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La-CODING OF IMAGES: A CONFIDENCE INTERVAL CRITERION

A new image coding technique using statistical properties of quantization errors and Ls-norm criterion is investigated. The original image is preprocessed, quantized, encoded and reconstructed within a given confidence interval. We focus on iterated filter banks as a preprocessing technique, and provide a comparison with linear prediction in the case of very good quality (almost lossless) image coding.

INTRODUCTION

The transmission and storage of digital signals require the original data to be compressed. In many applications, the image is transformed into a set of binary integers such that the original data can be recovered from the binary set within some level of degradation. These "lossy" image compression schemes are usually based on transform coding techniques. The original image is split into a set of coefficients using some invertible transformation which improves the signal statistics prior to encoding. Such transformations are: DCT, filter banks, wavelets [2], wavelet packets [7], etc. Linear prediction [6] can also be considered as a particular transformation. These transformations do not produce any bit-rate reduction, but prepare the following steps. The transform coefficients are then quantized (which produces some data compression, but usually generates distortion in the reconstructed signal) and possibly entropy-coded (further compressing the data, without additional distortion).

The compression scheme is optimized by choosing an appropriate set of parameters (transform, quantizer steps) so that the overall compression ratio is minimized for a given reconstruction error. Classical lossy compression applications minimize an m.s.e.-like criterion on the reconstruction error [7]. Thus, the overall distortion is evaluated and controlled using L2-norm. However, this criterion is global (on the whole image) and does not exploit "local" knowledge on the signal, which is always available. At least, one knows the number of pixels on which the original image is encoded. Moreover, in many applications, one has indications on the precision with which the pixel values are obtained. The L2-norm cannot take such information into account, since it "averages" the errors in the whole image. This paper proposes methods allowing such knowledge to be used as a criterion involving a "confidence interval". As a result, this paper sticks to the case of very good quality (almost lossless) image coding.

As a preprocessing, we considered two classical kinds of transformations: iterated "wavelet" filter banks and linear 46, rue Barrault 75013 Paris, France prediction. In each case, the original signal x is transformed, quantized, encoded and reconstructed to give 2, with a distortion Ax = 5 -5. In our schemes, either prediction or filter banks achieve perfect reconstruction if no quantization is involved. If quantization occurs, the reconstruction error is only due to the quantization errors. Therefore, the problem is to determine the best quantizers in the compression scheme so as to achieve at least p% of errors inside the confidence interval. In other words, we minimize the overall bit rate under the constraint

prob(lAz1 5 t } 2 p% (1)
As an example, the compression scheme can be tuned in such a way that only 2% the reconstruction error exceed half the initial quantization step: in other words, 98% the output pixels will be equal to the original ones.

FILTER BANKS CODING

The corresponding compression scheme (figure 2) uses a perfect reconstruction octaveband filter bank, scalar uniform quantization and global Huffmann coders. For a given set of perfect reconstruction filters, the problem is to determine the quantizers that minimize the global bit rate while ensuring that the constraint (1) is met. Solving this problem requires some statistical modelling of the reconstruction error.

Statistical properties of the reconstruction error

The transformation applied to the original signal increases the density of the original discrete data and allows a continuous modeling and a statistical study. It is shown in [l] that the signals in the various high-pass subbands are accurately modeled by Laplacian distributions.

After transformation, the resulting signals y are quantized to be encoded. Here, we consider only scalar uniform quantization with step q. The quantization error is thus an additive noise lying between 3 and [8]. It is shown in [8] that, if the ratio is high (more than 0.7), the quantization noise can be modeled as a uniform distribution: fe(Y) = { i f T < z < : 0 otherwise with a zero-mean and a variance 2 , In our case (almost lossless coding), the above condition is satisfied and the quantization error is uniform. Now, since we use perfect reconstruction filters and lossless coders, the error is generated by the quantizers only. The system being linear, the reconstruction error is the result of the contribution of the various quantization errors to the actual output. In each subband, the quantization error is interpolated and filtered through the synthesis filters as depicted in figure 1 for a single iteration on a 1D-signal. For simplicity, we show in this 1-D context that the reconstruction error has a Gaussian distribution. The demonstration would be equivalent in the 2-D case.

Due to the oversampling, the odd and even samples of Ax depend on a different set of filter coefficients.

where Ng (resp. Nh) is the filter g (resp. h) length. The quantization errors E' have, a uniform distribution in [ y ,

t ]

with zero-mean and variance $.

The reconstruction error is thus a linear combination of uniform distributions, with different widths (due to the different values of the quantization steps in the subbands). It can be shown that the reconstruction error converges to a Gaussian distribution, provided that some conditions on its first three moments are satisfied (in order to use central limit ramifications developped in [ S I ) . Due to lack of space, the demonstration is only outlined here.

Consider one subband of the synthesis phase, e.g. the low-pass one of figure 1, and denote by e its contribution to the total reconstruction error. We have ep = Ck c:-kgZk+p where p = 0 for the even samples and p = 1 for the odd samples. It is easily shown that ep has zero-mean and variance Under appropriate conditions, which hold under the same hypothesis as the one recalled earlier for the quantization noise to be uniform, the reconstruction error can be shown to be a sum of such errors (which also holds for 2D-signals and many iterations of the filter bank). Thus, the generalized central limit theorem, as detailed in [START_REF] References | Transform& en Ondelettes et Compression Numerique des Images[END_REF] , can be used to show that an infinite sum of these errors has a Gaussian distribution. In practice, the filter banks are iterated several times. For J = 5 , this corresponds to 16 subbands and the convergence to a Gaussian distribution is ensured.

Therefore, we end up with a Gaussian reconstruction error, with zero-mean and variance U' depending on the quantization steps and the filter coefficients in all subbands. For example, when J = 1, in the 2-D case, we have

= E [ ( x k c:-kg2k+p)2].
where p and q are associated to odd and even samples of the error. In general, for J iterations, the whole error is a contribution of the different samples ( A X ~, , ) ~, , = ~, . . . , ~J -1 due to the J interpolations. Furthermore, these samples have the same contribution in the whole signal, and are all Gaussian with variance U:,,.

Quantizer optimization

Since a statistical model of the reconstruction error is available, we can find the quantizers allowing a certain percentage of distortion as in (1). This requirement reads:
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where erf(a) = 5 Joa d d x is the usual error function and U;,, depends on the squared quantization steps as seen above.

Decimation in the analysis filters halves the size of the subimage in each subband and since we use separable dyadic filters, the contribution to the total bit-rate of a subimage after j iterations is weighted by n, = 2-2J. Let b denote the total bit rate, T, and q, the dynamic range and quantization step in subband #i, respectively. The contribution of sub- band i to the total bitrate is b,, which satisfies q, = T, 2-4.

Quantizers have to be chosen such that the total bit rate, b = E, n , b , , is minimum while (3) is satisfied. Thus, we end up with a constrained minimization problem

(4)
In its present form, it is a nonlinear minimization problem with a nonlinear constraint. To avoid divergence of general optimization algorithms, we solve the problem in two steps: first, we determine the best quantizers which minimize the bit rate such that the maximum error is less than a given threshold. Then, using the relationship between the variance of the error and the quantization steps, we solve (1).

First step: Deterministic point of view

In a first step, a deterministic approach is used to find the quantizers such that the bit rate is minimum and the reconstruction error Ax does not exceed a given threshold t, i.e., lAx,I 5 t for all n. This condition involves the L" norm of the error, and leads to a constrained minimization problem:

( 5 )

Estimatzon of the distortion Lm n o m

Since the exact value of the maximum depends on the original image, we can only give an upper bound as an estimate of the L" norm of the reconstruction error. We first keep with the simplified context of a monodimensional signal, with a simple 2-band filterbank. The result is then extended to 2D-signals and J iterations.

According to (2), an upper bound is obtained if the quantization errors (E' and cl) are extremum and have the same sign as the filter coefficients. Since ei satisfies lc'l 5 2, where qz is the quantization step, we obtain:
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Since separable filter banks are involved, the filtering and interpolation are separately done on lines then columns of the 2D-signals, which results in four types of samples, depending on the parity of their indexes, giving c 9

After J iterations of the filter bank we similarly obtain:

I E f ---c Ax
where p and q vary between 0 and 2J -1 (i.e. 2' x 2' = 22J possibilities) and come from the J successive interpolations in the synthesis; m and n describe the different signal samples.

Without any a priori knowledge on the signal, this estimator is optimal, but somewhat pessimistic for actual images. Note that it is a linear function of the quantization steps.

Since Ax is the contribution of the interpolated samples AX^,^, the relation llAzllm 5 t has to be satisfied for every ( p , q ) combination, which yields to a linear system of constraints. Thus, the optimization problem ( 5) has a convex criterion: E, n, log2(:), using the notations of section 2.2, and linear constraints E, a,,q, 5 t where a,, function of the set of filter coefficients involved in subband i and the combination j of p and q seen above. 4

Deterministic computation of the quantization steps

Finding quantization steps that minimize the bit-rate such that the reconstruction error is 5 t is thus equivalent to solving the constrained optimization problem * h .

with convex criterion and linear constraints (figure 3.a).

As illustrated in figure 3, the solution is unique, and lies on the boundary of the feasible region. Since, in actual problems, the number of constraints is huge (over 1,000 constraints when the low-pass filter is iterated five times in 2-D), general optimization procedures cannot be used. Moreover, these general optimization algorithms need a starting .point close to the optimum so as to avoid divergence problems. Therefore, we have chosen to solve the problem in two steps: first, find an approximate solution, then use a general optimization algorithm using this approximation as a starting point to find the optimum solution.

Using equation qi = r, 2-**, problem ( 6 ) can also be written the function 2-'. Since this function is convex and invertible, each vertex (Q,) of (K,) is associated to a "virtual" vertex (B,) of (K2) which saturates the same constraints. The feasible domain ( D ) determined by the constraints (B,) is a convex polyhedron. Furthermore, the minimization of the linear criterion on ( D ) gives the best vertex of (6); the optimal s e lution is on the boundary. Since the criterion is linear and ( D ) a convex polyhedron, the best vertex is obtained using a variation of the simplex algorithm [Q]. But, since ( D ) is not easily determined and (K,) and (K2) are equivalent, the best vertex in ( D ) is associated to the vertex in ( K , ) where the criterion is minimum. The problem can thus be solved using version (6). However, we have to adapt the simplex algorithm to this particular case of a convex criterion, by evaluating the cost function at each vertex.

The obtained best vertex is an approximation of the optimum which is on the boundary of the feasible region. The obtained approximate solution is used in the second step as a starting point of some general optimization algorithm, to find the optimum solution. Its convergence is thus ensured and relatively fast.

So far, we have determined optimal quantization steps according to the deterministic approach in (6). As it is, the proposed solution already allows to perform lossless coding, by choosing t = 0.5, and requantizing f after reconstruction. However, some applications allow a "small" number of errors to exceed the given threshold. Hence we now return to the statistical problem (4).

Problems ( P l ) and (P2) are equivalent and related through

Statistical computation of the quantization steps

Recall that the quantization steps depend linearly on the threshold t. Hence, if the threshold t is multiplied by some constant Q, the steps pi are also multiplied by (Y and the variance u2 of the quantization error by CY'. Therefore, it is natural to state the problem relatively to the one solved in section 2.3.2 : the new quantization steps are chosen as q: = Q q,. This scale factor Q is thus easily determined using the relation Taking into account the different samples Axp, ¶, we find cy by solving the equation:

(9)
where up, ¶ is the standard deviation associated to and is a function of the optimal quantization steps solution of the deterministic problem (6). Since ( 9) is nonlinear, it is solved using a general algorithm. However, since it depends on a single variable a, solutions are reliable and fast.

Results

A direct application of the above scale factor a to the quantization steps qi computed as described in section 2.3.2, gives the results shown in table 1. These results are obtained in the context of "almost lossless coding". The first column provides true lossless coding (t < 0.5) using the optimal quantizers according to the LE-criterion. Since the estimate of the L" norm is not achieved in the real images, the obtained maximum error is less than the imposed threshold t = 0.5. So, using an iterative algorithm and the linear dependency between the quantization steps and the threshold, we find the scale factor which brings the reconstruction error at t = 0.5.

The other columns of table 1, show as expected that the bit rate reduction is more and more important when p decreases.

All this procedure may seem fairly complicated. However, note that all quantities are signal-independent: the whole optimization can be done off-line. It amounts to computing the quantization steps taking an L , norm into account rather than an Lz norm. Otherwise, the whole coding/decoding scheme is identical to the classical one: only the quantization steps differ. It should also be noted that both solutions using the different norms are very different: the repartition of the errors as well as their statistics is drastically changed.

COMPARISON BETWEEN LPC AND FBC

The linear prediction case has been investigated following the same lines as described above for filter banks. For the results presented in this paper, we used a third-order predictor (there is only a marginal gain beyond a third-order predictor):

Xn-m = hl&-l.,n-l f hZZn,n-I + h3Zn-1,tn where h, are the predictor coefficients. This predictor is optimized according to the statistics of the image (see e.g. [START_REF] Rabbani | Digital Image Compression Techniques[END_REF]41). Given this predictor, we choose the quantizer allowing a bit rate reduction and a reconstruction error within a given confidence interval.

An example of what can be done using this approach is shown in table 1 for two images. Again all results are provided in the context of "almost lossless coding", hence with reference to a threshold t = 0.5, with original images initially quantized on 8 bits per pixel (bpp). The first column provides the results obtained forp = 100% of errors in [-0.5,0.5], which corresponds to true lossless coding, since the image is perfectly obtained by requantizing the reconstructed signal on 8 bpp. The other columns show the variation of the bitrate by allowing more and more errors to exceed the chosen threshold, in a controlled manner, using the above methods.

Note that in both cases of linear prediction and filterbank coding, the observed percentages on the reconstructed image are almost equal to the required ones. Although the bit rate decrease is noticeable, it is not well improved when more errors are allowed, i.e. when the percentage p% decreases. A larger coding gain would be obtained only by working with a larger threshold t. However, this corresponds to an increase of the distortion, and it is well known that replacing the linear prediction by a filterbank may lead to better compression ratios in this case. This is clearly checked in table 1: LPC achieves better compression rate than FBC when lossless or near to lossless coding is required. When more loss is allowed ( p < go%), the filter banks become more efficient.

CONCLUSION

The proposed approach has a very large flexibility:

-It allows to perform efficient lossless coding by simple means (see table 1).

-It allows a local control of the error. Varying cy (the scale factor applied to the "optimal" quantization steps) according to the value of the signal allows spatial masking to be used.

-Whatever the application, any signal is measured with a given accuracy, hence defining a confidence interval. Our method is able to maintain the reconstruction errors in this confidence interval, thus resulting in practical lossless coding. b) Problem (P2) has a linear cost function and convex constraints, the fesible region is (Kz). We easily see from (Pl) that there is an optimum solution which is on the boundary of ( K , ) or (Kz).

FB-If

Table 1: Almost lossless coding using filter banks (FB) or linear prediction (LP). We show the overall bitrates obtained after a Global HufFmann Code (GHC), for varying percentages but a constant threshold t = 0.5. The FB method here uses 5 iterations and the 12-tap Daubechies filter [3]. For p = loo%, the deterministic criterion of 2.3.2 is used. The LP method uses three neighbor pixels predictor (see text).

  with linear criterion and convex constraints (figure 3.b).
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 23 Figure 2: Filter bank compression scheme. The encoding part uses an octave-band separable filter bank iterated J times on the lowpass filter which splits the input image into (35 + 1) subimages. These subimages are then quantized and losslessly encoded (using Huffmann coding). The synthesis part reconstructs the approximate signal 5.
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