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HE discrete wavelet transform (DWT), implemented as a classical octave-band
filter bank, expands a signal z, using “basis functions” of the type

gik(n) =g (n-2k), k€Z,j=1,2,3,... (1)

where 7 is the level of decomposition, k is a shift parameter, and ¢’(n) is the equivalent
impulse response at level j whose z2-transform is defined by iterations of the type

G(2) = G(2)G(22)G(zY)...G(z¥ ). (2)

In two dimensions [1], any perfect reconstruction filter bank iterated on the low-pass
component can be seen as a DWT whose basis functions are

gik(N)=g(N-D'K), K,Ne€2%j=1,2,3,... (3)

where D is a dilation matrix of size 2 x 2 with integer entries. Its determinant gives
the number of subbands at each stage of the decomposition [2]. The simplest example
yielding to nonseparable filters is the well-known quincunx decomposition [1] for which
only two subbands are used: |det D| = 2. From now on, we consider the quincunx case
in'two dimensions.

While perfect reconstruction does not depend on the particular matrix D which
generates the quincunx lattice I' = DZ?2, the basis functions depend critically on D;
the corresponding two-dimensional Z-transform (Z = (z,w)) is of the form

Gi(2) = G(2)G(ZPYG(2P")...G(zP"™) | (4)

where the monomial ZD’N N ¢ Z2, stands for 2Pw?, DIN = (,9).

In this particular context, the novelty of wavelet theory comes down to the choice
of filters present in the filter bank: “Wavelet” filters are regular. This means that the
impulse responses g’(n) converge, as j — 00, to a continuous function ¢(t) (or ¢(z,y)
in two dimensions), where n — 2/t (N — D’(z,y) in two dimensions) remains bounded
for all j. The regularity order is the number of times ¢ is continuously differentiable.
Regularity thus requires smooth evolutions of the discrete-time basis functions; several
intuitive arguments have been raised to hint that this property should be useful in image
coding applications. However, understanding the role of regularity in a DWT-based
compression scheme requires precise evaluation of it.



A major difficulty is that it is a mathematical notion which is expressed on the
limit function rather than on the filter taps. It is therefore useful to characterize
regularity in the discrete-time domain. One can show, for example, the resulting limit
function is continuous if the discrete-time sequences converge uniformly [3]. A necessary
condition for continuity, that can be proved to be sufficient in one dimension, is that
finite differences of the form |g7(n+1)— g7 (n)| (1-D case), or |¢/(N +U)—g’(N)|, where
U is set to two independent directions of Z?, tends to zero as j — oo uniformly over
time or space, and that moreover the frequency response of the low-pass filter vanishes
at m (1D case) or (7, 7) (2-D case).

To estimate regularity more precisely, it is also useful to extend regularity orders
to arbitrary, real-valued numbers. The correct way to do this is to use the Holder
definition of regularity: ¢ is regular of order a, 0 < a < 1, if

lp(z + k) = (e)] < cl[R]]%, (5)

where c is a constant independent of z and A. A similar definitions holds in two dimen-
sions. (Higher real-valued regularity orders are defined similarly on the derivatives or
partial derivatives of ¢.) Now, the (natural) discrete-time characterization of regularity
order a is, in 1D,

g/ (n +1) = ¢’ (n)] < c277°. (6)
In two dimensions, (6) becomes
(N + U) = ¢'(N)| < cp™° (7)

‘where U is as above and p is the spectral radius of D. Here the choice of D is important:

1 -1
which p = V2. Other choices, which yield the same quincunx sublattice I, but for
which p < 1, do not even yield to convergence toward ¢.

Characterizations like (6) and (7) yields sharp estimates of regularity orders. In one
dimension, we can provide regularity estimates that are, in contrast with earlier ones
that can be found in the literature, easily implementable, optimal, and of general ap-
plicability [3.4]. The two-dimensional case is trickier because the factorization theorem
of Z-transforms is lost. However, similar techniques can be investigated.

In conclusion, we have shown that a discrete-time approach to regularity can be
used to estimate it sharply. The determination of whether regularity is indeed useful in
image compression applications then becomes possible (for example, one could integrate
regularity in a filter design procedure), and remains a topic for future investigation.

(7) indeed implies regularity order a if p > 1. A typical choice is D = ( 11 ) for
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