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ABSTRACT

The strong similarity between binary symmetric source
(BSS) coding relative to Hamming distortion and binary
symmetric channel (BSC) coding is discussed in this pa-
per. It is further utilized for designing data compression
systems with error probability criterion. These are, in
turn, used to construct simple joint source and channel
coding systems.

1 INTRODUCTION

1.1 Motivation

There is a strong similarity between BSS coding rela-
tive to Hamming distortion and BSC coding: The same
linear block error-correcting code can be used both as a
channel code and as a source code, where the channel
decoding algorithm is used as a source encoding algo-
rithm, and the channel encoding algorithm is used as
a source decoding algorithm. This idea is not new; it
appears e.g. in Mc Eliece's book [1, x 11.5].

Such BSS coding techniques|\dual" to BSC coding
techniques|have not been widely used, primarily be-
cause source encoding requires a complete channel de-
coder. This requires the use of codes with small block
lengths so that source encoding can be done using a
complete list of syndromes. Thus, practical capabilities
of such source coding schemes are limited.

However, our aim is to utilize the similarity between
binary source and channel codes to design a joint source
and channel coding system using small linear block
codes. Although Shannon's source and channel coding
theorem suggests that source and channel coding should
be separated, optimum performance would be achieved
at the expanse of very large block lengths and very high
complexity. In our proposal, complexity is limited by
the use of small block lengths yet performance stays rel-
atively close to the optimum.

1.2 Organization of the paper

While the design of error-correcting codes for use on
the BSC is well-known, comparatively little is known
concerning the use of these codes for BSS data com-
pression with Hamming distortion. For this reason, we

derive, in this paper, the optimum performance curve
for source coding using block codes for a given block
length. For increasing lengths, we can show that these
curves converge toward Shannon's limit (known as the
rate-distortion function). Exhaustive search for lengths
� 11 shows that the best linear codes are always very
close to the optimum, for any possible code rate.

Then, we utilize these source and channel codes to
design a joint source and channel coding system. We
provide simulation results and compare them to Shan-
non's limit for joint source and channel coding, which is
referred to as the optimumperformance theoretically at-
tainable (OPTA) in the literature. Although complexity
is maintained at a small level, performance is relatively
close to the OPTA.

The results given in this paper may easily be extended
to q-ary sources, where e.g. q is a prime power integer
and codes are de�ned over a �nite �eld Fq. To simplify
the discusssion, we restrict ourselves, in this paper, to
the binary case (q = 2 and F2 = f0; 1g).

2 DUALITY BETWEEN ERROR CORREC-

TION AND SOURCE CODING

Consider a binary block source coding scheme as illus-
trated in �gure 1. Eachm-bit source word u is processed
to give a k-bit index i which represents the source word
more compactly (one has k < m). The source decoder
delivers the m-bit \source codeword" v to the user. We
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Figure 1: Block diagram of a binary source coding system

use the following average distortion per bit as the �delity
criterion.

D =
1

m
E [dH(u; v)] =

1

m

X
u

p(u)dH(u; v) (2.1)

Here dH(u; v) is the Hamming distance between the
source word and the source codeword (i.e., the number



of places in which they di�er), and p(u) is the probabil-
ity mass function of the source (for a BSS p(u) = 1

2m
).

In other words, D is the average number of bit errors
between the system input and output and is, in fact, an
error probability citerion.
To each source codeword v corresponds a codebook in-

dex i, and, in order to minimize D, v should be chosen
as the closest codeword to u (nearest neighbour condi-
tion for the Hamming distance). Therefore, the source
encoder should �nd the codeword that is closest to the
source word and then deliver its index i. The source
decoder should perform the inverse `table lookup' oper-
ation to output the corresponding codeword v.
In this paper, source coding is achieved using a linear

(m; k) block code. Such codes were invented to correct
errors on noisy channels and were intensively studied
(see e.g., [2]). Consider, for example, the BSC cod-
ing scheme depicted in �gure 2. The channel encoder
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Figure 2: Block diagram of a binary channel coding system

adds redundancy to information message i and delivers
channel codeword v. The channel decoder uses this re-
dundancy to correct the errors in received word u; it
achieves this by �nding the codeword v that is closest
(in the Hamming sense) to u, and �nally produces an
estimate of information message i.
Therefore, we see that the channel decoding algorithm

performs essentially the same task as the source encod-
ing algorithm, which is required for the source coding
scheme of �gure 1. For this reason, the source encoder
will be implemented as a channel decoder. From this
follows that we should also use the the channel encod-
ing algorithm as a source decoding algorithm. The code
rate R = k

m
gives the average number of coded bits in i

per source bit.
To summarize, binary source and channel coding are

essentially dual tasks. There is, however, one important
di�erence concerning the implementation of the source
encoder vs. the channel decoder: In many practical
channel coding situations, the received word is, with
high probability, very close to the emitted channel code-
word so that the channel decoder can be incomplete.
This means that it decodes only those received words
having less than a given number of errors. For source
coding, however, the input source word can be any-
where. This is especially true for a BSS where source
words are equally likely. It is therefore necessary that
the source encoder be implemented as a complete chan-
nel decoder, which produces the closest codeword v no
matter what the received word u is.
Most known e�cient channel decoders are incomplete

decoders and cannot be used for our purposes. How-
ever, complete channel decoding can be performed us-

ing the classical syndrome decoding (see e.g. [2]) where
�nding the closest codeword is done using a complete
list of 2m�k syndromes. This, however requires the use
of codes with small block lengths in order to maintain
complexity at a reasonable level.

3 BEST PERFORMANCE OF BSS CODING

In this section, we derive a closed-form, tight lower
bound on the achievable Hamming distortion using
source block codes for a given length m and all pos-
sible rates R = k

m
. We then compare this bound to

Shannon's rate-distorsion function and show that nearly
optimal codes exist for all lengths m � 11.

3.1 Derivation

Consider an (m; k) binary linear code C having 2k code-
words v of length m. De�ne the Vorono�� cell V (v) about
v 2 C as the set ofm-bit words that are closest to v than
to any other codeword. It is easily seen that the Vorono��
cells may be chosen so as to be disjoint and to cover the
entire space Fm

2 .

Now de�ne �d as the number of words u in V (v) for
which dH(u; v) = d. Since the code is linear, the Vorono��
cells are translated copies of each other (and thus enclose
exactly 2m�k words). It follows that �d does not depend
on the choice of V (v). The �d's are known, in (channel)
coding theory [2], as the Hamming weight distribution
of the code's coset leaders.

Using these de�nitions, the Hamming distortion for
code C can easily be rewritten as

D = 1
m2m

X
v2C

X
u2V (v)

dH(u; v) =
1

m2m�k

mX
d=0

d�d: (3.2)

Now pick a d� � 0 and split the sum into two parts, one
for d < d� and the other for d � d�. In the second sum,
use d � d� and the relation

Pm

d=0 �d = jV (v)j = 2m�k.
We obtain, after re-arranging terms:

D �
d�

m
�

1

m2m�k

X
d<d�

(d� � d)�d

Now use the relation �d �
�
m

d

�
, which is easily obtained

by counting all words at distance d from a codeword.
We end up with the following lower bound on D.

D � Dlb(d
�) =

d�

m
�

1

m2m�k

X
d<d�

(d� � d)

�
m

d

�
: (3.3)

It can be easily seen that the best lower bound Dlb(d
�)

is obtained when d� is the largest integer such that

X
d<d�

�
m

d

�
� 2m�k: (3.4)



3.2 Comparison to Shannon's limit

From Shannon's coding theorem, we know that the opti-
mal performance theoretically attainable for BSS coding
is given by Shannon's rate-distorsion function

R(D) = 1�H2(D) (D �
1

2
) (3.5)

where H2(x) = �x log2 x� (1� x) log2(1� x) is the bi-
nary entropy function. Shannon's initial theorem con-
siders arbitrary (non-linear) codes, but it is known to
hold also for the subclass of linear codes [3].
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Figure 3: Lower bound for di�erent block lengths: m=10
(-.), m=25 ({), m=50 (..). Solid: Shannon's rate-distortion

function.

While the rate-distortion function refers to arbitrary
large block lengths, our lower bound Dlb is established
for linear codes of a �xed block length m. In �gure 3
we have plotted this lower bound as a function of code
rate R for di�erent lengths. We observe that the curves
R(Dlb) are always above, and converge toward Shan-
non's limit R(D) as m ! 1. This can, in fact, be
rigorously proved [4].

3.3 In search of good source codes

For short lengths it is possible to carry an exhaustive
search of the linear codes achieving the minimum dis-
torsion D for a given rate R. This is done by param-
eterizing codes with their parity-check matrix in sys-
tematic form1, and computing their standard array [2],
which give the coset leader weight distribution f�dg,
and therefore distortion D by (3.2). The search is lim-
ited by the size of the standard array (2k � 2m�k) and
was carried out up to m = 11.

Figure 4 gives the performances of the best linear
codes for m = 10. We have observed that these stand

1Without loss of generality, we can restrict the search to sys-

tematic codes because two equivalent codes|di�ering only in the

order of bits|clearly achieve the same distortion.
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Figure 4: BSS coding performance for linear codes of length
m = 10. Solid: Dlb(d); dashdotted: Shannon limit Rs =

1�H2(D); +: best linear codes found by exhaustive search.

pretty close to our lower bound Dlb for any length
m � 11. In fact, many codes meet the lower bound2.

4 JOINT SOURCE/CHANNEL CODING

Consider the block diagram of �gure 5 for a BSS and a
BSC of raw error probability p. Two linear block codes
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Figure 5: Block diagram of a source and channel coding

system

are used: One (m; k) code for source coding, and one
(n; k) for channel coding. Let Rs =

k
m

and Rc =
k
n
be

the corresponding source and channel code rates. We
de�ne the global rate r = n

m
= Rs

Rc
as the average number

of coded bits per source bit. The �delity criterion is
chosen as the global Hamming distortion (2.1), which
is, in general, caused not only by the source coder but
also by the errors introduced by the channel.

4.1 Optimumperformance theoretically attain-

able (OPTA)

Shannon's theorem on joint source and channel cod-
ing [1, chap. 5] states that (1) r and D must satisfy
the inequality

r �
R(D)

C(p)
=

1�H2(D)

1�H2(p)
: (4.6)

where R(D) is the BSS rate distorsion function (3.5)
and C(p) is the BSC capacity; and (2) that the opti-

2We can show [4] that the set of codes meeting the lower bound

Dlb coincides with the set of perfect and quasi-perfect codes [2].



mum performance r =
1�H2(D)

1�H2(p)
is theoretically achiev-

able. Shannon's proof requires very large block lengths
(n andm!1) and separate optimization of source and
channel coders, where the source encoder and decoder
determine the �nal distortion, and where the channel
encoder and decoder achieve a very small error prob-
ability which is negligible compared to the distortion
introduced by the source encoder. However, by doing
the source and channel coding separately, we may end
up with a system more complex than necessary.

4.2 Simulation results

We propose a jointly optimized coding system in which
we restrict ourselves to codes of small block lengths|
yielding small complexity. For each global rate r = n

m
,

the best combination of source (m; k) and channel (n; k)
codes is determined by exhaustiuve search. The results
are shown in �gure 6. In constrast to Shannon's ap-
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Figure 6: Distortion D versus global source/channel rate r

for a very noisy BSC with raw error probability p = 0:05.

Solid line: Shannon limit. Dashdotted line: distortion of
the `trivial' systems (see text). Circles: performances of best

combination of source (m;k) and channel (n; k) codes for

block lengths m and n � 11.

proach, the �nal distortion signi�cantly depends on both
the source and channel codes, while performances stay
relatively close to the OPTA. It is convenient to discuss
three cases:

Case r = 1. From (4.6), the OPTA is D = p. It is
known (see e.g. [1, Pb. 5.7]), and easily seen, that the
OPTA is achieved without any coding at all, by connect-
ing directly the source to the channel3. In contrast to
Shannon's approach, the resulting system is very simple,
and the channel is responsible for the total distortion.

Case r < 1. In this case, we observed that the best
combination of source and channel coders occurs when
the channel code is a universal code|that is, k = n.

3Moreover, we can show by calculation [4] that this trivial sys-

tem is the only combinationof source and channel coders for which

OPTA is attained.

Thus, in this case, the best way to do joint coding is to
do no channel coding at all. We also have an empirical
argument [4], similar to the one derived for r = 1, which
suggests that this should be so. Figure 6 shows the
performances of the best source codes as derived in 3.3
for m � 11. It also makes the comparison to `trivial'
codes for which only the fraction r of the source bits
are transmitted and the source decoder guesses the rest
by ipping an unbiased coin, yielding distortion D =
pr + 1

2
(1 � r). Observe that the trivial codes perform

better than the `best' source codes when r is close to 1.
Case r > 1. In this case, we observed that the

best combination of source and channel coders occurs
when the source code is a universal code|that is,
m = k. Thus, in this case, the best way to to do joint
source/channel coding is to do no source coding at all.
Figure 6 shows the performances of the best channel
codes for n � 11, which were derived in a manner simi-
lar to what was done in 3.3. It also makes the compar-
ison to `trivial' codes for which the m-bit source word
u is padded with n�m zeros to give channel codeword
x, yielding distortion D = p. Observe that the trivial
codes perform better than the `best' source codes when
r is close to 1.

5 Conclusion

In this paper, we have �rst discussed the strong similar-
ity between binary symmetric source coding and binary
symmetric channel coding: They are essentially dual
tasks.
We have then utilized this duality for designing data

compression systems with error probability criterion,
and have derived the optimum performance curve using
block codes of a given length. For increasing lengths,
these curves converge toward Shannon's limit. Exhaus-
tive search for lengths � 11 shows that the best linear
codes are always very close to the optimum.
Finally, these source codes were used to construct sim-

ple joint source and channel coding systems. In our pro-
posal, complexity is limited by the use of small block
lengths yet performance stays relatively close to the op-
timum performance theoretically attainable.
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