N

N
N

HAL

open science

Regular wavelets: A discrete-time approach

Olivier Rioul

» To cite this version:

Olivier Rioul. Regular wavelets: A discrete-time approach. IEEE Transactions on Signal Processing,

1993, 41 (12), pp.3572-3579. 10.1109/78.258100 . hal-03330295

HAL Id: hal-03330295
https://telecom-paris.hal.science/hal-03330295
Submitted on 9 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://telecom-paris.hal.science/hal-03330295
https://hal.archives-ouvertes.fr

Regular Wavelets: A Discrete-Time Approach

Olivier Rioul

Abstract—Regularity is a new filter property, brought by wavelet
theory, for perfect reconstruction octave-band filter banks. Tools for
investigating its role in coding applications are provided in this note.
First, discrete-time interpretations an optimal estimates of regularity
are reviewed. Then, a simple design procedure for paraunitary FIR
filter banks with optimal trade-off between frequency selectivity and
regularity is given. Finally, the obtained filters are used to measure the
effect of regularity versus frequency selectivity in a still image
compression scheme with optimized rate-distortion. In this case, reg-
ularity is shown to be more relevant than frequency selectivity, espe-
cially for short filters.

I. INTRODUCTION

Signal compression was claimed to be a major potential appli-
cation of wavelets [16]. In fact, the discrete wavelet transform
(DWT) was soon recognized to be equivalent to an octave-band
filter bank allowing perfect reconstruction, which was successfully
applied for some time in subband coding of speech and images [3],
[18]. The main novelty of wavelets compared to traditional sub-
band coding is the additional requirement of regularity on the fil-
ters [4]. However, the actual impact of regularity is not clear at
this time. Therefore, it is important to understand its role in coding
systems, in competition with other filter properties such as fre-
quency selectivity and phase. The aim of this paper is to provide
the tools for measuring the impact of regularity on system perfor-
mance. We proceed in several steps toward solving this problem.

First, we quickly review some theoretical background for regu-
larity, based on the results of [14]. Regularity is here explained
using a discrete-time approach, which leads to very sharp regular-
ity estimates which have practical algorithms applicable to any FIR
filter bank (in one dimension). Second, we derive a simple design
procedure for paraunitary FIR filter banks (generating orthonor-
mal, compactly supported wavelets) which allows us to vary reg-
ularity and frequency selectivity quite independently, with several
possible choices for the phase reponse. This overcomes the present
limitation on the number of regular filter solutions available today
in the literature—the most famous ones being Daubechies solutions
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[4]. Finally, using the filters previously designed, we provide an
example of image coding application, in which we measure the
effect of regularity on compression performance. The coding re-
sults are preliminary and demand further investigation, e.g. con-
cerning the choice of filters.

II. THEORETICAL APPROACH: INTEREST AND LIMITATIONS

To explain regularity, we start with a simple interpolation pro-
cedure, which dominates all that follows. Given a discrete-time
signal {x,} and coefficients {h,} of a low-pass filter, n = 0,

-, L — 1, we compute y, = I, x;h, . This is perhaps easier
to write in z-transform notation

Y(2) = X(z*)H(2). (1)

The step from X (z) to X(z ) is up-sampling; multiplication by H(z)
is filtering in the time domain. Hence, (1) is the basic building
block in a synthesis filter bank (Fig. 1).

The construction of continuous-time wavelets simply consists of
iterating this scheme indefinitely. That is, we consider the iterated
filter bank of Fig. 1. After i iterations the output becomes

Y) = X@)H' ) )
where

H @) =H@H®D) -+ HZ ) 3)

is the equivalent filter in the path going through i low-pass branches
(see Fig. 2). The idea is now to look at the graphs of impulse re-
sponse {A}} as i increases. Since H'(z) has order 2' — 1)(L — 1),
the graphs are plotted against 12/, and may *‘converge’’ to a limit
function of a continuous variable ¢ (), as illustrated in Fig. 3.
(Function ¢ () is referred to as the scaling function in the wavelet
literature [4], [11].) In addition, for suitably chosen H(z), ¢ (1) is
a smooth, or ‘‘regular’’ function of ¢ which vanishes outside the
interval (0, L — 1). Here, regularity is a smoothness requirement
on a continuous-time function generated by H(z), and can be math-
ematically defined as continuity of this function and its derivatives.

The construction of wavelet Y (t) is now in one quick step [4],

[11]
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This is also the limit function obtained for input x, = g,, the high-.
pass filter coefficients; the iterated sequence converging to ¥ (¢) is
{gi}, where G'(z) = H'"'(z) G(z* ) is the equivalent band-pass
synthesis filter of Fig. 2.

The same discussion applies to the analysis part of the filter bank,
which uses a dual scheme (see Fig. 2). For example, the low-pass
branch computes inner products of {x,} with the {&}'}, which are
defined from low-pass filter H'(z) and generate the analysis scaling
function ¢’ (¢) and wavelet ¥’ (7).

The idea of generating regular functions from a repeated inter-
polation scheme is not new. It appears in computer-aided geometric
design [8], and the dependence of ¢ (f) on H(z) was also observed
by Burt and Adelson [2] in the context of pyramid transforms. These
works were performed independently of wavelets where regularity
does not depend on the perfect reconstruction property of filter
banks. But when introducing compactly supported wavelets, Dau-
bechies [4] stated new problems: under which (necessary and suf-
ficient) conditions on H (z) do we have convergence of {#.} to ¢ (¢)
and regularity of the limit function? i
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Fig. 1. Perfect reconstruction octave-band filter bank. A two-band filter
bank is iterated on the low-pass branch at each step. Low-pass and high-
pass filters are denoted by H(z), H'(z), and G(z), G'(z), respectively. At
the analysis part, a tilde denotes time-reversal of the filter coefficients.
‘‘Orthonormal wavelets’’ correspond to the paraunitary case in which anal-
ysis and synthesis filters are equal: H(z) = H'(z) and G(z) = G'(2).

@

Fig. 2. Redrawing of the filter bank of Fig. 1, revealing equivalent filters
(also called basis functions). After i iterations, H'(z) and H''(z) are the
equivalent low-pass filters, while G'(z) and G'* (z) are the equivalent band-
pass filters. The reconstructed signal is decomposed into the sum of syn-
thesis basis functions hj, _», and g5 5, k =1, -+ , i, | € Z, weighted
by the DWT coefficients. These coefficients are themselves computed as
inner products of the input with the analysis basis functions 4, 5, [16].

These questions are motivated by the mathematics behind regu-
larity [4]-[6], where the reasoning comes from wavelet analysis of
continuous-signals. But this mathematical approach seems inade-
quate for digital signal processing applications, because the filter
bank is never iterated in practical systems: In wavelet-based image
compression schemes [1], i seldom exceeds 5, whereas regularity
is mathematically defined when i — oo,

However, we know from Mallat’s work [11] that limit functions
still underly a discrete filter bank, even when it is iterated a finite
number of times. For example, the DWT coefficients at the ith
level can be written as ¢y = [ x(?)y' (27t — k) dt, where ¥’ (¢) is
the analysis wavelet and x(7) is a continuous-time signal. But the
discrete input is then given by x, = [ x (1) ¢’ (t — k) dt, where the
analysis scaling function ¢’ (¢) is used as an ad hoc sampling filter:
Hence, the significance of x(7) is not well established in digital
systems. Moreover, scaling functions and wavelets are almost never
obtained as explicit functions of 7, and the applications only require
discrete filters. Therefore, we would like to understand regularity
in terms of the discrete filter bank impulse responses {g’} and
{i}. ‘

Regularity does impose some ‘‘smoothness’” on {g)} and
{hf,}, as illustrated in Fig. 3(a). There are intuitive arguments in
favor of this for coding applications.
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Fig. 3. Limit functions generated by paraunitary low-pass filters H(z). Se-
quences A, are plotted against n2~' (i = 7). Hélder Regularity orders r are
indicated between parentheses. (a) 16-tap Daubechies filter [5]. First seven
iterations, converging to a regular function, are plotted. The limit function
is almost undistinguishable from k] at the level of the figure (2.72 < r <
2.75). (b) 6-tap filter designed in Section IV. It has maximal frequency
selectivity for normalized transition bandwidth 0.1 under the constrant
H(—1) = 0. Despite appearances, the limit curve is continuous (0.196 <
r < 0.253, Sobolev regularity order = —0.071). (c) 4-tap filter given by
ho = h, = 0.7and h, = —h; = 0.1. The iteration diverges (r = —0.12).
(d) 16-tap filter with 25 dB attenuation for normalized transition bandwidth
0.1, designed using Smith and Barnwell method [17]. Because H(—1) #
0, the iteration diverges (r = —0.16).



e During analysis: Suppose that a smooth portion of the input
is analyzed by ‘‘nonregular’’ filters, whose impulse responses rap-
idly present discontinuous as i increases (see Fig. 3(c)). Then, these
artificial discontinuities, not due to the signal itself, appear in the
DWT coefficients. In other words, regularity would lead to a *‘bet-
ter’’ representation of the signal by these coefficients.

e During synthesis: Suppose that an error, e.g., (a quantization
error), is made in one coefficient corresponding to some decom-
position level i. In the reconstructed signal, this results in a per-
turbation that is proportional to the equivalent impulse reponse cor-
responding to this level. In applications such as image compression,
a perturbation presenting discontinuities is likely to “‘strike the
eye’’ more than a smooth one. Also, its amplitude increases for
high compression rates, when transform coefficients are coarsely
quantized. Therefore, it is natural to require that this perturbation
be smooth.

Future will tell whether such arguments are relevant or not in
practical systems, and the tools provided in this paper may be use-
ful in this respect.! Note, that one step of iteration on a filter of
length L roughly doubles its length, but the resulting filter is dif-
ferent from one that would be directly designed with length 2L.
Thus, even when ‘‘good’’ filters are used, time-domain responses
will not necessarily approximate sin 7/¢ functions, as shown in Fig.
3. Therefore, an appropriate theory for our iteration process must
be developed. The next section provides the necessary background
for studying regularity from the viewpoint of discrete-time filters,
by reviewing the main result of [14].

III. DisCRETE-TIME CHARACTERIZATION OF REGULARITY

As pointed out above, an important difficulty is that regularity is
expressed on limit functions rather than on the filter taps. We now
characterize regularity in terms of the equivalent filter bank im-
pulse responses, the real objects one deals with in practical sys-
tems. Because scaling function ¢ (r) and wavelet y (¢) are simply
related by (4), it is easy to show [4], [14] that the two functions
share the same regularity properties. Therefore, we restrict our-
selves to the study of ¢ (), which depends only on low-pass filter
H (z), and also use the term ‘‘regular’’ for H(z). In the following,
we state the general results and refer to [14] for the treatment of
pathological cases.

A. Uniform Convergence, Continuity, and Derivatives

First of all, a technical difficulty is to define precisely the con-
vergence of discrete-time sequences {h} to a continuous-time
function ¢ (#). This is done in [14], which shows that a strong type
of convergence, called uniform convergence, is essentially equiv-
alent to continuity of ¢ (f). To achieve this, two basic necessary
conditions must be met [4], [8]. The first one, £, h, = 2, is simply
a normalization requirement. The second one states that the fre-
quency response of low-pass filter H (e’*) vanishes at the Nyquist
frequency w = m, i.e., H(z = —1) = 0. This is crucial for regu-
larity. Fig. 3(d) shows an example for which H(—1) = 0.05, lead-
ing to rapid oscillations of small magnitude in the graphs of {h}
as i increases.

Even when ¢ (¢) is required to be continuous, it may not appear
to be smooth at all, as shown in Fig. 3(b). This is because discon-

'"However, that such tools apply only for a subclass of filter banks, in
which filters are iterated on the low-pass filter. In particular, they do not
cover techniques such as non-uniform octave-band filter banks, where dif-
ferent filters are used at each stage of decomposition.

tinuities appear only when the ‘‘slopes’’
Shiy = (Hyyy — h) /27 ®)

of the ““‘discrete curves’’ grow as or faster than 2/ [14], and thus,
can still increase indefinitely under the continuity condition, giving
the *‘fractal’’ behavior of Fig. 3(b). Therefore, to obtain smoother
limit functions, we require more than continuity, namely, that ¢ (¢)
possess N continuous derivatives (We then say that the regularity
order is N). To characterize this on {A,}, we note that the role of
the Nth order derivative of ¢ (f) is played in the discrete-time do-
main by the Nth order finite difference of {h'}. The first-order finite
differences are simply the sequence of slopes (5), and applying N
times the operator & gives the Nth order finite difference 6" /. Now,
a natural result [8], [14], is that regularity order N is characterized
by uniform convergence of the 8" hi. The graphical interpretation
of this is the same as before, but applies to the sequence of slopes,
or slopes of slopes, etc., leading to smoother and smoother time-
domain responses {/}}.

B. Zeroes at the Nyquist Frequency

We have seen that one zero in H(z) at z = —1 is necessary to
obtain continuity. More generally, H(z) must have at least N + 1
zeroes at z = — 1 to achieve regularity order N [4], [8], [14]. This
constructive result gives a simple rule for designing regular filters.
Accordingly, Daubechies [4] designed paraunitary ‘‘wavelet’’ fil-
ters by imposing as many zeroes at z = —1 as possible in H (z) for
a given filter length, under the paraunitariness constraint (see Sec-
tion IV). This amounts to requiring that the frequency response
H(e’®) is “‘flat’” about w = m, hence Daubechies filters can be
termed ‘‘maximally flat,”’ a property that is known since Herrmann
[9]. However, they did not turn out to be maximally regular for a
given filter length [5], because the effect of zeroes at z = —1 may
be killed by other zeroes in H(z), whose effect is destructive for
regularity. Daubechies [5] constructed filters for which the destruc-
tive effect is less important and compensate for the fact that H(z)
does not have the maximum number of zeroes at z = —1 (see Sec-
tion IV).

Typically, this destructive effect kills 80% of regularity [19], so
the number of zeroes at z = —1 in H(z) does not give a good idea
of how ‘‘regular’’ the filter is. Therefore, to characterize and es-
timate regularity accurately, we would like to measure the precise
amount of regularity lost by zeroes in H(z) that are not located at_
z = —1. This is done next.

C. Sobolev and Holder Regularity

In order to quantify the degree of smoothness accurately, we first
extend the definition of regularity order to arbitrary real-valued
numbers using Sobolev or Holder definitions.

Sobolev definition regards regularity as spectral localization: ¢ (f)
has Sobolev regularity order 7 if | [|*""'| ®(w)|* dw < oo, where
® (w) is the Fourier transform of ¢ (). If r > N, then ¢ (f) has N
continuous derivatives. This definition has been so far the most
popular [4], [19], and can easily be tackled by estimations on
| H(e’®)| [4]. However, it clearly masks the effect of regularity on
the temporal waveform of ¢ (), and ignores phase information of
the filter. As a result, this definition is ‘‘suboptimal.’” Fig. 3(b)
shows an example for which the best Sobolev regularity order is
negative, even though the limit function is in fact continuous.

These drawbacks are avoided in the following Holder definition
of regularity, introduced recently for wavelets [6], which was found
to be appropriate for our derivations. The idea is to look at infini-
tesimal slopes of ¢ () in time and control the way they grow: For



0 < a < 1, ¢ () has Holder regularity order of « if, for any ¢, h,
¢t + h) — ¢ < c|h|* (6)

where ¢ is a constant independent of ¢ and . For higher Holder
regularity orders r = N + ¢, N=1,2, -+ ,and 0 < o < 1,
the same definition is used on the Nth derivative of ¢ (¢). In fact,
the limit function ¢ (7) possesses N continuous derivatives, if and
only if, it has some Holder regularity order >N [14]. Hence, Holder
regularity, as opposed to Sobolev regularity, is ‘‘optimally’’
adapted to the study of continuity of ¢ (7) and its derivatives. The
difference between Holder and Sobolev regularity only depends on
the phase of H(e’*), and can be estimated: Holder regularity is
always greater than Sobolev regularity by at most 1/2 [14]. There-
fore, Sobolev regularity gives a lower bound as well as an upper
bound on Hélder regularity.

A remarkable fact is that Holder regularity is easily translated in
terms of discrete sequences {/,}. Condition (6) is equivalent to

lhfl+| iy hfll = (-2""“ (7)

where ¢ is a constant [14]. Note that (7) can be obtained from (6)
by setting t = n2 “and h = 27, and replacing ¢ (f) by 4. In ad-
dition, this has a natural graphical interpretation: if the slopes (5)
of the discrete curve A, increase as 2'' ", 0 < « < 1, the limit
function is Hoélder regular of order « and is not more regular than
that. For higher Holder regularity orders, simply consider the de-
rivatives of ¢ (), whose discrete-time counterparts are the finite
differences 6" A, (Section III-A). Holder regularity order r = N +
a, 0 < a < 1, is thus characterized by (7) rewritten with "4/ in
place of A,

Moreover, (7) can be used to show [14] that the rate of conver-
gence of {h.} is exponential and is faster as regularity increases.
Fig. 3(a) shows that in practice, the convergence is very fast, which
justifies the study of the limit function ¢ (¢), even though the iter-
ation level is limited in practice.

D. Optimal Regularity Estimates

We now briefly review some regularity estimates derived in [13],
[14] from the discrete-time characterization of Holder regularity.
The main estimation algorithm [13], [14] first removes all of the
zeroes at z = —1 in low-pass filter H(z). Such zeros contribute to
a (maximal) Holder regularity order equal to K, the actual number
of zeroes at z = —1 in H(z) (see Section III-B). The remaining
factor, F(z) = (1 + z ") "X H(z), which contains zeroes not located
at z = —1, will decrease this regularity order by the amount 1 —
o = 0, yielding an optimal regularity order r = K — | + a < K.
The number « is estimated by first iterating F (z) to obtain F'(z) =
F(R)F@® -+ -+ F(@ ) associated to the time-domain response
fi, then computing o; = 1/i log, max, Iy | fi 4| This is easily
implemented on a computer. Given any number of iterations i, the
Holder regularity order will be at least K — 1 + «;, and the esti-
mate is improved as 7 increases: In practice, the exact (optimal)
regularity order r is generally obtained to two decimal places after
i = 20 iterations [14] for any filter. In comparison, the popular
estimation algorithm by Daubechies [4], based on Fourier meth-
ods, turns out to be suboptimal and computationally expensive.
Also, Daubechies and Lagarias [6] recently proposed a sophisti-
cated method for estimating Holder regularity, which is easily re-
covered by rewriting our main algorithm in matrix form [14], but
is only manageable for very short filters.

The main algorithm described above can also be used to derive
an optimal Sobolev regularity estimate, which gives, as seen in
Section III-C, suboptimal lower and upper bounds for Holder reg-

REGULARITY ORDER

6 8 10 12 14 16 18 20
FILTER LENGTH

Fig. 4. Regularity estimates for Daubechies filters of length L = 2, 4,

+++, 20. Sobolev lower and upper bounds (dashed). Holder lower and

upper bound (solid). Volkmer asymptote [19] (dotted).

ularity. The resulting algorithm simplifies to the search of the spec-
tral radius of one matrix [14], for which efficient programs exist.

Finally, a sharp upper bound for regularity can be derived from
our main estimation algorithm [14], and turns out to be particularly
fast [13], [14] (again, only the computation of the spectral radius
of one matrix is required). The results are very close to be optimal,
as illustrated in Fig. 4. In contrast, the Sobolev upper bound is
much weaker. Clearly, the combination of our algorithms for es-
timating Holder regularity orders gives lower and upper bounds
which are sufficiently sharp to be used in practice.

IV. REGULAR FILTER DESIGN

Today, there is a relatively small number of families of regular
“‘wavelet”’ filters available in the literature [4], [S], and a number
of compressions schemes were designed using ad hoc filters. This
is a serious limitation since properties like frequency selectivity
and regularity are interrelated inside one family of wavelet filters;
hence, it is impossible to explain some coding performance as a
consequence to one property and not to the other. This limitation
can be easily overcome: as an example, we propose a simple filter
design procedure. We restrict to real-valued and paraunitary filters
(i.e., compactly supported orthonormal wavelets) for simplicity:
only one filter has to be designed, since analysis and synthesis fil-
ters are equal within time-reversal.

The simplest method for designing paraunitary filters [17] is in
two steps. First, the zero-phase product filter P(z) = H(E)HE™Y
is designed under magnitude specifications on P (/) = | H(e/*)|..
Second, the phase of H(z) is determined by selecting zeroes of H(z)
among those of P(z). Our aim is to balance regularity and fre-
quency selectivity in the first step. Owing to perfect reconstruction,
P (¢’) can be put in the form [17]

L/2—-1
P@E™) =1+ AZO by cos 2k + Dw. )

where L is the length of H(z). The design specifications can be
restricted to the half-band (0, w /2) because of the symmetry of (8)
and w = /2. The frequency specifications for transition band (w,,
T — w),) take the form of inequality constraints on the b;’s, when
 is set to regularly spaced values in the interval (0, w,). Regularity
is imposed by requiring K zeroes at z = —1 in H(z). It is easy to
show that this can be written as K equality constraints on the b;’s.
Our design procedure minimizes the pass-band tolerance 6 under
these linear constraints for the L/2 + 1 unknowns {b;} and é. This
can be easily done using linear programming techniques. It is also
possible to rewrite the problem in order to improve the efficiency
of the design procedure, using a modified Remez exchange algo-
rithm: This will be presented in a forthcoming paper [15].
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Fig. 6. Attenuation (in dB) versus Sobolev regularity for the families of
filters obtained with normalized transition bandwidth set to 0.14. At one
extreme, one recovers Daubechies filters, while at the other, one recovers
Smith-Barnwell filters. Regularity is here quantified using Sobolev esti-
mates, because it is natural to relate magnitude specifications, like stop-
band attenuation, to Sobolev regularity. (However, once the phase of H (z)
is determined, regularity is best quantified using optimal Hoélder regularity
estimates.)

The obtained filters have maximum frequency selectivity (stop-
band attenuation) for a given regularity order. An example for
length L = 12 is given in Fig. 5. As K increases, stop-band atten-
uation is weaker, but flatness about w = 7 and regularity become
higher. We also observed that if H(z) is designed so as to have K
zeroes at z = —1, then it automatically has K + 1 such zeroes
whenever the degree of freedom, L/2 — K, is odd. Accordingly,
only the responses corresponding to the even values of K are plot-
ted in Fig. 5.

A closer look at the design procedure reveals two extremal sit-
uations. When no flatness condition is imposed (K = 0), it reduces
to the one proposed by Smith and Barnwell [17], which generally
yields nonregular filters. When K = L /2, there remains no degree
of freedom in the design algorithm and one recovers Daubechies
filters, for which closed-form expressions exist [4], [9]. Fig. 6
shows the resulting values of attenuation and regularity order for
different filter lengths and number of zeroes at z = —1. We have
obtained a large number of filters for which attenuation and regu-
larity can be chosen independently with a good coverage, allowing
a soft transition between Daubechies and Smith-Barnwell filters.
Note that while Daubechies wavelets are poorly selective, selectiv-
ity is greatly improved by relaxing a few zeroes at the Nyquist
frequency, resulting in a small loss of regularity. Regularity is even
improved for lengths L < 22: In this case, it is not an increasing

function of K, and ‘‘maximally flat’> Daubechies filters are not
maximally regular.

For a given magnitude response, i.e., for a given solution P (z),
there are 2 1*/4] ~! different filter solutions H (z) corresponding to
different phases [4]. In the rest of this note, results are given using
solutions that are closest to linear phase [4], [17], i.e., whose group
delay deviation is the pass-band is smallest (about 1 to 2.5 samples
for L < 16). Another choice would have been to minimize the
r.m.s. duration of the time-domain responses [7], but this nearly
amounts to the same. In general, phase can also be chosen quite
independently of the other parameters, although there is always a
limited choice.

V. IMAGE CODING APPLICATION

In this section, we measure the effects of regularity in a simple
wavelet-based still image compression scheme, using separable or-
thonormal filters designed in the preceding section. Note, that the
results shown here are only valid under these assumptions. In par-
ticular, although it is generally believed that the filter bank should
not deviate far from orthonormality if efficient coding is needed
[10], the role of regularity for nonorthonormal systems is not in-
vestigated here.

The compression scheme, depicted in Fig.?7, consists of a sep-
arable DWT on J decomposition levels, and a set of possible quan-
tizers Q; for each transformed subimage, corresponding to different
bit rates (from O to 8 bits per pixel (bpp) with step size 0.2 bpp).
The coder performance was evaluated by three different parame-
ters, which can be taken as the bit rate reference R: overall quan-
tizer bit rate, bit rate after Huffmann coding, and entropy. (The
results are quite independent of the way wavelet coefficients are
coded.) For simplicity, the results shown in this note were obtained
with scalar quantization; the results obtained with lattice vector
quantization in 4 or 16 dimensions [1] are similar except for the bit
rate range.

In order to provide a fair comparison of compression results for
different filters, we have used an automatic optimization procedure,
similar to the one described in [12], which selects the best set of
quantizers for each subimage and the best number of decomposi-
tion levels J which minimizes the overall distortion D at the recon-
struction (measured by an m.s.e. criterion) for a given rate budget
Ry, i.e., under the constraint R < R,. This problem is solved by
an unconstrained optimization procedure, using a Lagrangian cost
function; it takes the form of a nested algorithm is explained in
[12]. This algorithm is greatly simplified by the use of orthonormal
filters, which make both rate and distortion additive over one step
of decomposition.

It is questionable, in general, but distortion created by quanti-
zation can be correctly measured by the usual quadratic error D.
However, in our approach, the quantizers are optimally adapted,
according to the quadratic criterion, to the image and filters. In this
case, we observed experimentally that visual quality on the screen
fairly agrees with the SNR curves. In addition, regularity was first
introduced for subjective reasons, and it is important to check
whether objective distortion measures could also justify its useful- .
ness.

Fig. 8 shows a typical rate/distortion curve for the family of
8-tap and 12-tap filters designed as shown in Section IV, and the
256 X 256 LENA and 576 X 720 BARBARA images. Clearly,
trading regularity for selectivity in the filters affects the overall Peak
SNR of the reconstructed image, for a wide range of bit rates: More
regular (hence, less frequency selective) filters are best for a given
number of taps. This was observed on various images, using var-
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image.

ious coding criteria, and relying either on the PSNR or on the vis-
ual quality of the reconstructed image (see Fig. 9). This agrees the
remark made by Kronander [10] that, surprisingly, ‘‘good’’ selec-
tivity in frequency is not essential for coding performance, at least
in the present framework of still image compression.

At detailed look at Figs. 8 and 9 reveals two categories of filters:

1) Those whose low-pass frequency response does not vanish at
the Nyquist frequency (K = 0), resulting in very selective, but
nonregular filters. The obtained PSNR curve lies below the ones
corresponding to regular filters by about 5 dB. Patterns similar to
blocking artefacts are clearly visible on the image, even for strongly
attenuated filters (e.g., 40 dB attenuation [17]) and was also ob-
served by Kronander [10]. Besides the ‘‘regularity’’ interpretation
of Section II, this can be explained as follows [10]: Since H(z =
—1) # 0, a part of the DC component of the signal passes through
the band-pass branches of the filter bank, which are coarsely quan-
tized or possibly deleted, leading to strong artifacts.

2) Regular filters (K = 1): Their performance all stand within
only 1 to 2 dB difference for the same number of taps. It was never-
theless observed that the visual quality of the reconstructed image
increases slightly as K increases (i.e., as frequency selectivity de-
creases). Here, the filters giving the best performance are Daube-
chies filters.

To compare the performance for different filter lengths, consider
Fig. 10. The coding performance globally increases with filter
length, which also increases regularity. However, an asymptote is
quickly attained: Above L = 10 or 12, for which the regularity

order does not exceed 2, performance does not improve much. We
also observed that the effect of phase on coding performance is
almost unnoticeable for a fixed frequency response on the rate/dis-
tortion curves (less than 1 dB difference). This phenomenon should
be confirmed using nonorthonormal, linear phase filters.

VI. CONCLUSION AND FURTHER WORK A

The discrete-time approach of regularity described here is effi-
cient (optimal results are obtained) and inclusive (earlier estimates
are recovered). It leads to sharp Holder regularity estimates given
by practical algorithms, which can be used as tools for quantifying
precisely the effect of regularity in practical systems.

Examples of filter design and image coding application were
given. Results obtained for a simple compression scheme using
various coding criteria, optimized rate/distortion, and a number of
paraunitary filters with balanced regularity and frequency selectiv-
ity, show that regularity may be relevant for still image compres-
sion, at least for short filters (L < 10), for which the regularity
order is relatively small. Using more regular filters is probably use-
less, as the compression performance is not improving for longer
filters. This results are valid only under the assumptions given in
this paper and should be confirmed in the future using non-sepa-
rable and nonorthonormal filters.

As further theoretical investigations, the discrete-time approach
to regularity can be applied with success to larger problems, such
as local regularity [6], nonseparable filter banks and filter banks
with rational sampling changes.



Fig. 9. Zoom on LENA’s face (a) original, and compressed at 0.92 bpp
using 8-tap filters [see Fig. 8(a)]. (b) K = 4 (PSNR = 32.7). (¢) K = 2
(PSNR = 31.4). (d) K = 0 (PSNR = 22.1).
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