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BORDER RECOVERY FOR SUBBAND PROCESSING OF FINITELENGTH 
SIGNALS. APPLICATION TO TIMEVARYING FILTER BANKS 

l h n c o i s  D4pret’ Olavier R w d  Pierre DuhameP 

‘CNET Paris B, 38-40 rue du General Leclerc, 92131 Issy-LesMoulineaux, France 
ZENST, Dept. SIG, 46 rue Barrault, 75013 Paris, France 

A B S T R A C T  

In the context of subband processing of finite-length signals 
using FIR filter banks, a new technique is derived for achiev- 
ing exact reconstruction when subband signals are truncated 
to  the same number of samples as the original signal. Using 
a delayed truncation method in the subbands, it is shown 
that the missing samples can be recovered exactly by in- 
verting small linear systems. Our approach also applies to 
time-varying filter banks or wavelet transforms where filters 
are switched between consecutive input blocks. 

1. I N T R O D U C T I O N  

When implementing a perfect reconstruction FIR filter bank 
for subband coding of signals of finite extent, such as images, 
the processing of boundary regions give rise to the follow- 
ing problem. Assume, for example, that an input signal X of 
length N,  extended by zeroes outside the interval (0, N-1), is 
processed using the filter bank depicted in Fig. 1. Subband 
analysis of X results in a total amount of samples greater 
than that of the input: The subband signals Y and 2 have 
N/2 + L/2 samples each, where 15 is the length of the filters. 
This is due to the transients of the filtering process needed 
for splitting X into different channels. Thus, L extra coeffi- 
cients near the boundaries have to be coded and transmitted 
to reconstruct X exactly. This is generally undesirable for 
compression problems because of the increase of the encoded 
data, which is becomes higher as the number of iterations 
of the filter bank increases. Also, the size of the subimages 
become nonstandard On the other hand, if the number of 
samples to be encoded is made equal to  N by truncation at 
the borders of Y and 2, some information is apparently lost, 
which makes boundary distortion in the reconstructed signal 
unavoidable [4]. The first issue addressed in this paper is to 
achieve ezact reconstruction in the presence of trunction to 
N samples in the channels, i.e. without any increase of the 
data throughput after processing. 

A related problem concerns timevarying filter banks, 
where filters are switched at some transition location between 
consecutive input blocks. Such techniques have received in- 
creased attention recently [ I ,  5, 71 because they can be used 
to exploit the time-varying nature of the signal if they are 
dynamically adapted to  match its short-term properties over 
time. A variation of this technique applies to time-varying 
“wavelet” tree structures [3, 71. The second issue considered 
in this paper is to  achieve exact reconstruction in this con- 
text, in such a way that the sampling rate is preserved in the 
subbands at the transitions. Our approach readily applies to 
this problem when each block is processed independently of 
its neighbors. Similar ideas are also developped in the case 
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Figure 1. A tvm-band perfect reconstruction FIR filter bank. All 
filters are assumed to  be of even length L. The tilde symbol 
denotes time reversal: this convention on the- analysis filters 
will simplify subsequent formulations. Output X is equal to X 
delayed by L - 1 samples. 

of interrelated blocks. 
The originality of our approach is the use of a delayed trun- 

cation method in the subbands. The main idea behind the 
various techniques described here is the following: After trun- 
cation, it is passible to recover the missing samples of the sub- 
band signals ezactly (by matrix inversion.) This has several 
straightforward, but interesting consequences: 

As opposed to techniques derived in [3], after recovery, the 
synthesis bank is unchanged compared to  the naive situation 
where extra coefficients are transmitted without truncation. 
Therefore, there is no need to  carry out a specific design 
procedure for boundary or transition filters as was done in 
previous works [3,5,7]. Also, ezact reconstruction is achieved 
in all cases (as opposed to the technique proposed in (51). 
Finally, like in [3], specific properties of the transform, such 
as orthogonality, can still be exploited for coding purposes 
after the missing samples have been recovered. 

A similar approach was investigated by de Queiroz in [6] 
in the restrictive case of extension at the edges of the input 
signal. We show that the delayed truncation method can be 
used to simplify matters considerably in many other contexts. 

First, we present a 
simple example for which the philosophy of our approach be- 
comes clear. Our method is then extended to the case where 
different types of border extensions are made on the sig- 
nal. Next, we present the iterated formulation of our method 
which applies to  wavelet transforms and wavelet packets. Fi- 
nally, we apply previous ideas to time-varying filter banks. 

This paper is organized as follows. 

2. A  S I M P L E  E X A M P L E  

We consider the filter bank of Fig. 1, applied to a signal X 
of finite length N. We assume N and L even: This approach 
can be easily adapted to odd values of N and L. Our delayed 
truncation method consists of keeping the last N/2 samples of 
Y and the first N/2 samples of 2, which amounts to keeping 
the same quantity of data as in the original signal. 
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Figure 2.  Schematic matrix description of the synthesis bank, 
meant to respresent the formula 2 = G Y  + HZ. where G and 
H are interpolation+convolution matrices corresponding to  the 
synthesis filters. 

As shown below, after delayed truncation, there is still 
enough information available in the transmitted signal to  re- 
cover perfectly the original input X. This is done by recover- 
ing the samples that have been discarded, and then proceed 
as if they were transmitted. 

Throughout the paper we use the following notations at 
the begining and end of the block: yb = (yo,. . . , y ~ / 2 - , ) ~  and 
Ye = (yNj2,. . . ,yN/2+L/2-1)‘ are column vectors representing 
the first and last L / 2  samples in Y .  Similarly we define 
and 2, for subband signal 2. Our problem therefore reduces 
to  recover Yb and 2. from the other samples of Y and 2. 
Fig. 2 illustrates the matrix representation of the convolu- 
tion relations at  the borders during synthesis. The “border” 
matrices of size ( L  - 1) x L / 2  are L(G) and L(H) at  the be- 
ginning of the block, and U(G) and U(H) at the end of the 
block, where 

0 . . .  go 0 
L ( G ) = [  91 ; 0 ; j j j  ;] (1) 

QL-2 gL-4 . . . 9 2 9 0  

and U(C) is obtained from L(C) by reversing lines, columns, 
and filter coefficients. 

The border recovery procedure can be carried out inde- 
pendently at the begining and at  the end of the block by 
writing the synthesis equations at  both sides. We assume 
L - 1 5 /v to avoid interference between the begining and 
end of block. Since the filter bank allows exact reconstruction 
when no truncation occurs, the transients of the filtering pro- 
C~EB in the analysis and synthesis must cancel, and we have 
(see Fig. 2 )  

L(G)x + L(ff)& = 0 and U(C)Y. + U(ff)Ze = 0 (2) 

We obtain an over-determined linear system of equations, 
which is clearly full-rank, and since we must have a unique 
solution, half of the equations are redundant. Selecting one 
every other line in the system results in a lower or upper 
triangular matrix to  be inverted, which is easily done by sub- 
stitution. One passible choice at  the beginning of the block 
is 

yb = -LilLHZb (3) 
where LC = ((g%-2,)),j is a lower triangular Toeplitz ma- 
trix, and similarly for LH. Other choices are possible (e.g. 
involving odd-indexed terms) and would lead to  a different 
sensitivity to quantization, depending of the values of the fil- 
ter coefficients. Similarly, 2. is recovered from Ye by upper 
triangular matrix inversion. In this case, a delay is introduced 
which can be compensated for in the analysis. 

3. OTHER TYPES OF BOUNDARY 

So far we assumed that the signal is padded with zeroes out- 
side its support, but our method can also be generalized to 
other types of boundary extension, which can be of interest 
for image coding [4]. 

Circular extension, where signal X is periodic of period N ,  
is a well-known method for achieving perfect reconstruction 
while also transmitting only N samples. However, it cre- 
ates artificial discontinuities in the extended signal, making 
it harder to encode [4]. The following extensions are generally 
preferred as they make the signal continuous at the edges. 

The first one consists of replicating the boundary values 
at both ends in the signal. The generalization of the delayed 
truncation method is easy in this case: Consider for example 
the recovery of yb from 2,. Equation ( 2 )  is the same except 
for a nonzero right-hand side in which the only additional 
unknown is the boundary value 20. This value can be easily 
determined using the analysis equations which gives .q, = 
z 0 ~ , h ~  as the boundary value of 2. If the sum of the 
filter coefficients is # 0, especially if H’ is chosen to  be the 
low-pass analysis filter, zo is determined easily (otherwise, a 
trick can be used to  recover zo [2]). Once zo is determined, 
the synthesis equation can be solved for Yb by inverting a 
triangular matrix as in section 2. 

The second and most popular extension makes the signal 
symmetric around the boundaries. Exact reconstruction at 
the borders is easily achieved under the constraint that filters 
have linear phase [6]. However, it is desirable to  solve this 
problem for filters having arbitrary nonlinear phase, if e.g. 
orthogonality of the system is required. In this case an an- 
swer was given by de Queiroz [6], also based on linear system 
inversion but whose matrix is not necessarily full-rank. Us- 
ing our delayed truncation approach, we can show [2] that the 
missing samples can be recovered by inversion of a full-rank 
(non-triangular) square matrix. However, the derivation is a 
little involved. Details can be found in [2]. 

EXTENSION 
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Figure 3. Two-stage analysis/synthesis system with border re- 
covery. Truncation is indicated by crosses and subscripts "r" 
means "recovered." 

4. ITERATED FILTER BANKS 

In this section we extend our method to iterated filter banks 
such as the ones used in discrete wavelet transforms. A 
straightforward extension, of course, consists of iterating the 
subband decomposition directly on the truncated subband 
signals Y or 2. However, a major drawback is that the recov- 
ered subband signals after the second stage of decomposition 
are not the same as what would be obtained without trunca- 
tion. Although the system allows perfect reconstruction, the 
signal characteristics are affected near the boundaries, which 
may be undesirable in coding systems. 

In order t o  obtain, after truncation and recovery of the 
missing samples, the 'true' subband signals, it is necessary to 
derive a more adequate generalization of the procedure de- 
scribed in section 2 (we consider that the input X is padded 
with zeros outside its support for convenience). This is illus 
trated in Fig. 3 in the case of one iteration on one branch of 
the tweband filter bank. 

The first decomposition is the same as in section 2: The 
first L / 2  samples of Y and the last L / 2  samples of 2 are 
discarded and recovered at  the end. After Y is split into 
signals U and V, Fig. 3 shows that the first L/4  samples in 
U and V are missing. The total length of U and V would 
be ( N I 2  + L / 2 ) / 2  + L / 2  = N / 4  + 3L/4  if no truncation 
were present, hence there remain N / 4  + L / 2  samples in each 
vector. Now one can still discard L / 2  samples in U and V as 
shown in Fig. 3.  This yields the desired result, i.e., the total 
number of samples transmitted thrcugh signals 2, U and V 
is N / 2  + N / 4  + N/4 = N .  The recovery procedure for U and 
V then works pretty much as explained in section 2.  

This method can be easily extended for arbitrary decom- 
pmitions of the filter bank, provided that the low-pass and 
high-pass branches are not iterated at the same time. This is 
the case for wavelet transforms and for a large class of wavelet 
packets. 

Note that at  each stage j of the decomposition, we awume 
that L - 1 5 N/2J-' 90 that the begining and end of block 
are not overlapping. This requirement is satisfied in practi- 
cal systems as long as the subband decomposition is stopped 
when the impulse responses become as large as the signal. 

w Zb new 

Figure 4. Description of the transition period near time n = 0 
when the system is switched from the "old" filter bank to the 
"ned' one. To simplify, we assume all filters have the same 
length L. 

5. TIMEVARYING FILTER BANKS 
One possible way for the filter bank of Fig. 1 to 
be timevarying is to switch the filters from the set 

some transition location (say at time n = 0) between con- 
secutive input blocks x o l d  and Xnm. The problem addressed 
in this section is to achieve perfect reconstruction in this con- 
text without increasing the throughput rate. 

An easy and acceptable solution to  this problem consists 
of using the techniques described above for each block inde- 
pendently of its neighbors. In fact, this procedure can be 
rewritten [2] in a form that parallels the approach of Nayebi 
et al. (51, where transition filters vary near the transition loca- 
tions. Notice that the filters as well as the structure and num- 
ber of bands in the system can be changed from one block to 
the next, since each block is processed independently. Hence, 
this is applicable to  wavelet packets that generate arbitrary 
tilingo of the time-frequency plane [3]. Moreover, the result- 
ing procedure is very simple to carry out as compared to  [ 3 , 7 ]  
since no design procedure is needed. However, it is based 
on somewhat artificial extensions on the boundaries of each 
block, and intercorrelation between blocks is not exploited, 
which can be a drawback for compression problems. 

In the following we present an improved procedure that 
takes block intercorrelation into account. We consider a non- 
iterated filter bank of Fig. 1 for convenience. We wish to re- 
cover mising samples at  the transition by inverting a linear 
system in which information about both sides of the tiansi- 
tion is present. In keeping with the philosophy of our a p  
proach, we use a delayed blocking in the subbands illustrated 
in Fig. 4. In the channels, switching from Yold to Yn, is made 
at  time n = 0, while switching from Zold to  z., is made at 
time n = L / 2 .  As a result, the vectors v" and 2zld are 
discarded as shown in Fig. 4 ,  and have to be recovered to 
reconstruct the input exactly at the transition. 

Fig. 5 illustrates the transition using the same schematic 
matrix description as in Fig. 2. The "transition" matrices in 
the synthesis part are L(G,ld), L(Hold), U(Gn,), U(H,) as 
defined in section 2 (see (1)). IE the analysis, it is easily seen 
that the transition matrices are in fact transposed forms of 
L( ) and U()  (with the time-reversal convention of Fig. 1). 
By looking at  Fig. 5 we obtain the following relations in the 
analysis part 

( C & , , H & , ~ G ~ H , H ~ H )  t o  the set (G'-jH~,icnewiHnmv) at 

zy = L(ffLld)'X:' + u(H&)'x,"" (4) 
yb" = L(Ck)'X,.'d + U(G:,)'X,"" (5) 

The unknowns X;ld and Xt- are determined from the syn- 
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Figure 5. Schematic matrix description of the transition during analysis (a), (b) and synthesis (c), (d), for the ”old” filter bank (a),(c) 
and the “new” one (b), (d). 

thesis equations 

- 

X,O’ = L(Cou)xd + L(HOH)Z,OH + known terms 
xb- = U(G-)Yb- + U(ff-)Zb- + known terms 

(6) 
(7) 

where the ‘‘known terms” depend on transmitted samples of 
subband signals. Substituting (6), (7) into (4), (5)  gives L 
linear equations for the L unknown samples in Z,Od, yblm. 

(1 - L(H&)tL(ffold))ZF - U ( f f ; , ) ‘ U ( G n ~ ) v ~  = C (8) 
(I - U(G;,)’U(G,))Yb- - L(c’,)’L(Hold)x~ld = c’ (9) 
where c and d are known constants. In general, the matrix 
of this linear system is full-rank and (8), (9) can be solved for 
2;’ and YtW, hence the input signal is reconstructed exactly 
at the transition. 

6. CONCLUSION 
In this paper, a delayed truncation method was presented 
which solves some problems arising when a finite-length sig- 
nal is processed by a perfect reconstruction FIR filter bank. 
Instead of changing the filters at  the borders in order to 
keep the exact reconstruction property without increasing the 
throughput, we discard the redundant information (i.e., ad- 
ditionnal samples generated by the transients of the filtering 
process), and recover it at  the reconstruction. 

This method has been applied in various situations. Two 
points should be emphasized: 

First, the difference between the various types of boundary 
extension are not in the amount of reconstruction error, since 
our approach always leads to exact reconstruction. However, 
various extensions will result in signals more or less difficult 
to  encode. 

Second, the perfect reconstruction property is valid only if 
no quantization error occurs in the subbands, which is not 

realistic. In actual situations, the recovered samples will in- 
clude some errors, since they are recovered from quantized 
values. The methods presented here have various sensitiv- 
ities to this problem. Our simulations show that this was 
never a great problem in actual compression schemes. 
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