Just as the WT uses band-pass filters, the smoothing function IT is
preferrably chosen to be band-pass as a function of frequency. We thus
define II{t, v) = IIy{t, v - vg), where v, is some non-zero frequency. Using

this notation, an interesting identification between time-scale and
time-frequency distributions may be found:

Vo
Q,(t a; I = Cx(t,."“g 1g)

provided that the associated weighting function fy(n, 1) depends only on
the product nt. This condition is met by numerous distributions. In =
addition to the class of generalized Wigner distributions, we can -
mention the Choi-Williams' distribution [5], which has recently received .
special attention.

B. Properties

The general formulation (4) enables us to find distributions satisfying
various specific requirements. This approach, which closely parallels
the one used for the Cohen's class, is illustrated on some exampies in =
the following.

1) _Energy. The terminology «energy distribution» is justified by the
following:

I

where =n(n, m) is the partial Fourier transform of I7T over time. This
means that energy is properly spread over the time-scale plane if the
quantity into brackets is unity.

+- o0 T
dt da dm
jgxran a _[J

o0

2) Marginal in frequency. The spectral energy density of x is recovered
from the marginal in frequency as long as:




e Vo, |2 .
ng(t, a; 1) dt = | X()|? & £(0, 1) = etznver

3) Marginal in time. Similarly, the instantaneous power of x is obtained
as time marginal if:

da da
. 1a 2 1, aa
J.Qx(t, a, ) — = | x(1) | % f flan, Z) 75 =8(7), Vn.

- . Finally, a Moyal-type formula relating inner
products of signals and distributions may be obtained as:

4 00 + 00 -+ oo
* t d
[ Jaxt am ol am 220 [xy y i at |2
T ' da
T\ t,448a 3
2 _J-oof(an, a) f*(an, a) 22 =d(t-7),Vn.

C. Special cases

As for the Cohen's class, specific choices for smoothing (or weighting)
functions allow to obtain special cases of time-scale distributions:
some of them will now be reviewed.

1) Scalograms. The simplest example is the scalogram which, according
to (3), can be seen as the affine smoothing of the WVD of the analyzed
signal by the WVD of the analyzing wavelet [8]:

| Tx(t, a) |2 =t a; W) .

2) Bertrands' class. Another choice yields the Bertrands' class [9]:

'QX(tl a, HB) =

+ 00
=T1Z( j pu(u) X(1§/l(u)) X*(;_/l(-u)) eri2n(ta)(Au)-A¢-u)) du, =)

Where A(u) and u(u) are two arbitrary functions.

Although (5) is quite general, it can be noted that (4) better
féveals the affine smoothing concept underlying time-scale
d_istributions and certainly is more suited for combining time-scale and
Flme-frequency into a unified perspective. Moreover, the formulation (5)
IS obtained as a special case of (4) corresponding to the following
Choice for the weighting function:



4 oo
fg(n, 7) = f;L(u)5(n+[;t(u)—/1(-u)})e"i2n('r/2>(/1fu}+k{'0)) du . (6)

In the following paragraph we show how to simply recover a particular,
distribution used by the Bertrands [9] :

By(t, a) =

1 4jm(n/z) (n/2)e-(n2) _ (nj2)e+(n/2)
[al Jsinh(n/2) (g sinh(nr2)) X & sinh(nr2)

) e-l2n(angn, (7)

for which the formulation (6) appears to be unnecessarily complicated. .-:;
3)_Localized bi-frequency kernels. A useful subclass of (4) consists inf-

characterization functions which are perfectly localized on some curve
m =F(n) in their bi-frequency representation: -.

1>

ws(n, my & G(n&(m -F(n) & f5(n, 1) & G(n) e-2nFin)r
where G(n) is an arbitrary function. Those distributions can be written

Qx(t, a; ) =

4 0O
1 :
“TaT ) ot xGF ) xermy ereswr an.

Specitying
nie
G(n) = m y F{(n) = (n/2) coth(n/2)

allows to recover the particular Bertrands' distribution (7). More..
important is the fact that this specific definition may be constructed
starting from a localized bi-frequency kernel by imposing a priori:
requirements (namely time-localization and a Moyal-type formuia) with
the help of the results of subsection 1I-B. This is detailed in [6]. of .
course, the same requirements led the Bertrands to their definition (6).7
Our construction, however, takes place within the more general
framework of (4). "3

4) Separable kernels and affine smoothed Wigner-Vilie. It is known from.
the theory of time-frequency distributions that the trade-off underlying.
time and frequency behaviors of the spectrogram can be overcome by
replacing the associated WVD smoothing by a smoothing function which;
is separable in time and frequency [10]. The resulting distribution.
(called the smoothed pseudo-WVD) offers a great versatility for:
balancing e.g. time-frequency resolution and cross-terms reduction,:




although this is necessarily at the expense of the loss of other
properties such as marginals.

We propose a similar approach for time-scale distributions and
define the affine smoothed WVD by

mg(t, v) = g(t) Ho(v=vo) =

©Q -f- 00

+.00 +
Q(t a; Ilg) = _[ J.WXU ngt——) ol@an -vy) du dn.

This is a versatile representation which allows a flexible choice
of time and scale resolutions in an independent manner through the
choice of g and H,. An illustration of this, with additional interesting

properties, is given next.
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D. From spectrograms to scalograms via Wigner-Ville

The smoothing functions acting on the WVD to obtain spectrograms on
one hand and scalograms on the other hand, are found, by Propositions 1
and 2, to be of the form of a WVD. This suggests a conlinuous transition
from spectrograms 1o scalograms via the WVD by suitably controlling
the evolution of the smoothing function between a WVD and a delta
function.The following proposition claims that this can be achieved
using separable kernels, which allow an independent control of the time
and frequency (or scale) behaviors of the associated distributions (see
[6] for details).

Proposition 4. A continuous transition from spectrograms to scalograms
via Wigner-Ville is possible by means of separable kernels if and only if
these latter are Gaussian.

A suitable choice of separable smoothing function which allows the
continuous transition from WVD to spectrograms or specirograms is of
the form

Yo

1g(t, v) = L ol o-Bv-vp)°

The transition is controlied by the parameter u.mzn/\j:;;;WhiCh:
runs from 0 (WVD) to 1 (spectrogram/scalogram). This is illustrated in.
Fig. 1 which shows several analyses of three Gaussian wave packets.

Conclusion

Owing to their constant-Q structure, time-scale distributions are:
expected to play an important role for transient analysis and detection.:
The above development has demonsirated that it is possible to build a:
general class of time-scale energy distributions in a systematrc;{j
manner, in which affine smoothing of the WVD plays a central role.

An additional benefit of our presentation is that it closelyf;
parallels the one used for the Cohen's class, thereby unifying the.
derivation of time-scale distributions and their time-frequencyf
counterparts. Again, the WVD is shown to be a central part of the:
analysis in which the simple identification a = v,/v (scale = inverse of:
frequency) holds: the WVD thus belongs to both classes of time-:
frequency and time-scale distributions. This is well illustrated by the:
last result presented in this paper, which shows a continuous transition.
from spectrograms to scalograms with the WVD as a middle step.

In light of this, we recommend that various properties of time-
frequency and time-scale methods be compared keeping in mind that
both result from a smoothing operation acting on a common kernel (the




wvD), the difference being related to the nature of the smoothing
operation (time-frequency or time-scale smoothing). Moreover, this
continuous transition permits to balance time-frequency resolution and
cross-terms reduction in the time-scale representation, in a similar
(but different) way as for the smoothed pseudo-WVD [10]. Other specific
requirements (such as energy normalization, time marginal, etc.) and
associated parameterizations of the representation were also studied in
this paper. This results in a great versatility for the choice of
representations depending on precise requirements.

Since a large class of time-scale and time-frequency
representations is now available, with many possible (and sometimes,
exclusive) properties, some analysis should be done on the analysis tool
itself in order to express particular needs: starting from the most
general formulation, one can, for instance, build a subset of time-scale
energy representations, suitable for a given application, by imposing
specific requirements. Controlling a few parameters on this set of
analyses should help in many ways, e.g. for determining which
representation best reveals a given time-scale signature. s
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