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SIMPLE, OPTIMAL REGULARITY ESTIMATES FOR WAVELETS

Olivier Rioul
CNET Centre Paris 3, CRPE
38-40 rue du G™ Leclerc, 92131 Issy-Les-Moulineaux

France.

The new criterion of regularity is of increasing interest in applications involving wavelet de-
composition schemes. In this paper, regularity is fully characterized on filter taps, resulting in
easily implementable, optimal regularity estimates which can be used for any filter.

1. INTRODUCTION

Perhaps the biggest potential of wavelet theory has been
claimed for signal compression schemes [1,5] in which
the signal is decomposed into several resolution levels
using a “discrete wavelet transform (DWT)” [3,8]. In
fact, the DWT was soon recognized to be equivalent
to an octave-band tree filter bank which was proposed
for some time in subband coding of images [9]. In this
particular context, the uoveity of wavelet theory comes
down to the choice of -the filters present in a two- bdnd
filter bank: “Wavelet™ filters are regular.

In order to provide an intuitive feel for what regularity
represents, consider the following iterated interpolations
with low-pass filter impulse response (/(z) which are
obviously present in DWT’s [8].

Y(2) = X(z9G(2). 1)
Iterating (1) 7 times yields
Yi(z) = X(:2)G (2) (2)
where

G (2) = GRYGGEY..GEETY. ()
‘The sequence g, corresponding to (3) is the equiva-
lent impulse response at jth stage of the reconstruc-
tion. Now, for special choices of G(z), the temporal
shape of the ¢l ’s, plotted against n277 (i.e., with the
same temporal extent), rapidly converges to a “regular”
limit function (1) as j — o (see Fig. 1). However, for
“bad” choices of gn, @(f) may be highly irregular; the
iterated scheme may even diverge, even though G{z)isa
“good” half-band low-pass filter [8]. Note that filters are
assumed FIR here, ¢(2) is compactly supported. A first
definition of the regularity order of ¢(t) is the number
of times it is continuously differentiable; this is clearly a
smoothiness requirement on the temporal waveforms of
the ¢l ’s.

The band-pass impulse responses present in a DWT are
obtained with the same iterated interpolation procedure
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Figure 1. An example of rapidly converging iteration scheme:
The gi’s are plotted against n2™7 for 7 = 1, 2, 3, 4 and 5 itera
tions, for one of Daubechies "orthonormal” filter of Jength 10 {3].

as (2), which is initialized with the high-pass filter im-
pulse response hy, [8]. The resulting limit function ¥(t)
is the continuous-time wavelet prototype [3,8]. Here we
restrict ourselves to the convergence of the gl’s toward
(1), because () and ¥(t) share the same regularity
properties [3,6].

Several intuitive arguments have been raised which hint
that this property should be useful in image coding ap-
plications {1,8]. First, requiring that the signal is an-
alyzed by smooth “basis functions” gl and hJ, ensures
that no artificial discontinuity—not due to the signal
itsel(——appears in the transform coefficients, which are
inner products of the signal with these basis functions.
That is, regularity would lead to a “better” representa-
tion of the signal by the transforin coefficients. Second,
any quantization error made in a coefficient al some
resolution level resuits, at reconstruction, in an error
signal that is proportional to the basis function corre-
spouding to this resolution level. It is therefore natural
o require that this perturbation be smooth, rather than
discountinuous: A discountinuous perturbation is likely
to strike the eye more than a smooth one for the same
m.s.e. distortion level.

However, understanding the role of regularity in a
DW'P-based compression scheme requires precise eval-
nation of it. One difficulty is that it is a mathemat-
ical notion which is expressed on (¢) rather than on



filters taps ¢,. Therefore, the characterization of reg-
ularity on any set of cocfficents g, is a difficult prob-
lem, which was first addressed in the wavelet context
by Daubechies {3]. A number of regularity order esti-
mates, most of themn based on the spectrum |G(e™)}?,
have been investigated [2,3,4]. Unfortunately, these es-
timates turn out to be suboptimal in general and some-
times computationally expensive.

This paper presents a complete characterization of reg-
ularity on the filter taps g, in simple terms, restricting
to the one-dimensional case. This method is original in
that all regularity properties of ¢(t) are trauslated into
equivalent! properties of the discrete-time sequences g;’vr

2, CONTINUITY

It can be shown [6] that as long as the resulting limit
function is regular, the type of convergence of the ¢/ is
“uniform,” which is a strong type of convergence. Uni-
form convergence of the gi’s is in fact equivalent to the
existence and continuity of (1) [6). Continuity (or uni-
form convergence) {6] is equivalent to the following in-
tuitive conditions,

A1) = 2 (4)
G(-1) = o, (5)
i omax gl — g o= 0. (6)

J oo

Condition (4) is simply a normalization requirenent on
G(z), while (5) is crucial for convergence and regularity,
as explained in section 3.1. The basic requirement (6)
is that the difference between two successive values of
gl tend to zero uniformly in n. Hence, no jumps or
discontinuities should appear anywhere in the iterated
sequences gi as j increases, and the limit function is
continuous.

However, even when (1) is required to be continuous,
it may not appear to be smooth at all, as shown in
Fig. 2. 1t is therefore natural to require more, namely
that @(t} possess N > 0 continuous derivatives. This is
done next.

3. DERIVATIVES

The limit function (t) has regularity order N if its Nth
derivative, d¥p(t)/dtN | is continuous. To characterize
this on ¢, consider the first-order finite difference se-
quence bgi, defined as the sequence of the slopes of the

Yexcept for very {ew pathological cases which are never
encountered in practical systems {7]; we here state gencral re-
sutts and refer the interested reader to [6] for farther details.
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Figure 2. An example of limit function generated by an or-
thogonal “wavdet” filter. The optimal Sobolev regularity is neg-
ative but the Holder reguiarity order is in fact 0,0146..., which
implies that this limit function is continuous (see section 4},

“diserete curve” ¢, plolted against n277,

‘ g{‘l - g{h—
by, = “““;{:;"*"“" (7)

The correponding z-transform is AGI(z) = 2(1 ~
z"1)Gi(z). Applying N times the operator § yields
the finite difference of ¢, of order N, §N gl given by
ANGI(z) = PN(1 = 2 INGI(2).

Since the role of the derivative of p(t) of order N is
played in the discrete-time domain by 6™ ¢ | it can be
shown [6] that regularity order N is simply characterized
by uniform convergence of 6N gl

3.1. The role of zovoos at 2 = —1 in G(z).

In fact, the Nth derivative of p(2) can obtained from the
same iterated interpolation procedure as (2), where N
zeroes iy G(z) have been removed [6}. As a side result
of this and (5), G(z) should have at least N+ 1 zeroes at
z = —1 1o achieve regularity order N. Note that adding
one zero at r = —1 in G(2) will increase its regularity
order by one since removing one amounts to “differen-
tiate.” Therefore, zeroes at z = ~1 have a favorable
effect for regularity. This was used by Daubechies in [3)
Lo design regular, orthonormal “wavelet” filters, by im-
posing as many zeroes at z = —1 as possible in G(2)
for a given filter length. Note that imposing such ze-
roes in ((z) amounts to requiring that the frequency
response G(e/*) is “flat” about half the sampling fre-
quency w = 7.

However, the effect of zeroes at z = —1 may be killed by
the other zeroes present in G(z). The rest of this paper
aims at quantifying the “destructive effect” of zeroes in
(7(z) that are not located at z = —1 in order to quantify
regularity accurately.



4. HOLDER AND SOBOLEV REGULARITY

We first cxtend regularity orders to arbitrary, real-
valued numbers. A popular extension {2,3] uses a spec-
tral approach to regularity which regards it as a spec-
tral tocalization. This definition is typically based on
Sobolev spaces [2,6]. However, it masks the effect of
regularity on the temporal waveform of ¢{t) and does
not use phase information of G(e/*). This may be in-
appropriate: Fig. 2 shows an example of o{t) for which
the best Sobolev exponent r is negative, although it can
shown that {¢) is in fact continuous.

These limitations are overcome in the following defini-
tion of Holder regularity. The function p(t) is regular
of order e, 0 < o < 1, if

lp{t + 1) — (L)} < clh]”. (8)

This controls the way infinitesimal slopes of (1),
lp(t 4 ) — (O)l/]h], grow as h becomes indefinitely
small. For higher regularity orders r = N 4+, 0 < o €
1, the same definition is used on the Nth derivative of
@(t). This definition is more compatible with continu-
ity and differentiability because it can be shown that {6}
if @(t) is a limit function of ¢, then (1) possess N
continuous derivatives if and only if it has some Holder
regularity order r greater than N. We have scen that
this property is not shared by Sobolev regularity. In the
following we therefore concentrate on Holder regularity.

There is a slight irritation in that ¢(t) possess N con-
tinuous derivatives only when its Hélder regularity is
r = N 4¢€, where € > 0 is arbitrarily small. To simplify
our presentation, we drop the ¢ in the sequel and regard
regularity orders witlin an arbitrarily small constant.

4.1. Holder regularity order 0 < o < 1

To characterize Nélder regularity a, 0 < o < 1, on @,
we can do an analogy with (8), replacing (1) by ¢4 with
t=mn27 and h =277 This gives

loh gy — @bl < 277 (9)

‘This property, along with (4}, (5), is indeed equiva-
lent to (8) {6]. This gives an intuitive interpretation
of Holder regularity: The slopes of g7 plotted against
n27 [y~ @l 1/279, grow less than 2709 a5 § w4 oo,
For example, bounded slopes means that regularity or-
der is 1, i.e., ©(t) is almost continuously differentiable.
And less regularity allows slopes to increase indefinitely:
This explains why ©(2), although continuous, may some-
times be quite “nasty” as in Fig. 2.

4.2. Arbitrary regularity orders

Since derivatives of ¢(1) correspond to finite differences
of g, a natural discrete-time characterization [6) of reg-

ularity order r = N + o, 0 < a < 1, is (4), (5), and (9)
written for 6N gl | ie.,

(6N gl o) — 6V gh| < c27ie, (10)

A remiarkable fact is that (10) can be extended to neg-
ative values of a [6}. That is, even if (10) “fails,” i.c.,
gives a negative regularity order for 8¥ ¢J, it can be used
to prove that gJ, has some (posilive) regularity if N > a.
It is therefore worthwhile to consider negative regular-
ity orders. In particular, assume that G(z) has exactly
N zeroes at z = ~1. The maximum number o < 0
for which (10) holds is then the exact amount of reg-
ularity lost due to the destructive effect—discussed in
section 3.1-—~of the zeroes in G(z) that are not located

at ¢ = —1 {7}
4.3. Regularity and rate of convergence

In practical systems involving a discrete implementation
of the DW'T, the number of iterations j is Hmited. 1t
is therefore questionable to study the limit function as
j = oo. However, the rate of convergence of ¢ to o(t)
is faster as regularity is high (the difference tends to 0
as 277% [6]). The convergence is even faster for higer
regularity orders (see Fig. 1).

5. OPTIMAL REGULARITY ESTIMATES

A regularity estimate r is here said to be optimal if (1)
is at least regular of order r — ¢ and is not regular of
order r + ¢, where € > 0 is arbitrarily small.

A simple algorithin [6], which was independently de-
rived using the “Littlewood-Paley theory” by Cohen and
Daubechies {2}, gives the optimal Sobolev regularity or-
der. However this is not optimal for Holder regular-
ity in general: Holder regularity is always greater than
Sobolev regularity by at most 1/2 {6]. This gives subop-
timal Sobolev lower and upper bounds for Holder reg-
ufarity. Sobolev regularity depends on the modulus of
the spectrum while two filters that differ only by their
phase have Holder regularity orders that differ by at
most, 1/2. In the following we provide sharp lower and
upper bound estimates based on characterization (10).

5.1. Lower bound

Since (10} must be satisfied for infinitely many j’s and
with an unknown constant ¢, this is impossible to check
in practice. Fortunately, this task can be reduced to a
finite-time computer search [6,7):

Algorithm 1 (Lower bound on Holder regularity). Let
N > 0 be the exact number of zeroes at z = —1 in low-
pass interpolation FIR filter G(¢), normalized such that



G(1) = 2. If G(z) only has zeroes at z = —~1, stop, The
Hadlder regularity order is N. To estimate the amount
of regularity lost dne to the other zeroes, compute /7(2),
defined as

Glz) = 2"N(1 + 2" YN P(z). (11)

Let j be any positive integer. Compute the (positive)
namber

1 ,
B; = };logg 1max Zif,}x--ml‘ (12)
k

0<ng
where f7 is given by

Fl(z)= PP FREY ). (13)
The Holder regularity order of G(2} is at least N — j3;.

A matrix formulation can be shown {6] to be equiva-
lent to a Holder regularity estimate which was derived
by Daubechies and Lagarias [2,4] using a very differ-
ent approach. While the method they describe in [4] is
only managable for very short filters G(z), Algorithm
1 gives nearly optimal results (as 7 increases) for any
filler: In fact, N — f; tends (at most as 1/7) to the
optimal Holder regularity order as j — oo [6]. In prac-
tice, the exact (optimal) regularity order r is generally
obtained to two decimal places after 7 = 20 iterations.
This algorithm can be easily implemented by recursive
calls to the same small subroutine [7].

5.2, Upper bound

One possible drawback of Algorithm 1 is its exponen-
tially increasing numerical complexity [7). Now, assume
that one retains only the vatues n = 0 and 2/ — 1 in the
computation of the maximum in (12): This results of
course in a much faster algorithm. The obtained esti-
mate clearly gives an upper bound of Holder regularity
as j ~» 00 since f; is under-estimated. We give here the
matrix formulation of this algorithm, which simplifies to
the computation of a spectral radius of one matrix [6]:

Algorithin & (Sharp Holder regularity upper bound). Let
G(z), 1(z), N > 0 be as in Algorithm 1 and let A > 1
be the length of F(z). Form the matrix ¥ = (F,;),
0< 4,7 <K —2, defined by

Fij = Jaijn (14)

and compute its spectral radius p. The Holder regulari-
ty order of G(z) is bounded by N —max{}fo!, |fx~1],#)-

The resulting estimates are very close to the optimal
Holder regularity order, as seen in Fig. 3.

FILTER LENGTH

Figure 3. Comparison of regularity estimates: Sobolev lower
and upper bound (dashed). Holder upper and lower bounds
{(sotid} for Daubechies filters given in [3].

6. Conclusion

The method presented here, which characterizes regu-
larity on discrete-time sequences, was found to be pow-
erful: We have provided regularity estimates that are, in
contrast with earlier ones [2,3,4], easily implementable,
optimal, and of general applicability. Local regular-
ity [4) can also be studied as alternatives to global reg-
ularity using this method. {7].
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