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REGULAR WAVELETS: THEORY AND
ALGORITHMS

Olivier Rioul
Centre National d’Etudes des Télécommunications, CNET/PAB/RPE
38-40 rue du G Leclerc, 92131 Issy-Les-Moulineaux, France

Abstract. Regular wavelets are generated by binary subdivision schemes. In this paper, we use
a polynomial description of such schemes to study the existence and Hoélder regularity of wavelets.
Sharp regularity estimates are derived. They are optimal—except for pathological cases—and can be
implemented easily on a computer.

Introduction

Orthonormal [3] or biorthogonal [2] wavelets can be seen as limit functions of “binary subdivi-
sion schemes” [5]. Such schemes also find application in geometric design [5] and image coding
using filter banks [8,9]. Whether limit functions are regular or not may be relevant in these
applications, and this topic is of growing interest since the discovery of compactly supported
wavelets by Daubechies [3].

We start by describing subdivision schemes. Throughout this paper we consider real-valued
discrete sequences u, (n € Z) of finite length. Given the initial sequence 6, = 1 if n =0, 0
otherwise, and a “subdivision mask [5]” gn, n =0, ... L — 1, a “binary subdivision scheme” is
the collection of sequences gJ = G’{6,}, defined by repeated application of the operator

Un __0__) Up = Zukgn—%'- (l)
k

The extension to other initial sequences is trivial [7]. In polynomial notation, we have
U(X) 5 V(X) = G(X)U(X?), (2)

where U(X) = ¥, un X™ is associated to any causal sequence u, (Laurent polynomials can be
used for non-causal sequences). Iterating (2) gives

G¥(X) = G(X) B(XY) G(XY)...G(XP™). (3)

as the polynomial of degree (27 —1)(L—1) associated to the sequence gi. Now, the graphs of g2,
when plotted against n277, may converge—in a sense to be defined later—to a limit function
é(x), called the “scaling function” [2,3]. The construction of wavelet 1(z) is now in one quick
step:

P(a) = he ¢(2x — k). (4)
k

where h, is another set of coefficients [2,3]. Since mask g, is of finite length, all functions
considered here have compact support included in the interval (0, L —1). Therefore, ¢(z) itself



can be written as linear combinations of 1(z/2 — k); the convergence and regularity properties
of ¢(z) and 9 (z) are the same, and we can restrict ourselves to the study of ¢(z).

Our aim is to find necessary and sufficient conditions on G(X) such that 1) convergence
of the gi’s holds to a limit function ¢(z), and 2) ¢(z) is regular, i.e., continuous, possibly
with several continuous derivatives. ¢(z) is rarely obtained as an explicit function of z, and
the applications only require gi. Therefore, regularity, defined on functions of a continuous
variable, would be understood better if it were expressed in terms of these discrete sequences.
In the following, we adopt this “discrete” approach, which is found to be powerful: It leads
to regularity estimates that are, in contrast with earlier ones [1,3,4], easily implementable,
optimal, and of general applicability. A complete mathematical treatment can be found in [7].

1 The Stability Condition

Owing to the limit process, all “discrete” regularity conditions presented in this paper will
imply the corresponding regularity properties of ¢(z) [7], and always provide a lower bound
for regularity. To obtain also an upper bound, i.e., to get optimal results, we need to have the
converse implications. This can be done using the formula

I(X) = ®(X)G(X) (5)

where ®7(X) is the polynomial associated to the sequence ¢(n277) and ®(X) = ®'(X). This
relation is easily derived from the “two-scale difference equation” [4] satisfied by ¢(z), and gives
a simple method for computing exact values of ¢(z) at dyadic rationals, by relating them to
g2 [7]. Now, to obtain regularity conditions on g from those on ¢(z), the inverse polynomial
1/®(X) in (5) must be numerically stable for finite-length sequences. This gives the following

Definition 1.1 ([7]) A binary subdivision scheme converging to a limit function ¢(x) # 0 is
“stable” if there exists * € R such that

S ¢(n+a)e™ #£0 foralweR. (6)

(A precise definition of convergence is given in the next section.) This slightly restricts the
choice of the scaling sequence g,: There is an exceptional class of limit functions ¢(x) for which
the regularity estimates derived in this paper will not always be optimal. For example, any
polynomial mask G(X) divisible by (X? — ), w # 0, yields unstability, and I conjecture that
the converse implication holds [7]. For orthonormal wavelets [3], this unstability condition is
never satisfied [8]. In the general case of biothogonal wavelets [2], it is theoretically possible,
but rare in practice (8], to get unstability. Even when the unstability condition is met, a trick
shown in section 4 solves the problem.

2 Uniform Convergence and C" Wavelets

Several definitions of convergence of the graphs of {g)}—plotted against n27/—to ¢(x) were
proposed [3,5]. A popular approach [3] is to define convergence for staircase functions whose
values at = n27/ are the g’s. Another flexible definition for uniform convergence (7] is

Jim sup |g(e) - g3,] = 0 (7)



The flexibility comes from the arbitrary choice of integers n; satisfying
[n; — 27| < Const. (8)
The same definition, without the supremum, can be used for pointwise convergence [7].

Theorem 2.1 ([7]) Assume that a binary subdivision scheme converges pointwise to a limit
function ¢(z) for all = € R. If the convergence is uniform, then ¢(x) is continuous. The
converse is true in the case of stability (6). Uniform convergence holds if and only if

G(1)=2, G(-1)=0, and (9)
max g 41 — gil = 0 as j — oo, (10)

Moreover, there exists a > 0 such that
max |g5.41 — g3 < ¢277°. (11)

Therefore, for regular limit functions, the type of convergence of stable g2 is uniform, which
justifies our choice of uniform convergence. Moreover, we have a necessary and sufficient con-
dition. The two basic conditions (9) have been known for some time [2,3,5]. This first one is
simply a normalization requirement. For orthonormal wavelets, G(1) = V2, convergence may
hold with normalization factor 27/ on gi. The second one ensures that the g2's, for large j, do
not rapidly oscillate in n [7], which turns out to be crucial for coding applications (8]. Finally,
it can be shown [7] that all definitions of uniform convergence proposed in the literature (3,5]
are equivalent, and this is implied by the unique characterization (10).

We thus have a general characterization of continuity. We shall see in section 3 that (11)
in fact implies that ¢(z) is Lipschitz of order a, which is stronger than continuity. However,
even when ¢(z) is required to be continuous, it may not appear to be smooth at all, as shown
in Fig. 1. In fact, condition (11) requires that the “slopes”

bg3 = (ghy1 —gi)/277 (12)

of the discrete curve gJ, plotted against n277, do not increase faster than 2i(1-0) ag § — o0.

But they can still increase indefinitely if @ < 1, leading to a “fractal-like” curve as in Fig. 1.
15

-0.5}
0 i 2 3 a 5
Figure 1: An exemple of continuous scaling function [8]. Its (best) Sobolev regularity order is
negative (—0.071...), but its Holder regularity order is r = 0.2. "

Therefore, to obtain smoother limit functions, we should require more than continuity. To
characterize regularity order N (¢(z) € CN) on g2, we note that the role of the Nth order
derivative of ¢(z) is played in the discrete domain by the Nth order finite difference of gl.



The first-order finite differences are simply the sequence of slopes (12). Applying N times the
operator 6 gives the Nth order finite difference 6" gJ.

First, 6V g? can be expressed as binary subdivision schemes, provnded G(X ) has at least N
roots at X = —1. The corresponding subdivision mask is [7] G(X)(:£* X)=N_ Then, we can
apply the above results to §Vgi. The graphical interpretation of this is the same as above, but
applies to the sequence of slopes, or slopes of slopes, etc., leading to smoother and smoother
evolutions of gi.

Theorem 2.2 ([7]) If the sequence of the Nth-order finite differences 6Ng,{) (where n; satis-

fies (8)) uniformly converges as j — 0o, then ¢(z) is CN. The converse is true if ¢(z) is stable.

In a,ddztzon, 6"g’ converges uniformly to ¢*)(z), the kth order derivative of ¢(z), for k =0,
, N, and G(X) has at least N + 1 roots at X = —

The existence of zeroes at X = —1 is a constructive result, already obtained in several papers [2,
5], which gives a simple rule for constructing regular wavelets. For example, Daubechies (3]
constructed her orthonormal wavelets by imposing as many zeroes at X = —1 as possible in
G(X) for a given mask length. However, the effect of zeroes at X = —1 may be killed by the
other zeroes of G(X), whose effect is always more or less destructive for regularity [8]. In other
words, Theorem 2.2 states that the regularity order of (stable) ¢(z) is strictly bounded by the
number of zeros at X = —1 in G(X), but such zeroes not sufficient to obtain a given regularity
order [7].

3 Estimating Holder Regularity

To quantify regularity accurately, we now extend the definition of regularity order to real-valued
numbers. There are several ways of doing this, the most common ones use Sobolev spaces H*
and Holder spaces C". Sobolev definition is a popular spectral approach to regularity [2,3,10]:
¢(z) has Sobolev regularity order r if it belongs to the Sobolev space H™+'/2. This can be
easily tackled by simple estimations on |G(e™)| [3]. However, only the modulus of G(e™) is
taken into account—phase information is ignored— and the best Sobolev regularity order may
be negative, even though ¢(z) is in fact continuous (see Fig. 1).

These drawbacks are avoided with the Holder definition of regularity, which was introduced
recently for wavelets [4]. Holder (or Lipschitz) spaces Ce, 0 < a < 1, interpolate between
C° and C'; a C*-function will be said to be regular of order . For lngher regularity orders
r=N+4+a, N=1,2,...,and 0 < a < 1, the Lipschitz definition is used on the Nth derivative
of ¢(x). The difference between Holder and Sobolev regularity only depends on the phase of
G(e™), and is always less than 1/2 [7,10]. In the following, we concentrate on Hélder regularity
and give equivalent conditions on g7; Comparison is made with Sobolev regularity in [6,7,8].

In fact, the number a in (11) is precisely the Holder regularity order of ¢(z) when o < 1 [7]:

Theorem 3.1 ([7]) IfG(1) =2, G(—1) =0, and
max |gh41 — 93| < €277 (13)
for some 0 < a < 1, then the binary subdivision scheme converges uniformly to a C* limit

function. The converse is true if ¢(x) is stable. In addition, the more regular the limit, the
faster the convergence to this limit: For any sequence n; of integers satisfying (8), we have

sup [¢(z) — g3, | < c277° (14)
x



Since we have seen that ¢(z) € C° implies ¢(z) € C* for some a > 0, we have the remarkable
property that ¢(z) is CV if and only if its Holder regularity order is greater than N. As pointed
out above, this is not true for Sobolev regularity (Fig. 1). Theorem 3.1 also provides a natural
graphical interpretation of Holder regularity in terms of the slopes of gJ (12): For example, if
these slopes are bounded for all j’s, then ¢(z) is C'. Finally, Theorem 3.1 gives an interesting
indication on the (exponential) rate of convergence of gi towards ¢(z).

For higher Holder regularity orders, simply consider the derivatives of ¢(x), whose discrete
counterparts are the finite differences §*g (section 2).

Theorem 3.2 ([7]) If G(1) = 2, G(X) has at least N + 1 zeros at X = —1 and

max |6Ng,,+l - 6Ng3;| < 279 (15)

for some o > 0, then ¢(z) is CNt®. The converse is true in the case of stability. Moreover,

(15) implies a < 1 (if ¢(z) #0)

Note that when the regularity order is greater than N + 1, v in (15) is necessarily equal to one.

We now present a general algorithm for estimating Holder regularity. A first difficulty is
that Theorem 3.2 provides a test which depends on N: It is only when it turns out that
N < r < N + 1 that the criterion is really optimal and provides N + a = r. However, the
discrete-time characterization of Holder regularity N + « is equivalent to the same condition in
which N and —a have been increased by one [7]. Therefore, by induction, it can be extended to
negative values of o (The only restriction is that if a is a nonpositive integer, then ¢(z) € CN+=
should be replaced by a slightly weaker condition [7]). Hence, when the criterion gives a negative
reqularity order «, it can be used to prove that ¢(z) has some (positive) regularity if N > —a.
In particular, if G(X) has no more than N + 1 zeros at X = —1, then Theorem 3.1 necessarily
provides the exact regularity order r. In this case, —a is the exact amount of this regularity
lost by the “destructive effect,” mentionned in section 2, of zeroes in G'(X) that are not located
at X = —1 [8]. This effect typically kills 80% of regularity [1], which explains why the number
of zeroes at X = —1 in G(X) only gives a weak upper bound, which is not attained unless
G/(X) has only zeroes at X = —1.

To obtain optimal regularity estimates, it is therefore sufficient to estimate a in condi-
tion (15). Fortunately, this task can be reduced to a finite number of operations:

Theorem 3.3 ([7]) Assume G(1) = 2, and G(X) has at least N + 1 zeros at X = —1. Let
Fn(X) =2"NG(X)(1+ X)~N-! and ay = sup; ary, where a)y is given by

27w = max El(fzv n+ 27k (16)

0<n<27 -1

where (fN)n is dcﬁned from Fn(X) similarly as g?.

The sequence oy converges to ay < 1 as j — oo. If there exists j such that N + afy > 0,
then ¢(x) is CN*N (almost CN*en if ody € —N [7]), and, therefore, ¢(z) is CN+*N¥=¢ for any
€ > 0. The regularity estimate is optimal in the case of stability: If ay # 1, or if ay =1 and
G(X) has no more than N + 1 zeros at X = —1, then ¢(z) is CN+an= byt is not CN+an+e
for anye > 0.

For a given j and N, N + a) is always a Holder regularity estimate for #(z). This estimate
is improved when j increases, and is asymptotically optimal when N is chosen maximal. In



practice, the exact (optimal) regularity order r is generally obtained to two decimal places after
j = 20 iterations [7] (see Fig. 2).

Using a very different approach, Daubechies and Lagarias [4] recently proposed a sophisti-
cated method for estimating Holder regularity. T heir method is easily recovered by rewriting
Algorithm 1 in matrix form (7,8], where 9-i%; is estimated by computing spectral radii. While
this method is only managable for very short masks (typically of length < 6) and is not always
optimal, Theorem 3.3 gives asymptotically optimal results (as j increases) for any choice of
G(X).

Optimal Sobolev regularity estimates, proposed independently by Cohen and Daubechies (1],
can also be derived using our method [6,7,8]. The algorithm simplifies in this case to the
computation of the spectral radius of one matrix, but gives suboptimal results as compared
with Holder regularity (see Fig. 2).

4 The Unstable Case

Many optimality results given in this paper fail for “unstable” examples (section 1). In this
section, we give a simple trick which allows one to consider another, stable subdivision scheme
which has the same regularity properties. As a working example, consider the polynomial mask
G(X)=2"N1+X)(1+ X?)N. By Theorem 3.1 the limit function $(x) exists and is (1, hence
continuous. The above results cannot improve this regularity order since G/(X) has only one
sero at X = —1. However, ¢(z) is unstable since 1 + X? divides G(X) (see section 1), so we
might expect higher regularity for #(x). Now consider another mask G(X)=2"N(1+ X)L,
It is easy to see, using Theorem 3.2, that the subdivision scheme g converges to a CN limit
function ¢(z). Since the two masks are related by (1+ X)NG(X) = (1+ XH)NG(X), it can be
easily shown (7,8] that ¢(z) is a linear combination of integer translates of é(z). This proves
that ¢(z) is GV even though G(X) has only one zero at X = —1! Tt is easy to show [7] that
both functions have the same regularity order. Since the regularity estimate CN is optimal for
é(z) [7), it is also optimal for ¢(z).

Therefore, the argument used in this example has led to an optimal regularity estimate for
an unstable limit function. This can be easily generalized to the case where unstability is due to
the fact that G(X) is divisible by X? — ¢ Note that if the conjecture mentionned in section 1
is true, then this methods works for arbitrary unstable limit functions.

3.5

=

3 ',r”’ ,_'r

AT e
g 2.5 /’P,' ”(—/
o 2 ,Aa‘ "’A'
/"” —’/r

1.5 *,‘ ‘,,"
5] = -

11’ o=
g W 4

0.5¥

0

4 6 8 10 12 14 16 18 20

NUMBER OF COEFFICIENTS

Figure 2: Regularity estimates for Daubechies wavelets [3] with number of coefficients ranging
from 4 to 20. Sobolev lower and upper bounds (dashed). Holder lower and upper bounds (solid).



5 A Fast, Sharp Upper Bound for Regularity

It can be shown [6,8] that the computational load of an implementation of (16) is increasing
exponentially with j (increasing j by one roughly doubles the number of operations required to
compute (16)). Now suppose that (16) is computed only for the values n = 0 and 2/ — 1. The
advantage is that the numerical complexity reduces to a linear one in j: we have a much faster
algorithm. The price to pay is that a; is over-estimated: the obtained estimates will only give
an upper bound for Holder regularity as j — 0o. The computation of this upper bound can be
simplified to the search of the spectral radius of one matrix [7,8). Although this upper bound
seems to be a rough estimation, Fig. 2 shows that the results are very close to be optimal. In
fact, Daubechies and Lagarias method [4]—discussed in the preceding section—works if and
only if this upper bound turns out to be the optimal Holder regularity order [7].

Conclusion

This paper has provided a full characterization of regularity in terms of the filter taps. The
discrete approach described in this paper is efficient (optimal results are obtained) and inclusive
(earlier estimates are recovered). This paper has also provided an easily implementable, optimal
Hélder regularity estimation algorithm, which can be used as a tool for quantifying precisely
the effect of regularity in practical systems.
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