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Abstract

The purpose of this note is to give a rigorous prrof of convergence of

the modified Remez exchange algorithm proposed in the paper entitled

“A Remez exchange algorithm for orthonormal wavelets,” by O. Rioul and

P. Duhamel, IEEE Trans. Circuits Systems II, vol. 41, no. 8, Aug. 1994,

pp. 550–560.

1 Introduction

Let us recall the two optimization problems described in the paper and introduce
useful notations. The pass-band is denoted by BP = [0, ωp]. For variable
y = cos2 ω, we have y ∈ I ⇐⇒ ω ∈ BP . For any continuous function f(ω)
depending on variable ω we write f(y) the dependency of f on variable y. The
ambiguity should be easily resolved from the context. The following functional
norm is used:

‖f‖ = max
ω∈BP

|f(ω)| = max
y∈I

|f(y)|

1.1 Problem # 1

This is the initial optimization problem presented in section II.A of the paper:
Given L, 0 < K ≤ L/2, and transition bandwidth BP , find the best trigono-
metric polynomial

P (ω) = 1 +

L/2∑

n=1

an cos(2n − 1)ω

(L/2 variables an) such that δ (the tolerance in the pass-band) is minimized
subject to the constraints of magnitude specification

‖2 − δ − P‖ ≤ δ
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and Kth order flatness (equations (10)-(11) in the paper). The latter constraints
leaves

N = L/2 − K

independent variables an.
Since this is a classical linear program whose set of constraints is not empty

(maximally flat solution PK(ω) satisfies the constraints for some δ > 0) optimal
solutions P̄ (ω) exist. Note: P̄ (ω) is a priori not unique. Any optimal solution
P̄ (ω) has pass-band tolerance equal to

δ̄ = min
P (ω)

δ

which is unique by definition.

1.2 Problem # 2

Reformulation of problem # 1 is done in section III of the paper. The main
difference with problem # 1 is that δ is fixed to some value. Given this value
of δ, problem # 2 is to find the best P (ω) which minimizes ‖2− δ −P‖ subject
to the K flatness constraints.

As explained in the paper, this is equivalent to the following.

min
R(y)

‖E‖

where R(y) is a polynomial of degree N − 1 and

E(y) = W (y)(D(y) − R(y)).

Here

D(y) =
D0(y) − δ

W (y)

where D0(y) and W (y) ≥ 0 are continuous functions of y and do not depend on
δ.

From section IV of the paper, to each value of δ corresponds

• A unique optimal solution P ∗(ω) or R∗(y) characterized by N + 1 alter-
nations y1 < y2 < · · · < yN+1 in I:

E(yi) = ±(−1)i‖E‖

• A number

δ∗ = ‖E∗‖ = min
R(y)

‖E‖ = min
P (w)flat

‖2 − δ − P‖

Note that implicitly there is an application ‘*’ that maps δ > 0 to δ∗ > 0.

Keep in mind notations P̄ , δ̄, P ∗, E∗, δ∗. They will be constantly used in
this note.
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2 Preliminaries

The issue of the paper is to solve problem # 1 using a Remez exchange algorithm
for problem # 2. In this section we state the precise connections between these
two problems.

Lemma 1 For problem # 2 we always have

δ ≤ δ∗

Proof: Because of the flatness constraints we always have P (ω = 0) = 2,
hence

δ∗ = ‖2 − δ − P ∗‖ ≥ |2 − δ − P ∗(0)| = δ

¤

Proposition 1 P̄ (ω), the optimal solution for problem # 1, is unique. It is

also the optimal solution for problem # 2 where δ is set to δ̄, and we have

δ̄ = δ̄∗.

Proof: We have δ̄ ≤ δ̄∗ from the preceding lemma. But δ̄∗ = minP (ω) ‖2 −
δ̄−P‖ ≤ ‖2− δ̄− P̄‖ and the latter quantity is ≤ δ̄ because of the constraints of
problem # 1 for P̄ (ω). Hence δ̄∗ = δ̄ and ‖2− δ̄− P̄‖ = minP (ω) ‖2− δ̄−P‖ for
any optimal solution P̄ of problem # 1. This means that P̄ (ω) is the optimal
solution to problem # 2 for δ = δ̄, and is therefore unique. ¤

Proposition 2 Let P ∗(ω) be the solution to problem # 2 for some δ. Then

it satisfies the constraints of problem # 1 if and only if δ = δ∗. In particular,

δ ≥ δ̄.

Proof: If P ∗ satisfies the constraints of problem # 1 then δ ≥ δ̄ and

δ∗ = min
P (ω)

‖2 − δ − P‖ ≤ ‖2 − δ − P̄‖

≤ ‖2 − δ̄ − P̄‖ + δ − δ̄

≤ δ̄∗ + δ − δ̄

but δ̄∗ = δ̄ from the preceding lemma so we end up with δ∗ ≤ δ. But from the
first lemma δ∗ ≥ δ, so δ∗ = δ.

Conversely, assume δ = δ∗, i.e., δ = ‖2 − δ − P ∗‖. Then because of this
equality P ∗ satisfies the constraints of problem # 1. ¤

This result shows that there is hope in solving problem # 1 using problem
# 2 provided the optimal solution is such that δ = δ∗.
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3 Modified Remez algorithm

Let us summarize the proposed algorithm as it was described in section VI of
the paper.

At the nth iteration, we are given N + 1 critical points yn
i , i = 0 ,. . . , N .

Then equation
En(yn

i ) = ±(−1)iδn

where
En(y) = W (y)(Dn(y) − R(y))

and
Dn(y)W (y) = D0(y) − δn

suffices to determine δn and R(y) = Rn(y) uniquely.
Note that this does not mean that Rn(y) is the optimal solution to problem

# 2 for δ = δn, since δn < ‖En(y)‖ in general.
From here a multiple exchange procedure gives the next critical points yn+1

i

in such a way that for all i,
En(yn+1

i ) ≥ δn

and there exists i0 such that

|En(yn+1
0 )| = ‖En‖.

From here another iteration starts.
The purpose of this note is to show that

1. Convergence holds to R∞(y) = limn→∞ Rn(y), corresponding to P∞(ω)
whose tolerance in the pass-band is δ∞ = limn→∞ δn.

2. At convergence, we have δ∞ = δ∗∞ = δ̄ hence the obtained solution P∞(ω)
is indeed the optimal solution P̄ (ω) of initial problem # 1.

4 Analysis of convergence

Lemma 2 Let R∗
n(y) be the optimal solution of problem # 2 for δ = δn. If

δn = δ∗n then Rn(y) = R∗
n(y).

Proof: We have seen that Rn(y) is determined by equation En(yn
i ) = ±(−1)iδn.

where δn = |En(yn
i )|. Now, this is exactly the alternation theorem for the “dis-

crete” problem
min
R(y)

max
y∈{yn

i
}
|En(y)|

Indeed Chebyshev’s alternation theorem still applies for I = {yn
i } where all yn

i

are alternations! Therefore, Rn(y) is the unique solution to the discrete problem
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and we have

δn = min
R(y)

max
i

|En(yn
i )|

≤ max
i

|E∗
n(yn

i )|

≤ ‖E∗
n‖ = δ∗n.

Since δn = δ∗n it follows that minR(y) maxi |En(yn
i )| = maxi |E

∗
n(yn

i )|. This
means that R∗

n(y) is also the optimal solution to the discrete problem, hence by
uniqueness Rn(y) = R∗

n(y). ¤

Proposition 3 As long as we did not converge, δn < δ̄, hence δn is bounded

for all n. Moreover δn < ‖En‖.

Proof: Suppose δn ≥ δ̄. From proposition II.3, this implies δn = δ∗n. Then
by the preceding lemma we would have Rn(y) = R∗

n(y) and therefore δn = δ∗n =
‖E∗

n‖ = ‖En‖. But then in the multiple exchange procedure we would find
yn+1

i = yn
i : the critical points, hence δn and Rn(y) are stationary, which means

that we have converged (in a finite number of steps).
Since from the preceding discussion δn < δ∗n, and δ∗n = ‖E∗

n‖ ≤ ‖En‖ it
follows that δn < ‖En‖. ¤

Lemma 3 There exist N + 1 numbers λi ≥ 0 satisfying
∑

i λi = 1 such that

δn =

N∑

i=0

λi|En(yn
i )|

where En(y) = W (y)(Dn(y)−R(y)), for any polynomial R(y) of degree ≤ N−1.

Proof: This follows, of course, from the definition of δn if R(y) = Rn(y).
This lemma states that Rn(y) can in fact be replaced by any polynomial R(y)
of degree ≤ N − 1. Since by definition, En(yn

i ) has alternating signs, if suffices
to choose λi such that

∑
i(−1)iλiW (yi)R(yi) = 0 for any R(y).

Using Lagrangian interpolation formula we have R(yn
0 ) =

∑N
i=1 Li(y

n
0 )R(yn

i )
for any R(y) of degree ≤ N −1, where Li(y) =

∏
j 6=i

y−yi

yj−yi
. Set ai =

∏
j 6=i(y

n
j −

yn
i ) where index j goes from 0 to N . Then Li(y

n
0 ) = −a0/ai and we have∑N

i=0(1/ai)R(yn
i ) = 0 for any R(y). A solution is given by λi = |µi|/(

∑
|µi|)

where 1/µi = aiW (yn
i ) has the same sign as ±(−1)i since ai’s have alternating

signs and W (y) ≥ 0. ¤

Remark. The equation used for δn in the paper follows from this derivation
by setting R(y) ≡ 0.
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Proposition 4 As long as we did not converge, δn < δn+1. From the lemma

IV. 2, it follows that δn, a bounded increasing sequence, converges as n → ∞.

Proof: Use the preceding lemma for the expression of δn+1, where we set
R(y) = Rn(y). We obtain

δn+1 =
∑

i

±(−1)iλiW (yn+1
i )(Dn+1(y

n+1
i ) − Rn(yn+1

i ))

Since W (y)Dn+1(y) = W (y)Dn(y) + δn − δn+1, we obtain

δn+1 =
∑

i

λi|En(yn+1
i )| + (δn − δn+1)

∑

i

εiλi

where εi = ±(−1)i.
After multiple exchange described in section III, we have

δn+1 ≥ δn + λi0(‖En‖ − δn) + (δn − δn+1)
∑

i

εiλi

It follows that
δn+1 − δn ≥ αn+1(‖En‖ − δn)

where αn+1 = λi0/
∑

i(1 − εi)λi > 0. By proposition IV.2, ‖En‖ > δn, so the
proof is complete. ¤

5 Finding the solution to the initial problem

Let δ∞ = limn→∞ δn. From propositions IV.2 and 4 this limit exists, is positive
and is ≤ δ̄. In the sequel we prove that δ∞ = δ̄, and the final result will follow.

Lemma 4 Critical points yn
i always stay within a certain distance to each other

as n → ∞. That is, inf |yn
i+1 − yn

i | > 0.

Proof: Otherwise there would be a converging subsequence of yn
i , which we

denote by ym
i , whose limit is ŷi, such that ŷi = ŷi+1. Hence for i = 0, . . . , N ,

there are at most N distinct values in the set {ŷi}. Therefore, there exists R̂(y),
a polynomial of degree ≤ N − 1, such that R̂(ŷi) = D∞(ŷi), i.e., Ê∞(ŷi) = 0.

Then given arbitrarily small ε and for m large enough:

• Em(ym
i ) = ±(−1)iδm where δm > 2ε (since δ∞ > 0).

• |Ê∞(ym
i )| < ε since Ê∞(y) is continuous and Ê∞(ŷi) = 0.

• |δ∞ − δm| < ε since δm → δ∞.
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Therefore,

Rm(ym
i ) − R̂(ym

i ) =
1

W (ym
i )

(Ê∞(ym
i ) − Em(ym

i ) + δ∞ − δm)

has same sign as ±(−1)i. The polynomial Rm(y) − R̂(y) oscillates at N + 1
distinct points ym

i , hence it has N distinct zeroes. Since it is of degree N −

1, we must have R̂(y) = Rm(y). But this is impossible since it implies that
δm = |Em(ym

i )| = |Êm(ym
i )| < ε, hence δm → δ∞ = 0 whereas δm is strictly

increasing. ¤

Theorem 1 We have δ∞ = δ̄ and Pn(ω) in the modified Remez exchange algo-

rithm converges to P̄ (ω), the optimal solution to initial problem # 1.

Proof: From the proof of proposition IV.4 we have (‖En‖−δn) ≤ 1
αn+1

(δn+1−

δn) where from the expression giving αn+1 and from the preceding lemma, there
exists α > 0 such that αn+1 ≥ α > 0. This shows that (‖En‖ − δn) tends to
zero, hence ‖En‖ = ‖2 − δn − Pn(ω)‖ → δ∞.

Now let Pm(ω) be a converging subsequence of Pn(ω), whose limit is denoted
by P∞(ω). From the preceding discussion we have ‖2 − δ∞ − P∞(ω)‖ = δ∞,
hence δ∗∞ = minP (ω) ‖2−δ∞−P (ω)‖ ≤ δ∞. Therefore, by lemma II.1, δ∞ = δ∗∞.
This implies δ∞ ≥ δ̄ by proposition II.3. But since δ∞ ≤ δ̄, we obtain δ∞ = δ̄.

Moreover δ∞ = δ∗∞ can be rewritten as ‖2− δ̄ −P∞‖ = minP (ω) ‖2− δ̄ −P‖
which shows that P∞(ω) is the optimal solution of problem # 2 for δ = δ̄, hence
by proposition II.2, P∞(ω) = P̄ (ω). Thus, we have shown that any converging
subsequence of Pn(ω) converges to P̄ (ω).

Now if Pn(ω) did not converge, there would exist a subsequence Pm(ω) such
that ‖P̄ (ω) − Pm(ω)‖ ≥ ε > 0 for any m large enough. But from Pm(ω) we
could extract a converging subsequence whose limit would be P̄ (ω), and we
would have a contradiction: ‖P̄ (w) − P̄ (w)‖ = 0 ≥ ε > 0. Therefore the whole
sequence Pn(ω) converges to P̄ (ω). ¤
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