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FAST ALGORITHMS FOR THE CONTINUOUS WAVELET TRANSFORM

Olivier Rioul

Centre National d'Etudes des Télécommunications (CNET)
Centre Paris B, PAB/RPE/ETP
38-40, rue du Général-Leclerc, F-92131 Issy-Les-Moulineaux, France.

ABSTRACT

Wavelet transforms are becoming of increasing interest for
signal analysis (under the form of Continuous Wavelet
Transforms (CWT)) and for image compression (under the form
of Discrete Wavelet Transforms (DWT)). The computational
structure of the DWT was soon recognized to be an octave-band
filter bank. This paper shows that filter banks arise also naturally
when implementing the CWT. We determine under which
conditions the CWT may be computed exactly using discrete
filter banks and derive fast CWT algorithms. The complexity of
the resulting algorithms increases linearly with the number of
octaves. They are easily implemented by repetitive application of
identical cells, to which various methods are applied for
reducing the number of operations: FFT algorithms are most
efficient for large filter lengths; for small lengths, "fast running
FIR" algorithms are preferred.

1. DEFINITIONS

We introduce various definitions of wavelet transforms.
Our terminology follows the classical notations for Fourier
transforms.

The Continuous Wavelet Transform (CWT) [1], [2] is a
representation of analog signals x(f) depending on two
parameters.

CWTG(t); a, b) = a”™* [x()y*(52)dr,a % 0. (D)

The time-shift parameter b and the scale parameter a vary
continuously. One may clearly restrict to a > 0 when x(#) and
y(t) are real-valued or complex analytic. The function y(z) is
called the analyzing wavelet.

When the time-scale parameters are suitably discretized
(e.g., a=2 and b=k2/, where j and k are integers) and when the
time ¢ remains continuous, the wavelet coefficients (1) are
coefficients of a wavelet series. When y(z) is suitably chosen
[3], the signal is decomposed into this wavelet series.

Although the initials "DWT" are sometimes used for
denoting wavelet series' coefficients, we here use the
terminology "Discrete Wavelet Transform" (DWT) [4] when
both time-scale parameters and time are discrete.

DWT([n); 2, k2) = Y x{n] hj{n—2"k], @

Here j=1, 2, ... ; k=0, £1, £2, ... ; the definition holds to
positives j's so that the sampling rate in k of DWT(x[n]; 2/, k2)
is smaller than that of the analyzed signal x[n]. The discrete
wavelet h[n] corresponding to the Jth octave is a substitute to
2™y (277r); it is a high-pass filter, defined by induction
according to

hyln] = Y [m) gln—2m). )

The sequence g[n] is a low-pass filter used to perform this
“discrete up-scaling” (3) [4], a discrete version of the operation

y(0) = Hy(2).

The DWT can be equivalently seen [2], [4] as an analysis
octave-band filter bank [5], whose computational flow-graph is
depicted in Figure 1. The classical low-pass and high-pass filters
occurring in a filter bank are exactly g[n] and h [n]=h[n],
respectively.. Coding schemes based on DWT's generate
additional constraints on g[n] and A[n]. Since we use here the
DWT only as an intermediate step to compute the CWT, these
constraints are not considered here.

In this paper, we focus on the computation of the CWT for
signal analysis purposes. The objective is therefore to compute
the CWT on a fine, regular sampling in the time-scale plane (b,
a) of the form a = a/, b = kT, where a>1 and T is the sampling
period of the discretized signal (we assume T=1 for convenience
in the following). This will be done in several steps. We first
determine the conditions under which the DWT computes the
wavelet series’ coefficients on the dyadic grid a=2/, b=k2'. The
missing points in the CWT computation are then obtained as
follows. We "fill the holes" in time, i.e., compute the CWT at
a=2, b=k, and finally extend the octave by octave computation
a=2’ to arbitrary resolution in scale a=a/.

II. DWT COMPUTATION OF WAVELET SERIES'
COEFFICIENTS

In this section we derive conditions under which the DWT
exactly computes CWT(x(2); 2/, k2/). We consider the general
case where the discrete signal x[n] and wavelets hj[n] at the jth
octave do not necessarily result from perfect sampling of their
analog counterparts x(f) and 27y(27r), respectively. More
precisely, assume that the discrete signal x[r] results from x(?)
by a non-perfect sampler such that

x(t) = Y x[nlx( = n). @
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Figure 1.(a) Elementary DWT cell (b) DWT flow graph and corresponding
sampling grid in the time-scale plane.

Also assume a similar correspondence for wavelets, of the form
gy = Y b n] ¢~ n). )

Since we want to use the DWT as an intermediate step to
compute the CWT, we require that the discrete wavelets i [n] be
determined from h,[n] = A[n] by (3), as in the DWT. k follows
from: (3), (5), that ¢(r) is a solution to: a "two-scale difference
equation” [6],

§r) = E,g[n,]]?@@t—n), ®)

For example, if y(#/2) is band-limited to [-1/2; 1/2], then, by

Nyquist’s sampling theorem, ¢(r) = ¥3 is a solution that
ensures: li}vﬂnl:ziﬂ‘\y{szn), Another solution for ¢(f) is the basic
spline interpolating function of some degree, in which case the
glnl's are the corresponding binomial coefficients. In general,
given the basic wavelet y(1), it is possible to find a solution §(t)
and a sequence k[n] such that (5) is satisfied with great
accuracy. The above spline example is characteristic: the
determination of ¢(z) and hfr} reduces in this case to a classical
spline curve fitting problem. ,

By expanding (4), (5) into the expression of
CWT(x(0); 2, k2’) we obtain, after some calculation,

CWT((1); 2, k2') = DWT@'[n]; 2, k2) )
where x'[a] is a corrected version of x[n], namely x{n] filtered
by the sequence: [ (1) *{r —nyde.

OCTAVE-BY-OCTAVE COMPUTATION OF THE CWT
Similarly as (7) was derived, one easily obtains:
CWTG(t); 2, ky = Sx[n] bln— k] (8)
under the same conditions (4)-(6). The right-hand side of (8} is a
new transform, which will be refered to in. this paper as the
"Continuous Discrete: Wavelet Transform” (CDWT).
CDWT(xn); 2, k) = ¥ x[n] hfn-k} @)

The CDWT can be computed using only DWT's (2) since, when
k=2, +k,, k,=0, ..., 2-1, we have

CDWT(x{n); 7, k) = DWT(xln+k,); 2, k,2). (10}
Therefore, any octave-band filter bank DWT algorithm, fed by
successively delayed inputs, can be used to compute the CWT!
This is shown in Figure 2 (a),(c): Compared to the DWT
computation of Figure 1, DWT's with delays are included to
obtain the missing points.

Holschneider er al. [7} have derived similar conditions for
(8); in a more restrictive framework. They assume that discrete
signals and wavelets are obtained by perfect sampling of their
analog counterparts, i.e., that the CWT is obtained as a simple
discretization of the integral in (1). Therefore g[a] = ¢(n/2) in
£6), which implies g[2n] = 1 if n=0, zero otherwise (this is
called: the "@ trous™ ("with holes”). property in [7]). But a good
approximation. of the CWT by a CDWT depends crucially on a
good approximation of (7} by interpolating the h{n]'s by ¢(z)
via (5). The "3 trous” property strongly restricts the choice of
¢(t). For example, high order spline interpolation is not usable
under the: "3 trous” restriction. Thus, the "i trous” CWT
algorithm described in [7] is: a particular case of a CDWT
implementation.

IV. FINER SAMPLING IN SCALE

For signal analysis an octave by octave computation of the
CWT is generally not enough. Assume for example that V voices
per octave are desired, i.e., that we want to compute the CWT
(1) with a=2"". Since the scale parameter a is only a relative
notion (its definition depends on. y(z)), one computes the CWT
for a=2/2" by replacing w(#) by w(t2"™). The other points are
similarly obtained. The whole computation thus results from~
successive application of the same algorithm to V' slightly
stretched analyzing wavelets.

We have seen that when the discrete signal x[n] and
analysing wavelet A[n] have been determined, the general
egmpumim of the CWT reduces to the: computation of 2 CDWT
).

Rather than using directly DWT's as in (10), it is
convenient to transform: (10} into a specific filter-bank
implementation shown in Figure 2 (b),(c). In contrast to the
DWT filter-bank of Figure I, there are 2" elementary eells at the
jth octave in the CDWT filter-bank. Note that all cells are
identical but "work" at & different rate: a cell at jth octave has
input subsampled by 2°'. Therefore, if we define the
computational complexity as the number of
multiplications/additions per input point, the total complexity of
the CDWT is exactly J times the complexity of one elementary
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Figure 2. (a) Elementary CWT cell (b) Elementary CWT cell after
transformation (c) Octave-by-ocatve CWT flow graph and corresponding
sampling grid in the time-scale plane.

cell, where J is the number of octaves on which the CDWT is
computed. When V voices per octave are computed as shown in
the preceding section, this complexity is simply multiplied by V.
As a general rule:

The complexity of a filter bank implementation (via a
CDWT) of a CWT grows linearly with the number of octaves.

This is of course a substantial improvement compared to a
direct implementation of (1), that does not take the dilation
operation of wavelets into account. This latter requires an
exponentially increasing complexity with the number of octaves.

From now on, we assume real data and filters; the complex
analytic case yields the same complexity. The criterion of
complexity we use in this paper is the total number of operations
(mults+adds) required by the algorithm. With today's
technology, this criterion is generally more useful than that of
the sole number of multiplications.

To implement the CWT it remains to specify an algorithm of
the elementary cell of Figure 2. Assume that both filters G(z) and
H(z) (corresponding to g[n] and h[n], respectively) are of same
length L (otherwise simply pad with zeros; since the filter
lengths are often of comparable order, this will not greatly
influence the complexity). A direct implementation of the filters
requires

21, multiplications per input point

2(L-1) additions per input point (11)
for each elementary cell. Hence the total complexity for a direct
filter-bank CWT algorithm on J octaves with V voices per octave
using L-tap filters is simply JV times the complexity (11).

VI. FFT-BASED ALGORITHM

Significant improvement can be made on (11) for medium
and large filter lengths L using FFT computation of filters. With
both "overlap-add"” or "overlap-save" methods [8], the input is
divided into blocks of length B, and the FFT length N must be
greater or equal to B+L-1 to eliminate wrap-around effects.
From now on, we use the "split-radix FFT algorithm" [9] for
N=2", which for real data requires 2~'(n-3)+2 (real)
multiplications and 2"!(3n-5)+4 (real) additions.

Each elementary cell of Figure 2 (b) is therefore carried out
by first computing an FFT on the input, then performing two
frequency-domain convolutions by multiplying (Hermitian
symmetric) length-N FFT's of g[n] and A[n], and finally apply
two inverse FFT's on the results. Wrap-around effects are then
eliminated in the time-domain and one waits for one block before
entering the next cell, so that each cell has input length B.
Assuming B=N-L+1, this yields .

(3 2*! (n-1) + 6) / (2"-L+1) mults per input point

9 2~ (n-1) +12) / (2"-L+1) adds per input point (12)

for each elementary cell. Table I shows the resulting
complexities for different lengths, when minimized against N.
By deriving the total number of operations with respect to N,
one finds that the optimal FFT length is about
N=(0.69 n+0.31) (L-1), with minimized total number of
operations per point equal to 6n+2.65 = 6 log, L + O(log,
log,L). This is a significant improvement compared to (11).

This algorithm can be generalized by gathering several
consecutive blocks using a method that Vetterli derived for the
DWT [10]. The idea is to avoid subsequent inverse FFT's and
FFT's by performing the sub-sampling in the frequency domain.
The FFT length is then necessarily halved at each stage, whereas
the filter lengths remain constant. Therefore, these schemes have
two disadvantages. First, the structure of computation is less
regular (FFT's of different lengths). Secondly, the relative
efficiency of an FFT scheme per computed point decreases at
each stage. The difficulties brought by this method are easily
understood even by evaluating its arithmetic complexity!

We here provide an example, where two octaves are
gathered together. Three elementary cells of Figure 2 are merged
into one 1-input, 7-output cell that covers two octaves. The FFT
length N=2" must here be greater than or equal to B+3(L—1) to
avoid wrap-around effects, where B is the input block length.
This results in ‘

(2! (2n-1) + 6) / (2"-3L+3) mults per input point

(6 2™ (n-1) +12) / (2™3L+3) adds per input point (13)
per octave, assuming the CWT is computed on an even number
of octaves. Table I shows the resulting complexities, when
minimized against n. They are significantly better than (12) for
large lengths only (here L28). The price to pay is a more
involved implementation, with much larger FFT lengths.

VII. SHORT-LENGTH ALGORITHM

For short lengths L, the complexity of two filters of length
L (11) required for each elementary cell of Figure 2 can be
significantly reduced by applying short-length "fast running
FIR" algorithms [11]. These algorithms are interesting because
they retain partially the multiply/accumulate structure and
therefore are easily implemented. In such algorithms, the
involved sequences (input, output and filter) are decimated with
some ratio M. The initial filter of length L is then decomposed as
follows. The decimated inputs are first combined with some pre-
additions. The resulting sequences are then input to several sub-
filters of length L/M. The outputs are finally recombined with
some post-additions and delays to provide the exact decimated
outputs. Further application of this algorithm is feasible, since
the sub-filters are still amenable to further decomposition.



Here, since the elementary cell of the CWT has two filters
sharing the same input, all pre-additions can be combined on a
single input. In: this paper we use three different fast running
FIR algorithms for M=2, 3 and 5, that can be found in [11].
Their number of pre-additions, sub-filters and post-additions
are, respectively, (2,3,2) for M=2, (4,6,6) for M=3, and (14,
12, 26) for M=5.

Table [ lists the resulting complexities, using the fast
running FIR decomposition that minimizes the total number of
operations (mults+adds). When two different decompositions
yield the same total humber of operations we have chosen the
one that minimizes the number of multiplications. We have also
restricted ourselves to at most two successive applications of fast
running. FIR algorithms. Beyond this depth, the resulting
implementation becomes complicated.

Table I shows that short-length FIR algorithms are more
efficient than the simple FFT-based algorithm of section VI for
lengths up to 20. It even remains more efficient than the two-
octave Vetterli FFT-based algorithm for lengths up to 12. We
may envision that the CWT will generally be computed with
medium filter lengths (e.g., 4<L<16) to maintain the complexity
at a reasonable level. In this respect, this short-length algorithm
gives the best alternative we could find.
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Table I:,_Com plgxilt,g Results (per octave per input point) for various filter lengths.
Complexities are shown in the form mults+adds. The minimum achieved is typed in italics. FFT lengths
(N=2") and successive decimation ratios M (in. correct order and in italics} appear between brackets (see text}.



