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JOINT BINARY SYMMETRIC SOURCE-CHANNEL CODING WITH SMALL LINEAR CODES

The strong similarity b e t w een binary symmetric source (BSS) coding relative to Hamming distortion and binary symmetric channel (BSC) coding is discussed in this paper. It is further utilized for designing data compression systems with error probability criterion. These are, in turn, used to construct simple joint source and channel coding systems.

INTRODUCTION 1.Motivation

There is a strong similarity b e t w een BSS coding relative to Hamming distortion and BSC coding: The same linear block error-correcting code can be used both as a channel code and as a source code, where the channel decoding algorithm is used as a source encoding algorithm, and the channel encoding algorithm is used as a source decoding algorithm. This idea is not new; it appears e.g. in Mc Eliece's book [1, x 11.5].

Such BSS coding techniques|\dual" to BSC coding techniques|have not been widely used, primarily because source encoding requires a complete channel decoder. This requires the use of codes with small block lengths so that source encoding can be done using a complete list of syndromes. Thus, practical capabilities of such source coding schemes are limited.

However, our aim is to utilize the similarity b e t w een binary source and channel codes to design a joint source and channel coding system using small linear block codes. Although Shannon's source and channel coding theorem suggests that source and channel coding should be separated, optimum performance would be achieved at the expanse of very large block lengths and very high complexity. In our proposal, complexity is limited by the use of small block lengths yet performance stays relatively close to the optimum.

Organization of the paper

While the design of error-correcting codes for use on the BSC is well-known, comparatively little is known concerning the use of these codes for BSS data compression with Hamming distortion. For this reason, we derive, in this paper, the optimum performance curve for source coding using block codes for a given block length. For increasing lengths, we can show that these curves converge toward Shannon's limit (known as the rate-distortion function). Exhaustive search for lengths 11 shows that the best linear codes are always very close to the optimum, for any possible code rate.

Then, we utilize these source and channel codes to design a joint source and channel coding system. We provide simulation results and compare them to Shannon's limit for joint source and channel coding, which i s referred to as the optimumperformance theoretically attainable (OPTA) in the literature. Although complexity is maintained at a small level, performance is relatively close to the OPTA.

The results given in this paper may easily be extended to q-ary sources, where e.g. q is a prime power integer and codes are dened over a nite eld F q . T o simplify the discusssion, we restrict ourselves, in this paper, to the binary case (q = 2 and F 2 = f0; 1g).

DUALITY BETWEEN ERROR CORREC-TION AND SOURCE CODING

Consider a binary block source coding scheme as illustrated in gure 1. Each m-bit source word u is processed to give a k -bit index i which represents the source word more compactly (one has k < m ). The source decoder delivers the m-bit \source codeword" v to the user. We 
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Here d H (u; v ) is the Hamming distance between the source word and the source codeword (i.e., the number of places in which they dier), and p(u) is the probability mass function of the source (for a BSS p(u) = 1 2 m ). In other words, D is the average number of bit errors between the system input and output and is, in fact, an error probability citerion.

To each source codeword v corresponds a codebook index i, and, in order to minimize D, v should be chosen as the closest codeword to u (nearest neighbour condition for the Hamming distance). Therefore, the source encoder should nd the codeword that is closest to the source word and then deliver its index i. The source decoder should perform the inverse `table lookup' operation to output the corresponding codeword v.

In this paper, source coding is achieved using a linear (m; k) block code. Such codes were invented to correct errors on noisy channels and were intensively studied (see e.g., [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]). Consider, for example, the BSC coding scheme depicted in gure 2. The channel encoder
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of a binary channel coding system adds redundancy to information message i and delivers channel codeword v. The channel decoder uses this redundancy to correct the errors in received word u; i t achieves this by nding the codeword v that is closest (in the Hamming sense) to u, and nally produces an estimate of information message i.

Therefore, we see that the channel decoding algorithm performs essentially the same task as the source encoding algorithm, which is required for the source coding scheme of gure 1. For this reason, the source encoder will be implemented as a channel decoder. From this follows that we should also use the the channel encoding algorithm as a source decoding algorithm. The code rate R = k m gives the average number of coded bits in i per source bit.

To summarize, binary source and channel coding are essentially dual tasks. There is, however, one important dierence concerning the implementation of the source encoder vs. the channel decoder: In many practical channel coding situations, the received word is, with high probability, v ery close to the emitted channel codeword so that the channel decoder can be incomplete. This means that it decodes only those received words having less than a given number of errors. For source coding, however, the input source word can be anywhere. This is especially true for a BSS where source words are equally likely. It is therefore necessary that the source encoder be implemented as a complete channel decoder, which produces the closest codeword v no matter what the received word u is.

Most known ecient c hannel decoders are incomplete decoders and cannot be used for our purposes. However, complete channel decoding can be performed us-ing the classical syndrome decoding (see e.g. [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF]) where nding the closest codeword is done using a complete list of 2 m k syndromes. This, however requires the use of codes with small block lengths in order to maintain complexity at a reasonable level.

BEST PERFORMANCE OF BSS CODING

In this section, we derive a closed-form, tight l o w er bound on the achievable Hamming distortion using source block codes for a given length m and all possible rates R = k m . We then compare this bound to Shannon's rate-distorsion function and show that nearly optimal codes exist for all lengths m 11. 

Comparison to Shannon's limit

From Shannon's coding theorem, we know that the optimal performance theoretically attainable for BSS coding is given by Shannon's rate-distorsion function

R(D) = 1 H 2 ( D ) ( D 1 2 ) (3.5)
where H 2 (x) = x log 2 x (1 x) log 2 (1 x) is the binary entropy function. Shannon's initial theorem considers arbitrary (non-linear) codes, but it is known to hold also for the subclass of linear codes [START_REF] Goblick | Coding for a discrete information source with a distortion measure[END_REF]. While the rate-distortion function refers to arbitrary large block lengths, our lower bound D lb is established for linear codes of a xed block length m. In gure 3 we h a v e plotted this lower bound as a function of code rate R for dierent lengths. We observe that the curves R(D lb ) are always above, and converge toward Shannon's limit R(D) a s m 1 . This can, in fact, be rigorously proved [START_REF] Bergot | [END_REF].

In search of good source codes

For short lengths it is possible to carry an exhaustive search of the linear codes achieving the minimum distorsion D for a given rate R. This is done by parameterizing codes with their parity-check matrix in systematic form 1 , and computing their standard array [START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF], which give the coset leader weight distribution f d g, Figure 4 gives the performances of the best linear codes for m = 10. We h a v e observed that these stand 1 Without loss of generality, w e can restrict the search to systematic codes because two equivalent codes|diering only in the order of bits|clearly achieve the same distortion. m and R c = k n be the corresponding source and channel code rates. We dene the global rate r = n m = Rs Rc as the average number of coded bits per source bit. The delity criterion is chosen as the global Hamming distortion (2.1), which is, in general, caused not only by the source coder but also by the errors introduced by the channel.

Optimum performance theoretically attainable (OPTA)

Shannon's theorem on joint source and channel coding [1, c hap. 5] states that (1) r and D must satisfy the inequality r R(D)

C(p) = 1 H 2 (D) 1 H 2 (p) : (4.6)
where R(D) is the BSS rate distorsion function (3.5) and C(p) is the BSC capacity; and (2) that the opti-mum performance r = 1 H2(D) 1 H2(p) is theoretically achievable. Shannon's proof requires very large block lengths (n and m 1 ) and separate optimization of source and channel coders, where the source encoder and decoder determine the nal distortion, and where the channel encoder and decoder achieve a v ery small error probability which is negligible compared to the distortion introduced by the source encoder. However, by doing the source and channel coding separately, w e m a y end up with a system more complex than necessary.

Simulation results

We propose a jointly optimized coding system in which we restrict ourselves to codes of small block lengths| yielding small complexity. F or each global rate r = n m , the best combination of source (m; k) and channel (n; k) codes is determined by exhaustiuve search. The results are shown in gure 6. In constrast to Shannon's ap- proach, the nal distortion signicantly depends on both the source and channel codes, while performances stay relatively close to the OPTA. It is convenient to discuss three cases: Case r = 1 . F rom (4.6), the OPTA i s D = p . I t i s known (see e.g. [1, Pb. 5.7]), and easily seen, that the OPTA i s a c hieved without any coding at all, by connecting directly the source to the channel 3 . In contrast to Shannon's approach, the resulting system is very simple, and the channel is responsible for the total distortion. Case r < 1 . In this case, we observed that the best combination of source and channel coders occurs when the channel code is a universal code|that is, k = n. Thus, in this case, the best way to do joint coding is to do no channel coding at all. We also have an empirical argument [START_REF] Bergot | [END_REF], similar to the one derived for r = 1, which suggests that this should be so. Figure 6 shows the performances of the best source codes as derived in 3.3 for m 11. It also makes the comparison to `trivial' codes for which only the fraction r of the source bits are transmitted and the source decoder guesses the rest by ipping an unbiased coin, yielding distortion D = pr + 1 2 (1 r). Observe that the trivial codes perform better than the `best' source codes when r is close to 1.

Case r > 1 . In this case, we observed that the best combination of source and channel coders occurs when the source code is a universal code|that is, m = k. T h us, in this case, the best way to to do joint source/channel coding is to do no source coding at all. Figure 6 shows the performances of the best channel codes for n 11, which w ere derived in a manner similar to what was done in 3.3. It also makes the comparison to `trivial' codes for which the m-bit source word u is padded with n m zeros to give c hannel codeword x, yielding distortion D = p. Observe that the trivial codes perform better than the `best' source codes when r is close to 1.

Conclusion

In this paper, we h a v e rst discussed the strong similarity b e t w een binary symmetric source coding and binary symmetric channel coding: They are essentially dual tasks.

We h a v e then utilized this duality for designing data compression systems with error probability criterion, and have derived the optimum performance curve using block codes of a given length. For increasing lengths, these curves converge toward Shannon's limit. Exhaustive search for lengths 11 shows that the best linear codes are always very close to the optimum.

Finally, these source codes were used to construct simple joint source and channel coding systems. In our proposal, complexity is limited by the use of small block lengths yet performance stays relatively close to the optimum performance theoretically attainable.
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 12 Derivation Consider an (m; k) binary linear code C having 2 k codewords v of length m. Dene the Vorono cell V (v) about v 2 C as the set of m-bit words that are closest to v than to any other codeword. It is easily seen that the Vorono cells may b e c hosen so as to be disjoint and to cover the entire space F m 2 . Now dene d as the number of words u in V (v) for which d H (u; v ) = d . Since the code is linear, the Vorono cells are translated copies of each other (and thus enclose exactly 2 m k words). It follows that d does not depend on the choice of V (v). The d 's are known, in (channel) coding theory [2], as the Hamming weight distribution of the code's coset leaders. Using these denitions, the Hamming distortion for code C can easily be rewritten as Now pick a d 0 and split the sum into two parts, one for d < d and the other for d d . In the second sum, use d d and the relation P m d=0 d = jV (v)j = 2 m k .W e obtain, after re-arranging terms: easily obtained by counting all words at distance d from a codeword. We end up with the following lower bound on D. easily seen that the best lower bound D lb (d ) is obtained when d is the largest integer such that
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 3 Figure 3: Lower bound for dierent block lengths: m=10 (-.), m=25 ({), m=50 (..). Solid: Shannon's rate-distortion function.

  and therefore distortion D by (3.2). The search is limited by the size of the standard array ( 2 k 2 m k ) and was carried out up to m = 11.
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 45 Figure 4: BSS coding performance for linear codes of length m = 1 0 . Solid: Dlb(d); dashdotted: Shannon limit Rs = 1 H2(D); + : b est linear codes found by exhaustive search.
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 6 Figure 6: Distortion D versus global source/channel r ate r for a very noisy BSC with raw error probability p = 0 : 05. Solid line: Shannon limit. Dashdotted line: distortion of the `trivial' systems (see text). Circles: performances of best combination of source (m; k) and channel (n; k) codes for block lengths m and n 11.

We can show[START_REF] Bergot | [END_REF] that the set of codes meeting the lower bound D lb coincides with the set of perfect and quasi-perfect codes[START_REF] Macwilliams | The Theory of Error-Correcting Codes[END_REF].

Moreover, we can show b y calculation[START_REF] Bergot | [END_REF] that this trivial system is the only combinationof source and channel coders for which OPTA is attained.