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 ANALYSIS SYNTHESIS OF SOUND SIGNAL USING
‘A DISCRETE WAVELET TRANSFORM (DWT)

C. Dorize*, O. Rioul, A. Chaigne

Lab. Acoustique, Département Signal, Ecole Nationale Supérieure des
- Télécommunications, 46 Rue Barrault, 75634 Paris cedex 13, France

Abstract
The DWT can be viewed as a frequency analysis of a time dependent signal carried out locally in

time, but where high frequency components are studied with a sharper time resolution than low

frequency components. The sampled signal is expanded into an orthonormal wavelet basis. The lack
of redundancy leads to a fast and reversible algorithm (FWT), and several examples are given
" highlighting its efficiency: detection of low amplitude discontinuitiés in industrial acoustics and
~speech signals, and alsobextraction of frequency modulation.

Introduction -

Wavelets ¢, ,(t) are analysw funcuons obtained from a single function ¢ (i) called “analyzing

wavelet”, and are located both in time and frequency [1]. Their aim is to reveal information

contained in a signal s(t) at a given time and around a fixed frequency. In fact, “b” is a time location
- parameter (we translate ¢/(t) to point “b™), and “a” a scaling parameter to focus on a given range of

oscillations (we contract or dilate ¥ (t) to the “a” scale):

hoW =2y (152); aer*ber ) W
The resulting scalar products of the signal s(t) and the wavelets ¢, () are called wavelet coefficients C,
Cab"<s' Vas> 11 (r) o ' , o - (2)

.They represent elementary mformdtlon quantlms present in a signal and are located in both time
and scale. The set of wavelet coefficients can be used to form a time-{requency representation of the

analyzed signal. :
- Let us name two fundamental propcrtlcs of this transformation, t.e. energy conservation and

“reversibil ity:

jls(t)] dt_jfa'-]C,., > dadb - ‘ _ - (3)
s(t) wfj a” Cyp Y (t) dadb ' . | (4
Nevertheless, to preserve these two properties by calculating only a limited number of coefficients in

the time-scale semi-plane (for future computer aided implementation), one has to reconsider the
wavelets’ theory, developed in the continuous case.

For this matter, the multi-resolution analysis concept [2] helps foresee the construction of orthonor-
mal bases of wavelets, where the signal is entircly represented by a network of independent wavelet
coefficients Cjy [4]:

Ciu=<s,¥u>p@n JeN*keZ _ (5)
A wavelet positioning compatible with multi-resolution analysis is the following:

Y =272 ¢ (200 — k) | (6)

where “j” is a so-called “voice™ index used for discretization of the scale axis, and k™ a parameter
adjusting the time position of the wavelet. We should note that such a discretization leads to a
separation of the information into octaves [3).
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I. Daubechies has recently discovered finite and causal sequences ¢ (n) causing the ¥, to form
orthonormal wavelet bases [3]. The y;,(n) wavelets are defined from the sequence ¥(n) by
successive dilations (D* operator) and interpolations (convolutions with a sequence ¢ (n)), {4] &[5]:

Yix = (DY [¥n-k)] - | (7)

where <p(n) is an mtcrpolatlon sequence describing a multi-resolution analysis of the signal [2].
When “j” is increased towards infinity, the discrete wavelet ¢ JD(n) tends to become a continuous one
¥ (x). Such a function as well as its Fourier transform are shown in Fig. | where we can see the
‘simultaneous time and frequency location.
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-~ Fig. 1 On the !eﬁ the continuous wavelet version corresponding to a sequence yin) found by I
Daubechies. Note the oscillations and the time localisation. On the right, the Fourier transform of

¥(t) which corresponds to.a band-pass filter (octave band)

In order to decompose the signal into wavelet coefficients, one has to compute all the scalar products
<s, ¥, >. Considering the adjoining operator D!/ (resp. D)9 of D] (resp. D; ), where D'/? is
a decimation operator, and noting their duality property for the scalar product, wé can obtain an
algorithm which reduces the numerical complexity of this transformation [4].

Whatever the number of voices “J” chosen for thc. decomposition (J21), the signal is entirely
defined by the set of wavelet coefficients C;, (1<j<J) and by its approximation at the worst
resolution s; (see Fig. 2). The C,x coefficients contam oscillations of frequencies varying between .
F,/23*"and F,/2/, where F, is the sampling frequency of the signal s(n). The sy approximation
contains the slowest varying information, not collected by the wavelet coefficients, the frequency of

which lies within the range [0; F,/2°*'].
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Fig. 2 The FWT algorithm splits the signal into J voices, which contain independent wavelet
coefficients C;,. The low frequency information not collected in these coefficients are contained in
the approximation s,(kj). The reversible algorithm is able to perfor m an exact reconstruction of the

signal

However, this decomposition differs from a conventional filter bank {5]. First because of the double
orthogonality of the wavelet coefficients which leads to a lack of information redundancy and to a
number of analysis points equal to the number of samples in the original signal; second, because this
orthogonal decomposition allows a perfect recovery of the signal due to a similar reconstruction
algorithm; finally, the decomposition algorithm presents a low numerical complexity, which is
comparable to that of an FFT [41. Hence, the name Fast Wavelet Transform (FWT).



~ Qur aim is now to present some examp_les showing the potential applications of this transformation.

Detection of plosives -
The reason for hlghlmhtmg plosives in a speech sngnal is in order to spht the message into syllables,
~ and represents one step in the general process of speech recognition. However, these plosives might
be masked by vowels of much higher energy. It is for example the case with the “b” of “tambour” in
the sentence ”d&s que le tambour bat”, of which the time representation is given in Fig.3.a. In order
to extract such a plosive, we can calculate the prediction error a LPC (Linear Prediction Coding) has
led to. The prediction error increases when it is difficult for the filter to adapt to the signal, which is
particularly the case within the non-stationary periods associated with plosives.
An alternative method would be to observe the wavelet coefficients corresponding to the most rapidly
varying oscillations present in the signal. At this scale, because of the high time resotution provided
by the transformation, one should expect an easy detection of phenomena highly concentrated in
time. This is shown in Fig.3.c, where the “b” in “tambour” is very distinct from the nelg,hbourmg
vowels while it is still masked with the prediction error (Fig.3.b).
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Flg 3a.b.c On the left, time representation of the speech signal: “dés que le tambour bat”. In the
middle, prediction error obtained with a 16 coefficient linear prediction filter. On the right, wavelet
coefficients corresponding to the fastest oscillations (voice j = 1) of the signal. The burst for the “b"
of “tambour” is easily detected by the wavelet coefficients

This example characterizes very well the focusing abzlltles of the wavelet coefficients on such peaks.

Extraction of a frequency modulation

Revealing the existence of a frequency modulation in a time signal may be perceived as an’
observation of its slowest varying time oscillations. And the ability to focus on a fixed oscillation
range is one feature of the wavelet transform,. |

~Durmg the signal decomposition, one has to concentrate on the lowest resolution $; approximations (j
is a high value), or on the C;; wavelet coefficients on the voices with a high j. mdvvx

Fig.4.a represents a modulatt,d sinusoid with a time varying modulation frequency f,,. Here is  the

general formula, where f, is the instantaneous frequency of the signal, f, its central frequency, and Af .
the maximum variation in frequency: '

= £+ Afsin (271 ,t) _ : | (_8)
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f/fr da.b Example of a frequenw modulated ::”f""/ with a time varying modulation period T, (a).
The evolution of this modulation period appears clearly in the 4" voice wavelet coefficients (b)
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- Fig.4.b, representing wavelet coefficients at a scale with a high j index, clearly reveals the time

. evolution of the modulation period T, The variation in frequency appears on the y axis.
- This feature of the wavelet decomposition ‘may be used for instance in musmal signal analy31s, in
oy order to detect the existence of vibrato phenomena.

. ‘Machine-condition monitoring
- Our objective is to show how an anaiysis by orthogonal discrcte wavelets can also reveal faults in

. rotating machinery. We consider here a signal taken from a gear by means of an accelerometer. Fig.

5 shows an energy representation of the coefficients related to the first 4 vomes in a decomposition by
‘orthogonal wavelets. The signal section chosen corresponds to 3 gear rotation periods and has been
obtained 3 days before a partial crack appeared on one of the [6 cogs. Note that the corresponding
time signal is_not shown herc for it does not reveal relevant information.
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Fig.5 Energy representation of the four first voices’ wavelet coefficients, after decomposition of a
rotating machine signal. The periodic peaks appearing on the second voice wavelet coefficients

reveal a malfunction on one of the gear's cogs

The presence of periodic discontinuities (periods identical to that of the gear rotation) is clearly
" highlighted on the index 2 voice in the decomposition, and proves the existence of u fault. The
rotation indicator represented by lines in Fig. S helps assess that this is the sign of malfunction that
has led to the crack. Moreover, the h;gh time resolution in the decomposition helps locate precisely
 the fault on the gear. :

Conclusion

These first experiments highlight the new features associated to the Fuast Wavelet Transform
- algorithm; it can mainly be used for applications requiring a high time resolution without the
simultaneous need for an accurate frequency resolution. Note that this reversible algorithm could
also be used for sub-band coding applications, which is not the purpose of this paper. '
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