Note on "A Remez Exchange Algorithm for Orthonormal Wavelets"

Olivier Rioul and Pierre Duhamel *

April 1994

Abstract

The purpose of this note is to give a rigorous prrof of convergence of the modified Remez exchange algorithm proposed in the paper entitled "A Remez exchange algorithm for orthonormal wavelets," by O. Rioul and P. Duhamel, *IEEE Trans. Circuits Systems II*, vol. 41, no. 8, Aug. 1994, pp. 550–560.

1 Introduction

Let us recall the two optimization problems described in the paper and introduce useful notations. The pass-band is denoted by $BP = [0, \omega_p]$. For variable $y = \cos^2 \omega$, we have $y \in I \iff \omega \in BP$. For any continuous function $f(\omega)$ depending on variable ω we write f(y) the dependency of f on variable y. The ambiguity should be easily resolved from the context. The following functional norm is used:

$$||f|| = \max_{\omega \in BP} |f(\omega)| = \max_{y \in I} |f(y)|$$

1.1 Problem # 1

This is the initial optimization problem presented in section II.A of the paper: Given L, $0 < K \leq L/2$, and transition bandwidth BP, find the best trigonometric polynomial

$$P(\omega) = 1 + \sum_{n=1}^{L/2} a_n \cos(2n - 1)\omega$$

 $(L/2 \text{ variables } a_n)$ such that δ (the tolerance in the pass-band) is minimized subject to the constraints of magnitude specification

$$\|2 - \delta - P\| \le \delta$$

^{*}Olivier Rioul is with France Télécom, Centre National d'Études des Télécommunications, PAB/STC/SGV, 38–40 rue du Général Leclerc, 92131 Issy-Les-Moulineaux, France. Pierre Duhamel is with Ecole Nationale Supérieure des Télécommunications, ENST/SIG, 46 rue Barrault, 75013 Paris, France.

and Kth order flatness (equations (10)-(11) in the paper). The latter constraints leaves

$$N = L/2 - K$$

independent variables a_n .

Since this is a classical linear program whose set of constraints is not empty (maximally flat solution $P_K(\omega)$ satisfies the constraints for some $\delta > 0$) optimal solutions $\bar{P}(\omega)$ exist. Note: $\bar{P}(\omega)$ is a priori not unique. Any optimal solution $\bar{P}(\omega)$ has pass-band tolerance equal to

$$\bar{\delta} = \min_{P(\omega)} \delta$$

which is unique by definition.

1.2 Problem # 2

Reformulation of problem # 1 is done in section III of the paper. The main difference with problem # 1 is that δ is fixed to some value. Given this value of δ , problem # 2 is to find the best $P(\omega)$ which minimizes $||2 - \delta - P||$ subject to the K flatness constraints.

As explained in the paper, this is equivalent to the following.

$$\min_{R(y)} \|E\|$$

where R(y) is a polynomial of degree N-1 and

$$E(y) = W(y)(D(y) - R(y)).$$

Here

$$D(y) = \frac{D_0(y) - \delta}{W(y)}$$

where $D_0(y)$ and $W(y) \ge 0$ are continuous functions of y and do not depend on δ .

From section IV of the paper, to each value of δ corresponds

• A unique optimal solution $P^*(\omega)$ or $R^*(y)$ characterized by N+1 alternations $y1 < y2 < \cdots < y_{N+1}$ in I:

$$E(y_i) = \pm (-1)^i ||E|$$

• A number

$$\delta^* = \|E^*\| = \min_{R(y)} \|E\| = \min_{P(w) flat} \|2 - \delta - P\|$$

Note that implicitly there is an application '*' that maps $\delta > 0$ to $\delta^* > 0$.

Keep in mind notations \overline{P} , $\overline{\delta}$, P^* , E^* , δ^* . They will be constantly used in this note.

2 Preliminaries

The issue of the paper is to solve problem # 1 using a Remez exchange algorithm for problem # 2. In this section we state the precise connections between these two problems.

Lemma 1 For problem # 2 we always have

$$\delta \le \delta^*$$

Proof: Because of the flatness constraints we always have $P(\omega = 0) = 2$, hence

$$\delta^* = \|2 - \delta - P^*\| \ge |2 - \delta - P^*(0)| = \delta$$

Proposition 1 $\overline{P}(\omega)$, the optimal solution for problem # 1, is unique. It is also the optimal solution for problem # 2 where δ is set to $\overline{\delta}$, and we have $\overline{\delta} = \overline{\delta}^*$.

Proof: We have $\bar{\delta} \leq \bar{\delta}^*$ from the preceding lemma. But $\bar{\delta}^* = \min_{P(\omega)} \|2 - \bar{\delta} - P\| \leq \|2 - \bar{\delta} - \bar{P}\|$ and the latter quantity is $\leq \bar{\delta}$ because of the constraints of problem # 1 for $\bar{P}(\omega)$. Hence $\bar{\delta}^* = \bar{\delta}$ and $\|2 - \bar{\delta} - \bar{P}\| = \min_{P(\omega)} \|2 - \bar{\delta} - P\|$ for any optimal solution \bar{P} of problem # 1. This means that $\bar{P}(\omega)$ is the optimal solution to problem # 2 for $\delta = \bar{\delta}$, and is therefore unique.

Proposition 2 Let $P^*(\omega)$ be the solution to problem # 2 for some δ . Then it satisfies the constraints of problem # 1 if and only if $\delta = \delta^*$. In particular, $\delta \geq \overline{\delta}$.

Proof: If P^* satisfies the constraints of problem # 1 then $\delta \geq \overline{\delta}$ and

$$\begin{split} \delta^* &= \min_{P(\omega)} \|2 - \delta - P\| &\leq \|2 - \delta - \bar{P}\| \\ &\leq \|2 - \bar{\delta} - \bar{P}\| + \delta - \bar{\delta} \\ &\leq \bar{\delta}^* + \delta - \bar{\delta} \end{split}$$

but $\bar{\delta}^* = \bar{\delta}$ from the preceding lemma so we end up with $\delta^* \leq \delta$. But from the first lemma $\delta^* \geq \delta$, so $\delta^* = \delta$.

Conversely, assume $\delta = \delta^*$, i.e., $\delta = ||2 - \delta - P^*||$. Then because of this equality P^* satisfies the constraints of problem # 1.

This result shows that there is hope in solving problem # 1 using problem # 2 provided the optimal solution is such that $\delta = \delta^*$.

3 Modified Remez algorithm

Let us summarize the proposed algorithm as it was described in section VI of the paper.

At the *n*th iteration, we are given N + 1 critical points y_i^n , i = 0, ..., N. Then equation

$$E_n(y_i^n) = \pm (-1)^i \delta_n$$

where

$$E_n(y) = W(y)(D_n(y) - R(y))$$

and

$$D_n(y)W(y) = D_0(y) - \delta_n$$

suffices to determine δ_n and $R(y) = R_n(y)$ uniquely.

Note that this does *not* mean that $R_n(y)$ is the optimal solution to problem # 2 for $\delta = \delta_n$, since $\delta_n < ||E_n(y)||$ in general.

From here a multiple exchange procedure gives the next critical points y_i^{n+1} in such a way that for all i,

$$E_n(y_i^{n+1}) \ge \delta_n$$

and there exists i_0 such that

$$|E_n(y_0^{n+1})| = ||E_n||.$$

From here another iteration starts.

The purpose of this note is to show that

- 1. Convergence holds to $R_{\infty}(y) = \lim_{n \to \infty} R_n(y)$, corresponding to $P_{\infty}(\omega)$ whose tolerance in the pass-band is $\delta_{\infty} = \lim_{n \to \infty} \delta_n$.
- 2. At convergence, we have $\delta_{\infty} = \delta_{\infty}^* = \overline{\delta}$ hence the obtained solution $P_{\infty}(\omega)$ is indeed the optimal solution $\overline{P}(\omega)$ of initial problem # 1.

4 Analysis of convergence

Lemma 2 Let $R_n^*(y)$ be the optimal solution of problem # 2 for $\delta = \delta_n$. If $\delta_n = \delta_n^*$ then $R_n(y) = R_n^*(y)$.

Proof: We have seen that $R_n(y)$ is determined by equation $E_n(y_i^n) = \pm (-1)^i \delta_n$. where $\delta_n = |E_n(y_i^n)|$. Now, this is exactly the alternation theorem for the "discrete" problem

$$\min_{R(y)} \max_{y \in \{y_i^n\}} |E_n(y)|$$

Indeed Chebyshev's alternation theorem still applies for $I = \{y_i^n\}$ where all y_i^n are alternations! Therefore, $R_n(y)$ is the *unique* solution to the discrete problem

and we have

$$\delta_n = \min_{R(y)} \max_i |E_n(y_i^n)|$$

$$\leq \max_i |E_n^*(y_i^n)|$$

$$\leq ||E_n^*|| = \delta_n^*.$$

Since $\delta_n = \delta_n^*$ it follows that $\min_{R(y)} \max_i |E_n(y_i^n)| = \max_i |E_n^*(y_i^n)|$. This means that $R_n^*(y)$ is also the optimal solution to the discrete problem, hence by uniqueness $R_n(y) = R_n^*(y)$.

Proposition 3 As long as we did not converge, $\delta_n < \overline{\delta}$, hence δ_n is bounded for all n. Moreover $\delta_n < ||E_n||$.

Proof: Suppose $\delta_n \geq \overline{\delta}$. From proposition II.3, this implies $\delta_n = \delta_n^*$. Then by the preceding lemma we would have $R_n(y) = R_n^*(y)$ and therefore $\delta_n = \delta_n^* = ||E_n^*|| = ||E_n||$. But then in the multiple exchange procedure we would find $y_i^{n+1} = y_i^n$: the critical points, hence δ_n and $R_n(y)$ are stationary, which means that we have converged (in a finite number of steps).

Since from the preceding discussion $\delta_n < \delta_n^*$, and $\delta_n^* = ||E_n^*|| \le ||E_n||$ it follows that $\delta_n < ||E_n||$.

Lemma 3 There exist N + 1 numbers $\lambda_i \ge 0$ satisfying $\sum_i \lambda_i = 1$ such that

$$\delta_n = \sum_{i=0}^N \lambda_i |E_n(y_i^n)|$$

where $E_n(y) = W(y)(D_n(y) - R(y))$, for any polynomial R(y) of degree $\leq N-1$.

Proof: This follows, of course, from the definition of δ_n if $R(y) = R_n(y)$. This lemma states that $R_n(y)$ can in fact be replaced by any polynomial R(y) of degree $\leq N - 1$. Since by definition, $E_n(y_i^n)$ has alternating signs, if suffices to choose λ_i such that $\sum_i (-1)^i \lambda_i W(y_i) R(y_i) = 0$ for any R(y).

Using Lagrangian interpolation formula we have $R(y_0^n) = \sum_{i=1}^{N} L_i(y_0^n) R(y_i^n)$ for any R(y) of degree $\leq N-1$, where $L_i(y) = \prod_{j \neq i} \frac{y - y_i}{y_j - y_i}$. Set $a_i = \prod_{j \neq i} (y_j^n - y_i^n)$ where index j goes from 0 to N. Then $L_i(y_0^n) = -a_0/a_i$ and we have $\sum_{i=0}^{N} (1/a_i) R(y_i^n) = 0$ for any R(y). A solution is given by $\lambda_i = |\mu_i| / (\sum |\mu_i|)$ where $1/\mu_i = a_i W(y_i^n)$ has the same sign as $\pm (-1)^i$ since a_i 's have alternating signs and $W(y) \geq 0$.

Remark. The equation used for δ_n in the paper follows from this derivation by setting $R(y) \equiv 0$. **Proposition 4** As long as we did not converge, $\delta_n < \delta_{n+1}$. From the lemma *IV. 2, it follows that* δ_n *, a bounded increasing sequence, converges as* $n \to \infty$.

Proof: Use the preceding lemma for the expression of δ_{n+1} , where we set $R(y) = R_n(y)$. We obtain

$$\delta_{n+1} = \sum_{i} \pm (-1)^{i} \lambda_{i} W(y_{i}^{n+1}) (D_{n+1}(y_{i}^{n+1}) - R_{n}(y_{i}^{n+1}))$$

Since $W(y)D_{n+1}(y) = W(y)D_n(y) + \delta_n - \delta_{n+1}$, we obtain

$$\delta_{n+1} = \sum_{i} \lambda_i |E_n(y_i^{n+1})| + (\delta_n - \delta_{n+1}) \sum_{i} \varepsilon_i \lambda_i$$

where $\varepsilon_i = \pm (-1)^i$.

After multiple exchange described in section III, we have

$$\delta_{n+1} \ge \delta_n + \lambda_{i_0} (\|E_n\| - \delta_n) + (\delta_n - \delta_{n+1}) \sum_i \varepsilon_i \lambda_i$$

It follows that

$$\delta_{n+1} - \delta_n \ge \alpha_{n+1}(\|E_n\| - \delta_n)$$

where $\alpha_{n+1} = \lambda_{i_0} / \sum_i (1 - \varepsilon_i) \lambda_i > 0$. By proposition IV.2, $||E_n|| > \delta_n$, so the proof is complete.

5 Finding the solution to the initial problem

Let $\delta_{\infty} = \lim_{n \to \infty} \delta_n$. From propositions IV.2 and 4 this limit exists, is positive and is $\leq \bar{\delta}$. In the sequel we prove that $\delta_{\infty} = \bar{\delta}$, and the final result will follow.

Lemma 4 Critical points y_i^n always stay within a certain distance to each other as $n \to \infty$. That is, $\inf |y_{i+1}^n - y_i^n| > 0$.

Proof: Otherwise there would be a converging subsequence of y_i^n , which we denote by y_i^m , whose limit is \hat{y}_i , such that $\hat{y}_i = \hat{y}_{i+1}$. Hence for $i = 0, \ldots, N$, there are at most N distinct values in the set $\{\hat{y}_i\}$. Therefore, there exists $\hat{R}(y)$, a polynomial of degree $\leq N-1$, such that $\hat{R}(\hat{y}_i) = D_{\infty}(\hat{y}_i)$, i.e., $\hat{E}_{\infty}(\hat{y}_i) = 0$.

Then given arbitrarily small ε and for m large enough:

- $E_m(y_i^m) = \pm (-1)^i \delta_m$ where $\delta_m > 2\varepsilon$ (since $\delta_\infty > 0$).
- $|\hat{E}_{\infty}(y_i^m)| < \varepsilon$ since $\hat{E}_{\infty}(y)$ is continuous and $\hat{E}_{\infty}(\hat{y}_i) = 0$.
- $|\delta_{\infty} \delta_m| < \varepsilon$ since $\delta_m \to \delta_{\infty}$.

Therefore,

$$R_m(y_i^m) - \hat{R}(y_i^m) = \frac{1}{W(y_i^m)} (\hat{E}_{\infty}(y_i^m) - E_m(y_i^m) + \delta_{\infty} - \delta_m)$$

has same sign as $\pm (-1)^i$. The polynomial $R_m(y) - \hat{R}(y)$ oscillates at N + 1 distinct points y_i^m , hence it has N distinct zeroes. Since it is of degree N - 1, we must have $\hat{R}(y) = R_m(y)$. But this is impossible since it implies that $\delta_m = |E_m(y_i^m)| = |\hat{E}_m(y_i^m)| < \varepsilon$, hence $\delta_m \to \delta_\infty = 0$ whereas δ_m is strictly increasing.

Theorem 1 We have $\delta_{\infty} = \overline{\delta}$ and $P_n(\omega)$ in the modified Remez exchange algorithm converges to $\overline{P}(\omega)$, the optimal solution to initial problem # 1.

Proof: From the proof of proposition IV.4 we have $(||E_n|| - \delta_n) \leq \frac{1}{\alpha_{n+1}} (\delta_{n+1} - \delta_n)$ where from the expression giving α_{n+1} and from the preceding lemma, there exists $\alpha > 0$ such that $\alpha_{n+1} \geq \alpha > 0$. This shows that $(||E_n|| - \delta_n)$ tends to zero, hence $||E_n|| = ||2 - \delta_n - P_n(\omega)|| \to \delta_\infty$.

Now let $P_m(\omega)$ be a converging subsequence of $P_n(\omega)$, whose limit is denoted by $P_{\infty}(\omega)$. From the preceding discussion we have $||2 - \delta_{\infty} - P_{\infty}(\omega)|| = \delta_{\infty}$, hence $\delta_{\infty}^* = \min_{P(\omega)} ||2 - \delta_{\infty} - P(\omega)|| \le \delta_{\infty}$. Therefore, by lemma II.1, $\delta_{\infty} = \delta_{\infty}^*$. This implies $\delta_{\infty} \ge \overline{\delta}$ by proposition II.3. But since $\delta_{\infty} \le \overline{\delta}$, we obtain $\delta_{\infty} = \overline{\delta}$.

Moreover $\delta_{\infty} = \delta_{\infty}^*$ can be rewritten as $||2 - \overline{\delta} - P_{\infty}|| = \min_{P(\omega)} ||2 - \overline{\delta} - P||$ which shows that $P_{\infty}(\omega)$ is the optimal solution of problem # 2 for $\delta = \overline{\delta}$, hence by proposition II.2, $P_{\infty}(\omega) = \overline{P}(\omega)$. Thus, we have shown that any converging subsequence of $P_n(\omega)$ converges to $\overline{P}(\omega)$.

Now if $P_n(\omega)$ did not converge, there would exist a subsequence $P_m(\omega)$ such that $\|\bar{P}(\omega) - P_m(\omega)\| \ge \varepsilon > 0$ for any *m* large enough. But from $P_m(\omega)$ we could extract a converging subsequence whose limit would be $\bar{P}(\omega)$, and we would have a contradiction: $\|\bar{P}(w) - \bar{P}(w)\| = 0 \ge \varepsilon > 0$. Therefore the whole sequence $P_n(\omega)$ converges to $\bar{P}(\omega)$.